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A mechanistic account of serotonin’'s impact
on mood
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Selective serotonin reuptake inhibitors (SSRIs) constitute a first-line antidepressant inter-
vention, though the precise cognitive and computational mechanisms that explain treatment
response remain elusive. Using week-long SSRI treatment in healthy volunteer participants,
we show serotonin enhances the impact of experimentally induced positive affect on learning
of novel, and reconsolidation of previously learned, reward associations. Computational
modelling indicated these effects are best accounted for by a boost in subjective reward
perception during learning, following a positive, but not negative, mood induction. Thus,
instead of influencing affect or reward sensitivity directly, SSRIs might amplify an interaction
between the two, giving rise to a delayed mood response. We suggest this modulation of
affect-learning dynamics may explain the evolution of a gradual mood improvement seen
with these agents and provides a novel candidate mechanism for the unfolding of serotonin’s
antidepressant effects over time.
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ajor depression is a leading cause of disability world-

wide, representing one of society’s most challenging,

and costly, health burdens!. Pharmacotherapy of
depression primarily targets monoamine neurotransmitter func-
tion, with selective serotonin reuptake inhibitors (SSRIs) con-
stituting first-line antidepressant intervention?. Despite their
well-described clinical® and neurochemical effects®>, the cogni-
tive and computational mechanisms underlying SSRI treatment
effectiveness remain elusive®’. This lack of a mechanistic
understanding arguably compromises development of effective
treatment stratification and clinical prediction models.

At the cognitive level, a bias towards attending and remem-
bering negative information®, as well as a decrease in perception
of positive information!®11, are considered to play a key role in
both the development and maintenance of depression. Conse-
quently, modulating affective biases, with the aim of boosting
reward exposure and positive experience, is a principled target in
psychological interventions, as in the paradigmatic instance of
behavioural activation therapy!2. Intriguingly, a growing body of
work suggests pharmacological intervention might influence
affective processing in a similar manner, in other words via a
boost in perception of positive affective information that induces
a ‘rosier’ perspective’-13. Nevertheless, it remains unclear how a
pharmacological induction of affective biases in perceptual pro-
cessing, for example as reported in emotional face perception,
translates into overt mood change!4-16. Influential theories pro-
pose affective biases may influence cognitive processes other than
perception, such as reward learning and affective memory
consolidation!”>18.

We previously proposed a mechanistic framework for how
affect-learning interactions contribute to mood dynamics!®.
Empirically, we have shown how unexpected outcomes alter
affective state, which in turn biases a sensitivity to subsequent
reward outcomes20:21, Theoretically, this two-way relationship
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can set in train an escalating positive feedback loop wherein good
outcomes improve mood which, in turn, improves perception of
subsequent outcomes leading to further mood elevation.

Based upon clinical observation that antidepressants do not
enhance mood either acutely or directly, but are instead char-
acterised by a delayed clinical onset??, we hypothesised SSRIs
would influence an integral aspect of this feedback loop. Speci-
fically, we conjectured serotonin would boost the impact of
positive affect on reward processing, an effect that can give rise to
gradual mood improvement. To test our hypothesis, we used a
week-long SSRI treatment intervention in healthy volunteers,
with repeated experimental testing, to probe two specific pre-
dictions. First, we predicted that, during learning of novel reward
associations, SSRIs would boost the impact of positive affect on
the subjective value of reward. Second, we predicted that, at the
time of exposure to previously learned reward associations, SSRIs
would boost the impact of positive affect on value
reconsolidation.

Results

SSRIs, positive mood and learning. Sixty-four healthy volun-
teers were randomly allocated into two equal-sized groups
(Supplementary Table 1) and asked to take a daily oral dose of
either the SSRI citalopram (20 mg) or placebo over 7 consecutive
days. Subjects performed four laboratory testing sessions, com-
prising a pre-drug session on day 1 as well as three on-drug
sessions on days 1, 4, and 7, respectively (Fig. 1d).

On every session, subjects performed two blocks of a trial-and-
error reward learning task, during which they were asked
repeatedly, via an experiential sampling protocol, to report their
current emotional state by responding to the question ‘How do
you feel right now?’ (Fig. 1c). On every trial (Fig. 1a), subjects
chose between two images presented on screen and received a
monetary reward (‘gold coin’, £0.03), or no reward (‘red cross’),
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Fig. 1 Experimental task and study design. a Trial structure. On every trial, subjects had 3 s to make a choice between two presented images. The chosen
image was highlighted for 0.7 s. Subsequently, an outcome, either reward (gold coin), no reward (red cross), or no feedback (box), was shown above the
image for 1.5 s. After a 2 s fixation cross period, the next trial started. b Different outcome types. On learning trials, subjects encountered either a monetary
reward (gold coin, £0.03), or no reward (red cross) outcome, depending on the chosen image's associated reward probability. Here, each image was
associated with either a fixed high (70%) or a fixed low reward probability (30%). On test and interleaved maintenance trials, outcomes were not revealed.
Instead, they were 'hidden in a box' visible to subjects. Subjects were instructed that images still led to reward outcomes, depending on reward
probabilities. However, to prevent new learning at this stage, feedback was not shown. € Mood rating. Multiple times per block (three times during blocks
of 48 trials, four times during blocks of 72 trials; fixed intervals), subjects were asked to report their current emotional state by responding to the question
‘How do you feel right now?'. The rating was provided without time restriction by moving a red cursor that always started at the midpoint along a scale
ranging from ‘very unhappy’ to ‘very happy’. d Study design. Subjects were randomly allocated to take a daily dose of 20 mg citalopram or placebo for
7 days and participated in four session over the week: a pre-drug session | on day 1, and three sessions on the drug, on days 1, 4, and 7 (sessions Il, IIl and
IV). To modulate subject’s affective state between learning blocks, a Wheel of Fortune (WoF) draw was held in session Il (day 1) and IV (day 7). Cf.
Supplementary Fig. 1 for details on session structure and image appearance across the entire study.
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Fig. 2 No drug effects on reward learning and maintenance of learned
associations. Correct choices for images learned during a the pre-drug
session and b over the course of 1-week drug treatment. Task
performance was quantified as proportion of choices of the image
associated with a high reward probability on trials comparing images of
different reward probability, i.e., high vs. low. Learning was assessed
during a test block on every session, comparing images from blocks 1 and
2, encountered during preceding learning. Maintenance was assessed
during interleaved trials involving familiar images on subsequent
sessions, where images learned about in session | re-appeared in session
I, and images from session Il in session Ill, etc. Notably, both learning
and maintenance were assessed on choices between the same image
pairs, with the time-lag between learning and maintenance test
constituting the only difference. Results show that learning performance
was stable across sessions, and unaffected by SSRI treatment (pre-drug
(n=63): Fy61=0.5 p=0.457; sessions |-V (n = 62): drug: F; ¢0 = 0.6,
p = 0.428; drug x session: F120 = 0.3, p=0.717). Moreover,
performance decreased more for 3-day (Il to Ill and Ill to IV) as compared
to 3-h time-lag (I to I, time: F;120 = 6.8, p=0.002), but performance
decline was unaffected by drug manipulation drug: (F1¢0=0.03, p=
0.858; drug x time: F;150 = 0.005, p =0.995). n.s. = not significant (no
difference across drug groups). Error bars indicate SEM.
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depending on the chosen image’s associated reward probability.
Each learning block comprised a total of four novel images, two
with fixed high (70%) and two with fixed low reward probability
(30%). To perform well, and maximise monetary outcome,
subjects needed to choose images they considered more likely to
lead to reward.

