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Piezoelectricity and topological quantum phase
transitions in two-dimensional spin-orbit coupled
crystals with time-reversal symmetry
Jiabin Yu1 & Chao-Xing Liu1✉

Finding new physical responses that signal topological quantum phase transitions is of both

theoretical and experimental importance. Here, we demonstrate that the piezoelectric

response can change discontinuously across a topological quantum phase transition in two-

dimensional time-reversal invariant systems with spin-orbit coupling, thus serving as a direct

probe of the transition. We study all gap closing cases for all 7 plane groups that allow non-

vanishing piezoelectricity, and find that any gap closing with 1 fine-tuning parameter between

two gapped states changes either the Z2 invariant or the locally stable valley Chern number.

The jump of the piezoelectric response is found to exist for all these transitions, and we

propose the HgTe/CdTe quantum well and BaMnSb2 as two potential experimental plat-

forms. Our work provides a general theoretical framework to classify topological quantum

phase transitions, and reveals their ubiquitous relation to the piezoelectric response.
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The discovery of topological phases and topological phase
transitions has revolutionized our understanding of quan-
tum states of matter and quantum phase transitions1–3.

Two topologically distinct gapped phases cannot be adiabatically
connected; if the system continuously evolves from one phase to
the other, a topological quantum phase transition (TQPT) with
the energy gap closing (GC) must occur. A direct way to
probe such TQPTs is to detect the discontinuous change of cer-
tain physical response functions. Celebrated examples include
the jump of the Hall conductance across the plateau transition
in the integer quantum Hall system4,5, the jump of the two-
terminal conductance across the TQPT between the quantum
spin Hall (QSH) state and normal insulator (NI) state in a two-
dimensional (2D) time-reversal (TR) invariant system6, and the
jump of the magnetoelectric coefficient across the TQPT
between the strong topological insulator phase and NI phase in a
3D TR invariant system7–10. The physical responses in all these
examples are induced by the electromagnetic field. A natural
question then arises: can we detect TQPTs with other types of
perturbation?

Here we theoretically answer this question in the affirmative:
the discontinuous change of the piezoelectric response is a ubi-
quitous and direct signature of 2D TQPTs. The piezoelectric
effect, the electric charge response induced by the applied strain,
is characterized by the piezoelectric tensor (PET) to the leading
order. PET was originally defined to relate the change of the
charge polarization P with the infinitesimal homogeneous strain,
which reads11

γijk ¼
∂Pi

∂ujk

�����
ujk!0

; ð1Þ

where uij ¼ ð∂xiuj þ ∂xjuiÞ=2 is the strain tensor and ui is the
displacement at x. The modern theory of polarization12–14 later
identified the above definition as improper15 due to the ambiguity
of P in crystals, while the proper definition adds the adiabatic
time dependence to ujk and relates it to the bulk current density Ji
that can change the surface charge:

γijk ¼
∂Ji
∂ _ujk

�����
ujk; _ujk!0

: ð2Þ

With Eq. (2), the PET of an 2D insulating crystal has been derived
as15,16

γijk ¼ �e
Z

d2k

2πð Þ2
X
n

Fn
ki;ujk

���
ujk!0

; ð3Þ

where the integral is over the entire first Brillouin zone (1BZ), and
n ranges over all occupied bands. The Fn

ki;ujk
term has a Berry-

curvature-like expression

Fn
ki;ujk

¼ ð�iÞ h∂kiφn;kj∂ujkφn;ki � ðki $ ujkÞ
h i

ð4Þ

with jφn;ki the periodic part of the Bloch state in the presence of
the strain. (See the Methods for more details.) The expression
indicates an extreme similarity between Eq. (3) and the expres-
sion for the Chern number (CN)5. It is this similarity that
motivates us to study the relation between the PET and
the TQPT.