Upon completion of the two learning blocks, subjects
performed a final test block involving presentation of all images
encountered previously during learning. This design feature
allowed us to measure subjects’ learning performance, quantified
as the proportion of chosen high probability compared to low
reward probability images, i.e., high vs. low. In this test block,
outcomes were not revealed to prevent further new learning at
this stage. Instead, outcomes were ‘hidden in a box’ visible to
subjects (Fig. 1b). We found participants learned to dissociate
high and low reward probability images in the pre-drug session,
with no between-group difference (F, ¢, = 0.5, p = 0.457; Fig. 2a).
Moreover, performance did not differ between SSRI and placebo
during the drug period (drug: F; s =0.6, p=0.428; drugx
session: F,150=0.3, p=0.717, Fig. 2b). This indicates that
probabilistic reward learning was stable across sessions and
unaffected by SSRI treatment.

To generate large prediction errors likely to be sufficient to
impact subjects’ affective state between learning blocks, we held a
Wheel of Fortune (WoF) draw in sessions II (day 1) and IV
(day 7; Fig. 3a). The WoF, depicting possible win or loss
outcomes in the range of £1—£9, turned gradually for approx. 45 s
before stopping. An indicator then revealed an outcome. Each
subject won and lost once, with the order counterbalanced across
subjects, an amount that randomly varied from £7 to £9, which
was added to or subtracted from their overall payment.

A comparison of pre- and post-WoF mood (mean happiness
ratings across entire block) indicated that WoF outcome
profoundly impacted emotional state, ie., subjects reported
feeling happier in the post-WoF block after a win, and less
happy after a loss (F;6, =42.0, p<0.001). Here, the absolute
(negative) effect of a loss was significantly greater than the
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Fig. 3 SSRIs induce an impact of positive mood on learning. a Each session comprised two learning blocks, where subjects encountered four novel
images, two with a high (70%) and two with a low reward probability (30%). Feedback enabled subjects to learn about images' reward probabilities
through trial-and-error. Additionally, sessions Il and IV comprised a WoF draw between learning blocks, where each subject either won (yellow) or lost
(red) a large monetary amount (£7—£9). After the second learning block, subjects performed a test choice block, where they chose between images from
the two preceding learning blocks. To prevent further learning, outcomes were not revealed in these test blocks, and subjects were instructed to rely solely
on what they had learned previously about the images. b Proportion of test block choices between images encountered during preceding learning with
feedback in different blocks, i.e., pre-WoF or post-WoF. This analysis compared choices between images with equal reward probabilities, i.e., high vs. high
and low vs. low, and preference is computed as difference between percent choices of post-WoF images and pre-WoF images, as a function of WoF
outcome. Participants showed a preference for images encountered in better mood, favouring post-WoF images after a winning draw, and favouring pre-
WoF images after a losing draw. The SSRI group showed a significantly positive mood bias (F;3, =12.1, p=0.001), and it was enhanced as compared to
placebo subjects (F1¢0 = 5.5, p = 0.021, n = 62). **p < 0.01, *p < 0.05. Error bars indicate SEM. ¢ Interaction between affect and reward sensitivity. Rewards
impact on emotional state, which, in turn, impacts on perception of subsequent rewards. In this bidirectional interaction, SSRIs enhance the impact of
positive affect on reward sensitivity. This serotonergic effect can engender a positive feedback loop.
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absolute (positive) effect of a win (F; 5, = 23.5, p <0.001), a result
that has echoes with the notion of loss aversion, where a loss is
known to be more impactful than an equivalent gain?3. However,
these mood responses were unaffected by SSRI treatment (drug:
F162=0.8, p=0.361), meaning that neither the mood change
following a WoF win (F;¢4, =0.5, p=0.482) nor the mood
change following a WoF loss (Fy¢, =04, p=0.499) differed
between groups. Thus, SSRIs did not affect the manifestation of
loss aversion on subjective mood ratings.

Next, we examined whether the WoF impacted on reward
sensitivity while subjects were experiencing this altered emotional
state. To quantify this, we assessed a preference for images
initially encountered before or after the experimental mood
manipulation. This preference was computed during the final test
block, as the proportion of chosen images encountered previously
across different learning blocks, pre-WoF or post-WoF (Fig. 3a).
Note this analysis compared image pairs of equal reward
probability, i.e., high vs. high and low vs. low.

Participants showed a preference for images encountered
previously when in a better mood, favouring post-WoF images
after a winning draw, and favouring pre-WoF images after a
losing draw (F; 6o =9.1, p = 0.004; Supplementary Fig. 2A). This
suggests elevated mood after winning on the WoF boosted a
preference for images encountered in a high mood, whereas loss
induced mood change led to a disinclination toward images
encountered in a low mood.

Critically, this mood learning bias was modulated by the drug.
Subjects on SSRIs showed an enhanced positive mood bias
compared to placebo subjects (F; g9 = 5.5, p = 0.021), whereas the
negative mood bias was not different between groups (F; g0 = 0.1,
p=0.719). A significant interaction between valence of mood
manipulation and drug (F; ¢ = 4.4, p = 0.038; Fig. 3b) indicates
that SSRI treatment specifically boosted a preference for images
encountered following a winning draw, i.e., images learned in a
positive mood.

To rule out a possibility that results were driven by primacy
(preference for block 1) or recency (preference for block 2)
effects, we assessed test block choices from the mood-neutral
session III (preference for blocks 1 or 2, in the absence of a WoF
draw). We found no difference between treatment groups (F; o
=0.5, p=0.470). Secondly, mood-dependent drug effects from
sessions II and IV remained significant when regressing out
effects from the mood-neutral session III (win: F; 50 =6.9, p=
0.011; loss: F; 50 = 0.6, p =0.807; drug x valence: F; 50 =4.8, p =
0.032), indicating that the reported findings are independent of
primacy or recency effects.

In addition to comparing directly between images with equal
reward probabilities, we conducted a more complete and
individualised analysis of subjects’ test choices, including choices
between images with both equal and different reward probabil-
ities. For this, we used a logistic regression, on each session that
comprised a WoF draw, that accounted not only for the impact of
a mood manipulation, but also for the number of rewards subjects
received for choosing each image with feedback during learning.
Specifically, choice on test block trials (without feedback) was the
dependent variable in the regression model on each session.
Difference in number of rewards received (during preceding
learning with feedback) for the two images shown on the screen,
and a WoF outcome that preceded learning about each image,
served as predictor variables. As expected, subjects were more
likely to choose images for which they received more rewards
during preceding learning (f;: F; 60 =171.2, p <0.001), but this
reward impact on choice was not affected by drug (F; ¢ =0.1,
p =0.659; Supplementary Fig. 3A). In line with the average
results presented above, we found in addition a significant effect
of mood bias across the entire sample (B,: F; g0 = 4.0, p = 0.049),

reflecting subjects’ preference for images they had encountered in
a positive mood state after a win, and disinclination for images
they had encountered in a negative mood state after a loss, an
effect not driven by differences in experienced reward. Critically,
this effect was modulated by drug group (drug x valence: F; 4o =
4.1, p = 0.047), an effect driven by a significantly enhanced mood
bias on the session including a WoF win (Bipositive: F1,60 = 5.5,
p =0.022), but not on the session including a WoF loss (B2negative:
Fi60=0.1, p=0.789) under SSRI as compared to placebo
(Supplementary Fig. 3B).

To rule out a possibility that our results were affected by
how often subjects had sampled images during learning, we
conducted two further control analyses. Firstly, we ruled out any
difference between treatment groups in their sampling of images
with high or low reward probability across sessions (F; 4, = 0.00;
p=0.984). Secondly, we computed a logistic regression analysis
to assess whether the number of times an image had been chosen
during learning affected how often subjects chose it subsequently
during the test block. Here, we found a found a small, yet
significant effect (F;4, =8.7; p=0.005), indicating subjects
preferred images which they had sampled more frequently
during learning and therefore had higher certainty about (over
and above the number of experienced rewards per image).
Crucially, this measure was unaffected by drug treatment (F; 5, =
0.2; p=10.692), indicating that SSRI treatment did not impact
uncertainty aversion.

Computational modelling: SSRIs boost reward sensitivity in
positive mood. Next, we used computational modelling to probe
the precise learning mechanisms by which SSRIs boost a positive
mood bias. A wide range of evidence indicates human and
nonhuman animal learning is driven by reward prediction error
signals, reflecting a difference between expectations and actual
outcomes?4. We compared a range of reinforcement learning
models (cf. Methods for details) in terms of how well each model
fitted subjects’ choices. The best-fitting model (‘dynamic mood
model’; Supplementary Fig. 4) accounts for the effect of mood on
learning by means of two parameters, one for positive (Mpositive)s
and one for negative mood (Myegative)> that bias the subjective
value of reward following the WoF mood manipulation. Rather
than learning from actual reward, this model computes prediction
errors with respect to subjective reward, which is up- or down-
regulated depending on mood state.

When individually fitting the model parameters to each
subject’s choices, we found that model parameter estimates
strongly correlated with model-free results (Supplementary Fig. 5).
Additionally, generating simulated data based upon these
parameters showed that the model captured core features of the
real data (Supplementary Fig. 6), that model comparison could
identify the model that generated the data (Supplementary Fig. 7),
and that individual parameter estimates could be accurately
recovered (Supplementary Fig. 8).

Individually fitting the model parameters to each subject’s
choices showed no difference between drug and placebo group for
learning and choice parameters (dynamic learning rate (¢): Fy 4,
= 0.2, p =0.589; decision temperature (f8): F; 5, = 1.2, p = 0.276).
However, we found a significant difference in mood bias (drug x
valence: F;go=5.1, p=0.026), driven by an elevated positive
(F160 =4.3, p=0.041) but not negative mood bias parameter
(F160=0.6, p=10.435) in SSRI as compared to placebo-treated
subjects (Supplementary Fig. 9). This is consistent with the idea
that rewards are subjectively perceived as greater in a positive
mood, an effect that was significantly enhanced in the SSRI
treatment group.
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SSRIs modulate the impact of mood on value reconsolidation.
In addition to novel images, each learning block comprised
interleaved trials where subjects made choices between images
that were familiar from the previous session. Similar to the test
block, outcomes were not revealed on such trials so as to prevent
further learning, entailing subjects needed to rely on previously
acquired knowledge when making choices. This interleaving of
trials allowed us to test how accurately subjects maintained
learned reward associations over time, by quantifying the pro-
portion of high probability image choices compared to low
reward probability images, high vs. low. We found a significant
effect of time-lag between initial learning and our test for
maintenance. Specifically, performance decreased more for 3-day
(II to III and III to IV) as compared to 3-h time-lag (I to II; time:
F, 120 = 6.8, p = 0.002; Fig. 2). However, performance decline was
unaffected by drug manipulation (drug: F, o= 0.03, p=0.858;
drug x time: F, 150 =0.005, p=0.995; Fig. 2), suggesting SSRI
treatment did not impact on short-term maintenance of learned
reward associations.

An interleaving of trials without feedback allowed us to assess a
second prediction related to an impact of SSRIs on how mood
affects reconsolidation of previously acquired reward associations.
For this purpose, a subset of images re-appeared on no-feedback
trials that had been presented either before, or after, the WoF
draw. In the final test block, subjects were then asked to choose
between pre-WoF vs. post-WoF images of equal reward
probability (Fig. 4a). By design, such images were identically
affected by time-lag and initially learned in the same block,
without any biasing influence of mood (during the previous
session). The images differed only in relation to the mood state
under which previously acquired reward associations were subject
to reconsolidation during choice (on the current session).

Across the entire sample, subjects preferred images that re-
appeared post-WoF, irrespective of whether they were linked to a
win or loss (assessed on equal reward probability trials; F; g9 =
7.5, p=0.008; Supplementary Fig. 2b). This raises a possibility
that increased arousal, engendered by the outcomes of the WoF
draw, enhanced the subjective value of images during post-WoF

Mood reconsolidation bias

Block 2
post-WoF

Test

4 old images 4 old images

pre-WoF vs. post-WoF

reconsolidation, inducing a consequential preference for these
images. This points to the possibility of a qualitatively distinct
effect of the WoF draw on learning and on reconsolidation
(Supplementary Fig. 2 for effects across the entire sample), a
difference that is further supported by an absence of any
relationship between the two effects (win: R=0.07, p = 0.705;
loss: R=—0.18, p =0.303).

Critically, an arousal bias was differentially modulated by
treatment (drug x valence: F,¢ =4.8, p=0.032; Fig. 4b), an
effect in the SSRI group driven by a significant preference for
images encountered after winning, but not after losing, (win: Fy ;5
=64, p=0.023; loss: F; ;5 =1.4, p=0.246); and in the placebo
group after losing but not winning (win: F; ;5 =0.5, p=0.819;
loss: Fy 15 =10.1, p = 0.006).