Despite the similarity, the topology connected to the PET is
essentially different from the CN, since the PET can exist in TR
invariant systems whose CNs always vanish. We, in this work, study
the piezoelectric response of 2D TR invariant systems in the pre-
sence of the significant spin-orbit coupling (SOC) and demonstrate
the jump of all symmetry-allowed PET components across the

TQPT. In particular, we focus on the 7 out of the 17 plane groups
(PGs) that allow non-vanishing PET components17,18, including
p1, p1m1, c1m1, p1g1, p3, p3m1, and p31m. The two-fold rotation
C2 (with the axis perpendicular to the 2D plane) or the 2D inver-
sion restricts the PET to zero in the other 10 PGs19, according to
γijk ¼

P
i0j0k0 Rii0Rjj0Rkk0γi0j0k0 for any O(2) symmetry R of the 2D

material. Through a systematic study, we find that any GC between
two gapped states that only requires 1 fine-tuning parameter is a
TQPT in the sense that it changes either the Z2 index1,2 or the
valley CN20. Although the change of the valley CN is locally
stable21, we still treat the corresponding GC as a TQPT, since the
two states cannot be adiabatically connected when the valley is well
defined. All the TQPTs contain no stable gapless phase in between
two gapped phases, and thereby we refer to them as the direct
TQPTs. All PET components that are allowed by the crystalline
symmetry exhibit discontinuous changes across any of the direct
TQPTs, showing the ubiquitous connection. Interestingly, when the
gap closes at momenta that are not TR invariant, the strain tensor
uij acts as a pseudo-gauge field22 at the TQPT, making the PET
jump directly proportional to the change of the Z2 index or the
valley CN.

Our work presents a general framework for the PET jump
across the TQPT in 2D TR invariant systems with SOC. The
relation between the PET and the valley CN in the low-energy
effective model has been studied in graphene with a staggered
potential23, h-BN24,25, and monolayer transition metal dichalco-
genides (TMDs) XY2 for X=Mo/W and Y= S/Se25. However,
these early works have not pointed out that it is the PET jump
(well described within the low-energy effective model) that is the
experimental signature directly related to the TQPT, while the
PET itself at fixed parameters might contain the non-topological
background given by high-energy bands. Moreover, these works,
unlike our systematic study, only considered one specific plane
group (p3m1) around one specific type of momenta (K;K 0). The
relation between the PET and the Z2 index were not explored
either. Besides, graphene and h-BN have neglectable SOC, and
the TMDs have a large gap, making them not suitable for rea-
lizing TQPT. We thereby propose two realistic material systems,
the HgTe/CdTe quantum well (QW) and the layered material
BaMnSb2, as potential experimental platforms. The Z2 TQPT and
PET jump can be achieved by varying the thickness or the gate
voltages in the HgTe/CdTe QW or by tuning lattice distortion in
BaMnSb2.

Results
PET jump across a direct QSH-NI TQPT. We start from a
simple example of the TQPT discussed in ref. 26. They (in the
example of our interest) considered the case with no crystalline
symmetries other than the lattice translation (PG p1) and
focused on the GC at two momenta ±k0 that are not TR
invariant momenta (TRIM), as labeled by red crosses in Fig. 1a.
The low-energy effective theory for the electron around k0 can
be described by the Hamiltonian of a 2D massive Dirac fer-
mion26

hþ;0ðqÞ ¼ E0ðqÞσ0 þ vxq1σx þ vyq2σy þmσz ; ð5Þ

where q = k − k0, m is the tuning parameter for the TQPT, and
σ's are Pauli matrices. In the above Hamiltonian, the unitary
transformation on the bases and the scaling/rotation of q are
performed for the simplicity of the Hamiltonian; the latter
generally makes q1, q2 along two non-orthogonal directions.
(See Supplementary Note 3A for details.) The effective
Hamiltonian at −k0 is related to h+,0 by the TR symmetry.
After choosing appropriate bases at −k0, the TR symmetry can
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be represented as T _¼ iσyK with K the complex conjugate,
leading to