We found no evidence that subjects performed more accurately
(assessed on high vs. low probability trials), as a function of the
draw (post-WoF vs. pre-WoF: Fi¢4 =11, p=0.302), as a
function of valence of the draw (post-WoF win vs. post-WoF
loss: Fy 0 =0.4, p=0.538), or as a function of drug condition
(post-WoF drug: F;4=0.03, p=0.864, post-WoF drug x
valence: F; 4 =0.7, p=10.417). These observations rule out an
interpretation based upon images being remembered more
accurately either as a function of mood induction or of drug
condition.

Thus, the findings are consistent with the WoF draw
amplifying the subjective value of images re-encountered in the
post-WoF block, leading to a biased choice preference towards
such images. As predicted, SSRI treatment induced a preference
for images re-encountered in a positive, compared to a negative,
mood state.

SSRIs induce delayed mood effects consistent with affect-
learning interaction. Next, we tested two simpler alternative
hypotheses concerning how SSRIs could elevate mood, which do
not require affect-learning interactions. First, SSRIs could simply
elevate positive affect directly and, if so, we would expect this to
be reflected in changes in mood ratings measured during the first
block of our experimental task, i.e., prior to an actual mood
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Fig. 4 SSRIs modulate the impact of mood on reconsolidation. a In addition to novel images, each block comprised interleaved trials involving choices
between familiar images from previous sessions. Outcomes were not revealed on such trials to prevent further learning, and subjects had to rely on

previously acquired knowledge when making choices. On session 1V, a subset of images re-appeared as interleaved trials either before (pre-WoF), or after
(post-WoF), the mood manipulation. The final test block comprised an additional set of trials comparing these images (re-appeared pre-WoF vs. re-

appeared post-WoF). By design, such images only differed in the mood state under which subjects retrieved learned reward associations from memory
when choosing. Note these images had initially been learned in the same block, unbiased by mood during session Il (cf. Methods for details). b Proportion
of test block choices between images that had been encountered without feedback during preceding reconsolidation in different blocks, i.e., pre-WoF or
post-WoF. This analysis involved choices between images with objectively similar reward probabilities, i.e., high vs. high and low vs. low, and preference is
computed as difference between percent choices of post-WoF images and pre-WoF images, as a function of WoF outcome. Contrasting a mood bias on
learning, subjects preferred images that re-appeared post-WoF, irrespective of whether the WoF was won or lost. However, this effect was differentially
modulated by the drug (drug x valence: F1 g0 = 4.8, p = 0.032, n = 64), with a significant preference for images encountered after winning F115 = 6.4, p=
0.023) but not losing the draw in the SSRI group, and a preference for images encountered after losing (Fy;5 =10.1, p = 0.006) but not winning the draw in

the placebo group. **p < 0.01, *p < 0.05. Error bars indicate SEM.
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manipulation or other task-related events. Importantly, there was
no baseline difference in mood ratings in the pre-drug session
(F162=0.2, p=0.633). We found mood self-report did not differ
between groups during treatment (drug: F; o= 0.2, p =0.616;
drug x session: F,150=12, p=0.299; Fig. 5a). Additionally,
subjects provided multiple affective state questionnaires repeat-
edly over the course of the study (Beck’s Depression Inventory
(BDI-I12%), Snaith—Hamilton Pleasure Scale (SHAPSZ20), State-
Trait Anxiety Inventory (STAI?), and the Positive and Negative
Affective Scale (PANAS?8). We found no evidence for drug effects
on any of these self-report questionnaires (Supplementary
Table 1). This is in line with previous studies, in both healthy
volunteers”!3 and depressed patients?2, showing week-long SSRI
treatment does not enhance mood directly.

Second, SSRIs could enhance positive affective responses to
outcomes, i.e, mood responsivity, an effect that should be
reflected in how subjects’ mood changed immediately following
the WoF draw, i.e, in block 2 compared to block 1. As described
above, winning and losing the WoF draw had a distinct impact on
affective state. However, mood responsivity was unaffected by
SSRI treatment (drug: F 4, =0.8, p=0.361; Fig. 5b), meaning
that a positive (F;4,=0.5, p=0.482) or a negative mood
response (Fj4 =0.4, p=0.499) did not differ between groups.
Thus, SSRI treatment did not modulate immediate mood
responsivity.

Ultimately, instead of an immediate impact on affective
responses, the affect-learning interaction account of SSRIs
suggests they have a delayed positive impact on mood.
Specifically, by enhancing sensitivity to rewards following a
positive mood manipulation, SSRIs could increase the positive
impact that these subsequent rewards have on mood. In our
experiment, such impact of the post-WoF rewards should
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manifest most clearly in the test block, after all block 2 rewards
had been awarded. To test for this delayed impact of the WoF
manipulation, we examined mood during the test block compared
to mood during block 1.

Indeed, we found a distal WoF-impact was differentially
modulated by drug (F;s,=5.6, p=0.020). Note that this
effect was not attributable to a significant drug effect for the
win (Fy ¢, = 1.7, p = 0.189), or for the loss condition (F; 4, =0.28,
p=0.095), but driven by an interaction of an amplified positive,
and lower negative mood response in the SSRI as compared to the
placebo group (Fig. 5¢).

Note that we did not find a significant three-way interaction
(factors ‘time’ 1st/2nd/3rd block, ‘drug’, ‘valence’; F, 5, =1.8,
p =0.172). This does not conflict with an effect of SSRIs on mood
per se, but merely indicates the delayed drug effect was not
significantly greater than the immediate effect. However, the
finding of a delayed effect needs to be interpreted with caution.

Based on our hypothesis, a greater positive mood effect should
be evoked by enhanced affect-learning dynamics. To test this
prediction, we assessed the relationship between the positive
mood bias parameter that modulated post-WoF learning (derived
from the computational model) and the delayed mood response
(assessed during test block). Strikingly, subjects with a high
positive mood bias parameter showed a highly significant positive
mood response (F; 3o =14.6, p <0.001), an effect not present in
subjects with a low parameter estimate (F;3,=0.8, p=0.363;
high and low defined using a median split across the whole
sample). Critically, this distal mood response was significantly
different between high and low mood bias groups (F;g9=9.9,
p=0.002; Fig. 5d), and this delayed effect remained significant
when controlling for the immediate affective response to the WoF
(F1,50 =9.0, p=0.004). In a correlation analysis, across the entire
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Fig. 5 SSRIs induce mood effects via affect-learning interaction. a Mean mood ratings during the first block of every session, i.e., prior to any mood
manipulation. Mood self-reports did not differ between groups in the pre-drug session (session |), or during the 1-week drug period (sessions II—IV). Note
that there were similarly no effects on affective state questionnaires, as repeatedly assessed over the course of the study (cf. Supplementary Table 1).
b Immediate mood responsivity, as a function of WoF outcome, i.e., mean mood change from block 1 to block 2. WoF outcome profoundly affected
emotional state, such that subjects reported to feel happier in the post-WoF block (block 2) after a win and less happy after a loss. However, immediate
mood responsivity was unaffected by SSRI treatment. ¢ Delayed mood responsivity, as a function of WoF outcome, i.e., mean mood change from block 1 to
block 3. Subjects showed an ongoing mood response during test block (block 3), with elevated mood after a winning draw, and decreased mood after a
losing draw. However, delayed mood responsivity was modulated by treatment, such that there was a greater positive mood effect in the SSRI group, and a
greater negative mood effect in the placebo group (F1 ¢, =5.6, p=0.020, n=64). d Interaction between affect and reward sensitivity. Rewards impact on
emotional state, which, in turn, impacts on perception of subsequent rewards. Biased perception of reward, a downstream effect of a serotonergic impact
on affect-learning dynamics (cf. Fig. 3b, c), can result in a delayed mood impact of the WoF that was only evident after subjects had played an additional
block in which they received more rewards. e Relationship between positive mood perception bias and delayed positive mood response. Subjects with a
high positive mood bias parameter, derived from the computational model, showed a strong delayed positive mood response (F;30 =14.6, p<0.001), an
effect not present in subjects with a low mood bias (division using a median split across the whole sample), and that significantly differed between the two
groups (F160=9.9, p=0.002, n=62). Note that this positive mood bias parameter acts via boosting subjectively perceived reward during learning after
winning the WoF, an effect significantly enhanced in the SSRI as compared to the placebo group. ***p < 0.001, **p <0.01, *p < 0.05, n.s. = not significant
(no difference across drug groups). Error bars indicate SEM.
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sample, we found a similar significant relationship between a
greater positive mood bias parameter and a greater delayed
positive mood change (R=0.278, p=0.030; Supplementary
Fig. 10). Thus, a positive mood learning bias, reflected in an
enhanced responsivity to reward after the experience of a
successful WoF draw, was associated with a positive subsequent
mood effect?. Overall, SSRIs did not influence affect directly, but
caused a delayed mood response, putatively a downstream effect
of altered responsivity to reward. Note, however, a downstream
effect, as a function of biased learning, is only one possible
interpretation that requires further investigation.

Discussion

We show that serotonergic antidepressants boost the influence of
positive affect during both learning of novel, and reconsolidation
of previously learned, reward associations. Thus, rather than
impacting on affect and reward sensitivity directly, SSRIs appear
to modulate a bilateral interaction between the two. We suggest
such positive feedback dynamics give rise to an evolving incre-
mental mood improvement, as well as provide a candidate
mechanistic account for the unfolding of antidepressant effects
over time.

Emotions and moods are considered interacting processes
expressed over different timescales0. Reward induces positive
emotion, and repeated exposure to rewards elicits enduring
positive emotional states, i.e., elevated mood3!. Here, we replicate
previous findings showing that unexpected outcomes impact on
emotional state, which, in turn, results in subsequent outcomes
being perceived as better in a positive, and worse in a negative
state2%-21, This suggests a bidirectional relationship between affect
and reward sensitivity, whereby a reward induces positive affect,
and positive affect in turn renders subsequent rewards more
valuable. Our novel finding is to show that serotonin boosts the
impact of positive affect on reward sensitivity. SSRIs specifically
enhance one axis of a two-way interaction, potentially engen-
dering a positive feedback loop, whereby a boosted perception of
positively biased rewards leads to further mood elevation!®. Such
non-linear dynamics may result in the gradual co-evolution of
positive mood and a preponderance of positive experiences,
thereby giving rise to the delayed clinical onset of SSRI therapy?2.

Our study extends an understanding of serotonin’s role in the
treatment of affective disorders at multiple levels. First, previous
research suggests serotonergic antidepressants induce a bias in the
perception of inherently emotional information, for example
emotional face perception!>1®. We show that SSRI-induced
affective biases influence cognitive processes other than percep-
tion, such as learning and reconsolidation. Critically, mood dis-
orders are often characterised by aberrant sensitivity to, and an
inability to accurately learn from, reward3>33. Our study is a step
towards understanding how antidepressants impact upon dys-
functional cognition in depression, and how a relatively
immediate serotonergic effect on implicit affect-cognition inter-
actions can set the scene for a mood improvement that emerges
over timel”. Second, positive feedback dynamics not only con-
stitute a putative mechanism of antidepressant drug action but
may also play a role in the emergence of manic episodes and
mood swings3%. A persistence of such escalatory dynamics has
been proposed to engender overly optimistic expectations and
elated mood, particularly in individuals prone to mood instabil-
ityl. This might explain a frequently observed phenomenon of
treatment-induced affective switching, and mood cycle accelera-
tion, associated with antidepressant medication in bipolar
disorder3>.

Serotonin’s role in reward processing, and its resulting mod-
ulatory impact on mood, remains a topic of debate30-38. Our

findings support influential theories of serotonin’s role in
reporting the affective value of the environment3?, and in facil-
itating an agent’s ability to adapt flexibly to dynamic environ-
ments through plasticity and behavioural control*’. Thus, the
perception of large unexpected rewards may signal the current
environmental context is beneficial, resulting not only in elevated
mood but also in a positively biased perception of subsequent
experiences?!. This chimes with nonhuman animal studies of
learning, which show antidepressants act to enhance an influence
of affective state on subsequent reward valuation?%43, It remains
to be demonstrated whether SSRIs amplify affect-learning inter-
actions via an increase in tonic firing, phasic release of serotonin,
or through interaction with other neuromodulators such as
dopamine?,

A limitation of our study is that we did not assess patients with
clinical depression. Previous research indicates depressed indivi-
duals respond to experimental induction of positive mood#44>,
albeit affective response is typically attenuated and maintained for
a shorter time period*>4°, Critically, variability in the ability to
experience positive affect predicts response to antidepressant
treatment?”:48, and evidence indicates emotional reactivity can
vary as a function of depression subtype*049, Precisely how a
serotonergic impact on affect-learning dynamics relates to treat-
ment response will need to be targeted in future clinical studies.
Another limitation pertains to the mechanistic understanding of a
secondary finding, where positive and negative affect boosted
subjective value during post-WoF reconsolidation. Although our
study provides some evidence that the effects of mood on learning
and reconsolidation constitute distinct processes, this question
remains an important issue for future work aimed at unpacking
whether an WoF effect on reconsolidation is indeed mediated by
arousal. Moreover, we acknowledge that week-long SSRI treat-
ment does not typically exert a clinically meaningful impact on
depressive symptoms?2. Longitudinal study designs, over longer
timescales, that probe whether interindividual variability in can-
didate computational parameters (e.g., the influence of positive
affect on learning) relates to clinical treatment response are an
avenue for future research. Thus, studies combining pharmaco-
logical intervention, repeated behavioural testing, and ecological
momentary mood assessment, might reveal whether an early
serotonergic impact on affect-learning dynamics (within hours or
days) provides a useful predictive marker for clinical response
(after multiple weeks)!420>1,

In conclusion, we show that SSRIs boost positive affective
biases in reward processing, an effect that may result in a delayed
mood response. Such SSRI-induced affect-learning dynamics
provide a framework for understanding the complex dynamics of
mood and hold great promise as an early marker of treatment
response that can aid tailoring of currently available, and devel-
opment of novel, therapeutic approaches to depression.