h�;0ðqÞ ¼ E0ð�qÞσ0 þ vxq1σx þ vyq2σy �mσz: ð6Þ

According to ref. 26, the TQPT between the QSH insulator and
the NI (distinguished by the Z2 index) occurs when the mass m in
h±,0(q) changes its sign. The argument used to determine change
of the Z2 index was presented in ref. 27 and is discussed below for
integrity. Since there is no inversion symmetry in PG p1, the Z2
index can be determined from the CN of the contracted half first
Brillouin zone (1BZ), where the half 1BZ is chosen such that its
Kramers’ partner covers the other half. Specifically, the Z2 index is
changed (unchanged) by the GC if the CN of the contracted half
1BZ changes by an odd (even) integer. Without loss of generality,
let us choose the half 1BZ to contain k0, as shown in Fig. 1a. Since
h+,0 is a 2D gapped Dirac Hamiltonian, the CN of the contracted
half 1BZ changes by ΔNþ ¼ �sgnðvxvyÞ as m increases from 0−

to 0+, featuring a direct QSH-NI TQPT as vxvy is typically
nonzero.

We next discuss the piezoelectric effect in this simple effective
model. To do so, we need to introduce the electron-strain
coupling around ±k0 based on the TR symmetry:

h± ;1ðuÞ ¼ ξ0;ijσ0uij ± ξa0;ijσa0uij ; ð7Þ

where the duplicated indexes, including a0 ¼ x; y; z and i, j = 1, 2,
are summed over henceforth unless specified otherwise. ξ’s are
the material-dependent coupling constants between the low-
energy electrons and the strain tensor, which obey ξa,ij = ξa,ji with
a = 0, x, y, z owing to uij = uji and are related to the electron-
phonon coupling28. The full form of the effective Hamiltonian is

then given by

h± ðq; uÞ ¼ h± ;0ðqÞ þ h± ;1ðuÞ : ð8Þ
To use Eq. (3), we simplify Eq. (8) by neglecting the E0 term,

which has no influence on the piezoelectric response of insulators
(see Supplementary Note 1). When ξx,ij = ξy,ij = 0, the
Hamiltonian h± has effective inversion symmetry within each
valley, σzh±(−q, u)σz = h±(q, u), which forbids the piezoelectric
effect. Thus, ξ0,ij and ξz,ij terms cannot contribute to the PET, and
neglecting them leads to a further simplified version of Eq. (8):

h± ðq; uÞ ¼ vxðq1 ±A
pse
1 Þ

� �
σx þ vyðq2 ±A

pse
2 Þ

h i
σy

± mσz;
ð9Þ

where Apse
1 ¼ ξx;ijuij=vx and Apse

2 ¼ ξy;ijuij=vy . The above form
suggests that the remaining strain terms, ξx,ij and ξy,ij, serve as the
pseudo-gauge field Apse

i that has opposite signs for two valleys
±k010,22,25,29. As the strain tensor only exists in the form of
qi ±A

pse
i , the derivative with respect to uij in Eq. (3) can be

replaced by the derivative with respect to the momentum as

∂uij jφ± ;qi ¼
∂Apse

i0

∂uij
∂Apse

i0

��φ± ;q

�
¼ ±

∂Apse
i0

∂uij
∂qi0
��φ± ;q

�
; ð10Þ

where φ± are the occupied bands of h±. Substituting the above
equation into Eq. (3) leads to

γeff1ij ¼ �e
Z

d2q

2πð Þ2
X
α¼±

αFα
12ðqÞ

∂Apse
2

∂uij
ð11Þ

γeff2ij ¼ e
Z

d2q

2πð Þ2
X
α¼±

αFα
12ðqÞ

∂Apse
1

∂uij
;

a b c d e

f g h i j

k l m n o

Fig. 1 GC cases with 1 fine-tuning parameter. The figure shows the GC cases between insulating states with 1 fine-tuning parameter for all 7 PGs with non-
vanishing PET. The red cross labels the GC momenta, the light blue background indicates the 1BZ, and the light red part in a indicates the half 1BZ. The
black and orange dashed lines label the momenta invariant under the mirror/glide symmetry and the combination of mirror/glide and TR symmetries,
respectively. The figures are first grouped according to the PGs and then ordered based on the GC scenarios listed in Table 1, whose labels are next to the
names of the PGs.
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where F ±
12ðqÞ is the conventional Berry curvature of the occupied

band of h±(q, 0). The superscript eff means that we neglect the
contribution from bands beyond the effective model Eq. (8),
indicating that the above equation is not the complete PET.
Nevertheless, it can accurately give the PET change across the
TQPT since high-energy bands experience an adiabatic deforma-
tion and the corresponding background PET contribution should
remain unchanged at the transition (m = 0). As m varies from
0− to 0+, Eq. (11) gives the change of PET Δγijk as