Methods

Subjects. Sixty-four healthy volunteers (mean age: 24.7 + 4.0; range 20—38 years;
38 females; Supplementary Table 1) participated in this double-blind, placebo-
controlled, mixed-factorial design study. Before study enrolment, subjects were
medically screened over the phone, and assessed by a medical doctor at the study
location upon arrival for the first study session. This assessment included an
electrocardiogram to exclude QT interval prolongation, as well as a structured
medical history, to ensure subjects had no current health issue, no history of
neurological or psychiatric disorder, no prior allergic reaction to any drug, and
were not taking any regular medication. The experimental protocol was approved
by the University College London (UCL) local research ethics committee (Ethics-
ID: 9787/002), with informed consent obtained from all participants.

Pharmacological procedure. Participants were randomly allocated to two equal-
sized groups, controlling for an equal gender balance across both groups, to receive
a daily oral dose of the SSRI citalopram (20 mg) or placebo, over a period of 7
consecutive days. Subjects were informed that there was a 50% chance that they
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would be in the active drug group, and a 50% that they would be allocated to the
placebo group. Additionally, subjects were informed regarding the double-blind
procedure of the study, meaning that they were not told which group they had been
allocated to, and that the study team responsible for data collection was also
unaware about their drug group allocation. All subjects performed four laboratory
testing sessions comprising a baseline session before start of the drug regime on day
1 (pre-drug) as well as three sessions that spanned the drug administration period,
each session separated by three days, i.e., on days 1, 4, and 7 (Fig. 1d).

The first medication was taken at the study location at completion of the pre-
drug session. Subsequently, all subjects returned for session II after 3 h, as
citalopram reaches its highest plasma levels after this interval®2. On the following
days, subjects were asked to take their daily medication dose at a similar time of
day, either at home or at the study location. All sessions occurred at a similar time
of day, with tablets on study days being taken 3 h before test. The last session was
on day 7 of treatment, a time when citalopram is known to reach steady-state
plasma levels®3.

Affective state questionnaires. To examine putative effects of the drug on sub-
jective affective states over the course of the study, participants completed the
Beck’s Depression Inventory (BDI-II?°), Snaith—Hamilton Pleasure Scale
(SHAPS?0), State-Trait Anxiety Inventory (STAI%’), and the Positive and Negative
Affective Scale (PANAS?8) on two different occasions: (i) pre-drug, session I, day 1;
(ii) peak drug, session IV, day 7. Additional PANAS questionnaires, and another
set of questionnaires not analysed as part of this study, were administered during
breaks before the test block on each session in order to distract from the task and
screen and prolong the break before the test block.

Experimental task. The computerised task was implemented using the Cogent
2000 Toolbox (http://www.vislab.ucl.ac.uk/cogent_2000.php) in MATLAB 2010b
(Mathworks). Note that the visual stimuli in Figs. 1, 3a, 4a constitute representative
stand-in images. The actual stimuli used in the experiment are available from the
corresponding author upon reasonable request.

Learning blocks: To assess reward learning, subjects were tasked on each session
with two separate blocks of a trial-and-error reward learning task (session I
included two additional learning blocks, i.e., four in total, to familiarise subjects
with the task). On each trial (Fig. 1a), subjects had 3 s to choose from one of two
available images using left and right arrow keys on a computer keyboard. Once an
image had been chosen, it was highlighted for 0.7 s by two white lines, followed by
a 1.5 s display above the chosen image indicating either a reward (gold coin, £0.03)
or no reward (red cross) outcome. After a fixation cross inter-trial interval of 2's,
the start of the next trial was indicated by the appearance of another pair of images.

Each block comprised 48 such trials involving a set of four novel images, two
with a fixed high reward (70%), and two with a fixed low reward probability (30%).
These probabilities were never revealed to subjects, though they were instructed
that each image was associated with a fixed probability of reward and that to
perform well and maximise monetary outcome they needed to choose images they
considered more likely to lead to reward. To examine putative changes in subjects’
learning throughout the week, every image appeared with reward feedback during
one learning block alone. The two learning blocks were separated by a short self-
paced break. Please see Supplementary Fig. 1 for details on session structure and
image appearance across the entire study.

Test blocks: After the two learning blocks, subjects performed a test choice
block that involved presentation of all images encountered during preceding
learning, consisting of trials comparing images from block 1 vs. block 2. To prevent
new learning at this stage, outcomes were not revealed. Instead, they were ‘hidden
in a box’ visible to subjects (Fig. 1b). Subjects were informed that in making choices
they should rely on what they had learned previously and that they would be
rewarded for their choices as before. This test block comprised 48 trials, 24 trials
involved pairs of images with different reward probabilities, i.e., high vs. low, and
24 trials with images of similar reward probabilities, i.e., high vs. high, and low vs.
low, respectively.

Note that the session IV test block comprised 72 trials, containing 24 additional
trials, on which subjects were asked to choose between images of similar reward
probability, i.e., high vs. high, and low vs. low. Critically, this set of trials comprised
images that were learned in the same block on the previous session, i.e., session III,
but encountered as interleaved maintenance trials either before or after the WoF
draw on the current session, i.e., session IV. This design feature allowed us to assess
the impact of mood on reconsolidation of reward associations, and is described in
detail below.

Affective state self-reports: During the task, subjects were asked to report their
current emotional state by responding to the question ‘How do you feel right now?’
(Fig. 1c). The requested rating was provided without time restriction by moving a
cursor (always starting at the midpoint) along a scale that spanned ‘very unhappy’
on the extreme left through to ‘very happy’ on the extreme right of the screen. The
question appeared multiple times per block in fixed intervals (three times during
blocks of 48 trials, four times during blocks of 72 trials).

Mood manipulation: To generate a large prediction error that might impact
upon a subject’s affective state, we used a WoF draw in breaks between learning
blocks in session II (day 1) and IV (day 7; Fig. 3a). Possible outcomes, a win or loss
of £1—£9, were depicted on the WoF, which gradually turned for approx. 45s.