Δγ1ij ¼ �e
ΔNþ
π

ξy;ij
vy

Δγ2ij ¼ e
ΔNþ
π

ξx;ij
vx

:

ð12Þ

The PET jump shown in the above equation is nonzero since vxvy
and the electron-strain coupling ξ’s are typically non-zero. We
thus conclude that for p1 group, a jump of PET that is directly
proportional to the change of the Z2 index occurs across the
TQPT, when the gap closes not at TRIM.

The PET jump can be physically understood based on Eq. (2).
Let first focus on one GC momentum, say k0. Since the strain
tensor couples to the electron in the way similar to the U(1) gauge
field as shown in Eq. (8), _ujk should act like a electric field on the
electron. According to Eq. (2), γijk should then behave like the
Hall conductance, whose jump is proportional to the change of
CN ΔN+. Now we include the other GC momentum −k0. Unlike
the actual U(1) gauge field, the pseudo-gauge field given by the
strain couples oppositely to the electron at the two GC momenta
(Eq. (8)). The opposite signs of the coupling can cancel the
opposite signs of the Berry curvature, and thus, in contrast to the
actual Hall conductance, the contributions to γijk from ±k0 add
up to a nonzero value instead of canceling each other, leading to
the non-zero topological jump in Eq. (12).

Classification of direct 2D TQPTs and PET jumps for 7 PGs.
The above section discusses an example of 2D QSH-NI TQPT for
the p1 PG and illustrates the main picture of the relation between
the 2D TQPT and the PET jump. It is well-known that the
crystalline symmetry imposes strong constraints on the PET19

(see the Methods). Topological states in different space/plane
groups have been classified based on the topological quantum
chemistry30–36, the symmetry indicator37–40, and other early
methods41–43. On the contrary, only a small number of
works26,38,44,45 have studied the crystal symmetry constraint on
the GC forms of the TQPTs. While the GC between non-
degenerate states was studied in ref. 45 for various layer groups in
the presence of TR symmetry and SOC, the GC that involves
degenerate states, like between two Kramers’ pairs, has not been
explored. In particular, the topology change and the PET jump
across any GC case with codimension 1 (or equivalently requiring
1 fine-tuning parameter) have not been discussed. As the

substrate, on which the 2D materials are grown, typically reduces
layer groups to PGs by breaking the extra symmetries, a study
based on PG is typically enough for experimental predictions.
Therefore, we next present a comprehensive study on the GC
forms of TQPTs in all 7 PGs that allow nonvanishing PET,
namely p1, p1m1, c1m1, p1g1, p3, p31m, and p3m1. The main
results are summarized in Fig. 1 and Table 1, as discussed below.
The other 10 PGs (p2, p2mm, p2mg, p2gg, c2mm, p4, p4mm,
p4gm, p6, and p6mm) have vanishing PET due to the existence of
inversion symmetry or C2 rotation symmetry, and are briefly
discussed in Supplementary Note 2E.

TQPTs in different PGs can be analyzed in the following three
steps. In the first step, we classify the GC based on the GC
momenta and the symmetry property of the bands involved in the
GC. To do so, we define the group G0 for a GC momentum k0 such
that G0 contains all symmetry operations that leave k0 invariant
(including the little group of k0 and TR-related operations). We
start with a coarse classification based on G0, which leads to
2 scenarios for p1, 3 scenarios for p3, and 4 scenarios for p1m1,
c1m1, p1g1, p31m, and p3m1, as listed in Table 1 and the Methods.
To illustrate this classification, we consider the p3 group as an
example, which contains 3 different scenarios. In scenario (i), the
GC is located at TRIM (T 2 G0), i.e., the Γ point or threeM points
in Fig. 1f. In scenario (ii), the GC occurs simultaneously at K and
K 0 where G0 contains C3 but no T (Fig. 1g). In scenario (iii), the
GC occurs at six generic momenta (G0 only contains lattice
translations) that are related by C3 rotation and TR (Fig. 1h). The
classification of GC momenta is coarse here since G0 can still vary
within one scenario. For example, in scenario (i) of p3, G0 at Γ
contains C3 while G0 at M does not. Moreover, even at a certain
GC momentum with a certain G0, the symmetry properties of
bands involved in the GC may vary. For example, at K in scenario
(ii) of p3, the gap may close between two states with the same or
different C3 eigenvalues. Therefore, we further refine our
classification by taking these subtleties into consideration and
classify each GC scenario into finer GC cases.