When the wheel stopped, an indicator above it revealed the outcome of the draw.
Unbeknownst to subjects, and to avoid unwarranted differences in payment
between subjects, the WoF draw was arranged such that each participant won and
lost once, with the order counterbalanced across subjects. The actual amounts,
randomly varying from £7 to £9, were sufficiently high to elicit an emotional
response (cf. Results). Participants were notified in advance that they would be paid
according to their earnings in the whole experiment, so all wins and losses

were real.

Interleaved maintenance test trials during learning blocks: Subjects were
instructed that they would encounter all images again in future sessions and would
be asked to choose between images they had learned about on previous sessions.
Similar to the test block, outcomes were not revealed on such trials. Crucially,
images only re-appeared in the following session, i.e., images learned about in
session I re-appeared in session II, images from session II in session III, etc. Such
trials involving images from previous sessions were interleaved during learning
blocks, with each block containing 24 such trials without feedback.

Data analysis. The statistical analysis was conducted using MATLAB 2014a
(Mathworks) and SPSS 22 (IBM).

Affective state (days 1, 4 and 7): We assessed putative effects of the drug by
computing change of affective state questionnaire scores from day 7 (session IV),
i.e, at end of treatment period, vs. pre-drug (session I). Additionally, we assessed
affective state self-reports measured during the experimental task. Here, baseline
ratings for sessions I-IV were computed as mean mood rating during the first
learning block of each session.

Mood manipulation (days 1 and 7): To assess the effect of the WoF on
emotional state, we compared mean mood self-reports in pre- and post-WoF
blocks during sessions II and IV.

In addition to an immediate impact on affective responses, we also assessed a
delayed mood effect of the WoF. To test for this distal impact of the WoF
manipulation, we examined mood during the test block compared to mood during
block 1.

Learning & maintenance of reward associations (days 1, 4 and 7): In each test
block, half the trials involved image pairs with different reward probabilities, i.e.,
high vs. low. Subjects’ task performance on each day was quantified as proportion
of high reward probability image choices on such trials. Data from sessions, in
which subjects did not choose the high reward probability stimulus on >50% of
high vs. low reward probability trials, were discarded from further analysis (two
placebo/one SSRI session, i.e., 1.1% of total data).

Since all images re-appeared on interleaved maintenance trials, without
feedback, during the subsequent session, subjects needed to retain learned reward
associations to perform well. Here, performance was similarly quantified as
proportion of high probability images choices on trials comparing images with
different reward probabilities. This procedure allowed assessment of performance
decline due to a temporal lag between initial learning and re-appearance.

Mood bias on learning (days 1 and 7): Based on our previous work?!, we
predicted the WoF draw would impact not only on subjects’ emotional state, but
also on their subsequent valuations of rewards. To quantify such an interaction
between emotional state and learning, we computed the proportion of chosen
images encountered before (pre-WoF) vs. after (post-WoF) mood manipulation.
Crucially, this analysis was conducted for test block trials that included image pairs
with objectively similar reward probabilities that had been encountered in different
blocks. There was no significant difference for (high vs. high) vs. (low vs. low) for
the win (Fy 60 = 0.9, p = 0.350) or loss (F; 60 = 3.2, p = 0.086) conditions. Thus, we
collapsed trials, i.e., high vs. high, and low vs. low, to increase statistical power for
the analysis of trials comprising images pairs with similar reward probabilities. We
conducted the same analysis from the mood-neutral session taken place during
drug treatment but without mood manipulation, i.e., session III. This result was
regressed out from the analysis of our mood manipulations to control for putative
primacy or recency effects irrespective of the WoF draw.

Mood bias on learning, logistic regression (days 1 and 7): In addition to directly
comparing between images with equal reward probabilities, we conducted a more
complete and individualised analysis of subjects’ test choices, including choices
between images with both equal and different reward probabilities. For this, we
used a logistic regression, on each session that comprised a WoF draw, with choice
on test block trials (without feedback) as the dependent variable on each session. As
predictor variables, we used the difference in number of rewards received (during
preceding learning with feedback) for the two images shown on the screen, and the
block during which images were learned, i.e. pre- or post-WoF;

2 1
p(Ct a ) B 1+ e’(ﬁn*ﬂv‘l,*ﬁzxz,) ’
where either the left (c;=1) or right (¢, = 2) image shown on the screen is chosen
on trial £, x, is the difference in the number of experienced rewards during
preceding learning for the right vs. the left image (e.g., 9 -3 = 6), x, indicates
whether the right image was learned in a post-WoF block (coded as the WoF
outcome for images learned post-WoF, and 0 for images learned pre-WoF). Note
that the test block only involved trials comparing images from block 1 vs. block 2.
Thus, the right image was always encountered during a different learning block
than the left image. Positive coefficients for the first predictor (f,) indicate how
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strongly subjects favoured images for which they had received more rewards during
learning. Positive coefficients for the second predictor (8, or 3,
P

respectively) indicate how strongly subjects favoured images about which they had
learned following a WoF win, and disfavoured images about which they had
learned following a WoF loss. f3, is the intercept.

Control analysis stimulus sampling, logistic regression (days 1, 4 and 7): To rule
out a possibility that our results were affected by uncertainty aversion, we
computed a logistic regression analysis, across all sessions, assessing whether the
number of times a stimulus had been chosen during learning affected how often
subjects chose it during the test block;

> >
ositive negative

) 1

P(C[ ) 1+ e*(ﬁn*.ﬁ]xl,*ﬁz%,) ’
where either the left (¢, = 1) or right (¢, = 2) image on the screen is chosen on trial
t, x is the difference in the number of experienced rewards during preceding
learning, for the right vs. the left image (e.g., 9 -3 =6), x, is the difference in the
number of times an image had been chosen during preceding learning, for the right
vs. the left image (e.g., 12 - 9 = 3). Positive coefficients for the first predictor (8;)
indicate how strongly subjects favoured images for which they had received more
rewards during learning. Positive coefficients for the second predictor (B,) indicate
how strongly subjects favoured images they had chosen more often during learning
(over and above the number of experienced rewards per image). f3, is the intercept.

Mood bias on reconsolidation (day 7): To examine an effect of the WoF draw
on reconsolidation of previously learned reward associations, subsets of images re-
appeared in future sessions in a specific manner. For example, in session III,
subjects learned about four novel images during both block 1 (set A) and 2 (set B),
respectively. During session IV, half of these images re-appeared prior to (subsets
Al and B1) or subsequent to (subsets A2 and B2) the mood manipulation (without
reward feedback) such that subjects had to rely on their learned associations from
3 days earlier. During the test block on session IV (Fig. 4b), subjects were exposed
to an additional set of choices, consisting of 24 trials with images of objectively
similar reward probabilities (e.g., Al vs. A2, B1 vs. B2). By design, those images
were learned within the same block, during a session without a mood manipulation
3 days earlier. However, they were encountered without feedback either before or
after a positive or negative mood manipulation during the following session. This
allowed us to quantify the effect of the WoF draw on reconsolidation by computing
the proportion of chosen images that re-appeared before (pre-WoF) or after (post-
WoF) the draw. Crucially, images always re-appeared in this fashion during the
following sessions so as to facilitate comparability. However, this procedure was
introduced specifically to test for the impact of mood on reconsolidation, i.e., for
images encountered initially during session III and re-appearing during session IV.
This analysis comprised test block trials comparing image pairs with objectively
similar reward probabilities that had been re-encountered in different blocks. There
was no significant difference for (high vs. high) vs. (low vs. low) for the win (F; s,
=0.06, p=0.801) or loss (F; 6, =0.3, p=0.583) conditions. Thus, we collapsed
trials, i.e., high vs. high, and low vs. low, to increase statistical power for the
analysis of trials comprising images pairs with similar reward probabilities.

Computational modelling. Modelling: learning from reward: To identify the
computations that guided subjects’ behaviour, we compared a set of computational
learning models in terms of how well each model fitted subjects” choices.

First, we determined how subjects learned from outcomes through trial-and-
error. We used standard reinforcement learning models, which learn the expected
value (Q) of an image by updating it according to a reward prediction error (4),
reflecting the difference between obtained outcome (R) and expected outcome (Q):

0, =R — Qz(%,:,)v

where s, . is the image chosen at trial , Q; (s) is the expected outcome for image s
at trial ¢, R, is the outcome at trial t (R =0 corresponds to a no-reward, and R=1
corresponds to a reward outcome), and J; is the prediction error at trial ¢.

Model 1 has a fixed learning rate parameter (1) that weights the influence of
prediction errors on subsequent expectations and assigns greater weight to more
recent outcomes:

Qt+1(5t.c,) = Qt(st.c,) + 18,

In contrast, Model 2 has a dynamic learning rate («) that changes as a function
of the number of observed outcomes (N) for the chosen image. Here, ¢ >0 is a free
parameter that determines the initial learning rate. The learning rate gradually
decreases asymptotically toward zero with the number of observed outcomes (N):

Qz+1(5t,c,) = Qt(st,z,) + a8,
— 1
M T NG

Such a decrease in learning rate is consistent with optimal inference given fixed
reward probabilities>4. In both models, a Softmax function is used to derive choice
probabilities (p) according to learned expectations. The models then choose an
image (either the left image ¢, = 1, or the right image ¢, = 2), with an inverse
temperature parameter () determining the strength with which choices are

directed towards higher value options:
Qi (s,
-
i1 ePQ(s,)
Modelling: mood biasing reward perception: Based on earlier work!?, we
hypothesised mood to bias subjective value during learning. To account for effects

of mood on valuation, models 3 (fixed learning) and 4 (dynamic learning) compute
prediction errors with respect to perceived rather than actual reward:

8, = Rperceived, = Qs c,)-

Here, perceived reward (Rperceived) is different from actual reward (R) in that it
reflects the biasing effect of mood (M). Such an additive bias is consistent with a
normative role for mood in accounting for momentum in reward changes!®. After
winning the WoF draw, this bias was computed as:

R

perceived,

P(Ct = i) =

=R, +M,
whereas the opposite bias was implemented after losing the draw:

Rperceived, = Rt -M.

Here, M =0 does not bias perception of reward, whereas M >0 exerts positive
feedback as reward is perceived as larger in a good mood and as smaller in a bad
mood (and vice versa for M <0).

Notably, this model assumes that the effect of positive and negative mood is
qualitatively different, but quantitatively similar. Thus, we next tested whether
positive and negative mood exerted distinct effects across participants. Here,
models 5 (fixed learning) and 6 (dynamic learning) incorporate different

parameters for positive (M) and negative (Myep ) mood after winning:

Rpem:eivedl = Rt + Mpositivea
and losing the WoF draw:

Rperceived‘ = Rt + Mnegative'

Modelling: mood biasing rate of learning: Additionally, we hypothesised that,
instead of biasing reward perception, mood could bias the rate of learning from
reward. Here, in models 7 (fixed learning) and 8 (dynamic learning), rate of
learning reflects the biasing effect of mood (M), after winning the WoF draw:

n = n+ M(model7)

a, = a, + M(model 8),
and after losing the draw:

n = n— M(model 7)

a, = a, — M(model 8).
Finally, models 9 (fixed learning) and 10 (dynamic learning) incorporate

different parameters for positive (Mpositive) and negative (Mpegative) mood after
winning:

n=n+ Mpositivc(mOdel 9)

o = a, + M, model 10)

ositive (

and losing the WoF draw:
n=n + Mnegative(mOdel 9)

a=a +M (model 10).

Model fitting: To fit parameters of different models to subjects’ decisions, we
used an iterative hierarchical expectation-maximisation procedure across the entire
sample2®>, We sampled 10° random settings of the parameters from predefined
prior distributions. Then, we computed the likelihood of observing subjects’
choices given each setting and used the computed likelihoods as importance
weights to re-fit the parameters of the prior distributions. These steps were
repeated iteratively until model evidence ceased to increase. To derive the best-
fitting parameters for each individual subject, we computed a weighted mean of the
final batch of parameter settings, in which each setting was weighted by the
likelihood it assigned to the individual subject’s decisions. Note that the
hierarchical fitting procedure, including all priors, were applied to the entire
sample without distinguishing between SSRI and placebo subjects. This ensured
that the parameter estimates, at the level of individual subjects, were mutually
independent given the shared prior, rendering it appropriate to assess between-
group differences.

Fixed learning rates (1) were modelled with Beta distributions (initialised with
shape parameters a = 1 and b = 1). Mood parameters (M, Mpositives Mregative) Were
modelled with normal distributions to allow for both positive and negative effects
(initialised with 4 =0 and 0= 1). The remaining parameters (¢, ) were modelled
with Gamma distributions (initialised with k=1, 6 =1).

Model comparison: We compared between pairs of models in terms of how well
each model accounted for subjects’ choices by means of the integrated Bayesian

negative
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Information Criterion (iBIC256). Here, we estimated the evidence in favour of
each model (1) as the mean likelihood of the model given 10° random parameter
settings drawn from the fitted group-level priors. We then computed the iBIC by
penalising the model evidence to account for model complexity as follows: iBIC =
—2In A+« In n, where « is the number of fitted parameters and 7 is the total
number of subject choices used to compute the likelihood. Lower iBIC values
indicate a more parsimonious model fit. We validated this model comparison
procedure by generating simulated data using each model and applying our model
comparison procedure to recover the model that generated each dataset (cf.
Supplementary Fig. 7).

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.

Code availability
The custom computer code used to generate results that are reported in the paper are
available from the corresponding author upon reasonable request.
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