In the second step, for each GC case, we construct a symmetry-
allowed low-energy effective Hamiltonian that well captures the
GC and count the number of fine-tuning parameters. Since G0
and the symmetry properties of the bands involved in the GC are
fixed in one GC case, the form of the effective Hamiltonian can be
unambiguously determined (see details in Supplementary Notes 2
and 3). After obtaining the effective Hamiltonian, we can count
the number of fine-tuning parameters required for each GC and
select out all GC cases that require only 1 fine-tuning parameter
(or equivalently has codimension 1), as shown in Fig. 1. Only
these cases can be direct TQPTs between two gapped phases,
since any two gapped states in the parameter space are
adiabatically connected if 2 or more fine-tuning parameters are
required to close the gap, and 0 codimension means there is a
stable gapless phase in between two gapped phases. Our analysis
shows that all GC cases in scenarios (i) for p1, (i) and (ii)
for p1m1, c1m1, and p1g1, and (ii) for p3m1 and p31m need 0

Table 1 Summary for all 7 PGs with non-vanishing PET.

PGs p1 p1m1, c1m1, p1g1 p3 p3m1, p31m

Scenario (i) (ii) (i) (ii) (iii) (iv) (i) (ii) (iii) (i) (ii) (iii) (iv)

Codim-1 GC × (a) × × (b and c) (d and e) (f) (g) (h) (i and j) × (k–m) (n and o)
Topo. Inv. N/A Z2 N/A N/A Z2 VCN Z2 Z2 Z2 Z2 N/A Z2 VCN
PET Jump N/A ✓ N/A N/A ✓ ✓ ✓ ✓ ✓ ✓ N/A ✓ ✓

The scenarios are classified by the symmetries that leave the GC momenta invariant, as shown in the Methods. Codim-1 GC means the GC cases with 1 fine-tuning parameter or codimension 1. If at least
one GC case between gapped states with 1 fine-tuning parameter exists in the corresponding scenario, the subfigures in Fig. 1 that illustrate the GC momenta are referred to; otherwise, we fill in a × .
Topo. Inv. labels the topological invariant changed by the codimensoin-1 GC, Z2 means the Z2 index, and VCN means the corresponding case changes the valley CN when the valley is well-defined.
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fine-tuning parameter or more than 1 fine-tuning parameters and
thus cannot correspond to the direct TQPTs, while codimension-
1 GC cases can exist in all other scenarios.

In the third and final step, we demonstrate the topological
nature of all the codimension-1 GC cases by evaluating the
change of certain topological invariants and derive the corre-
sponding PET jump. As shown in Table 1, the Z2 index is
changed in all codimension-1 GC cases of scenarios (ii) for p1,
(iii) for p1m1, c1m1, and p1g1, (i)-(iii) for p3, and (i) and (iii) for
p3m1 and p31m, while the valley CN is changed for all
codimension-1 GC cases of the scenarios (iv) for p1m1, c1m1,
p1g1, p3m1, and p31m. We would like to emphasize that although
valley CN itself is in general not quantized in a gapped phase, the
change of valley CN across a gap closing is quantized and has
physical consequence46. (See the “Methods” section for more
details.) According to Fig. 1, the Z2 cases either close the gap at
TRIM or have an odd number of Dirac cones in half 1BZ, while
all the valley CN cases (Fig. 1d, e and Fig. 1n, o) have an even
number of Dirac cones in half 1BZ, forbidding the change of the
Z2 index. Nevertheless, no matter which type, they all lead to
discontinuous changes of the symmetry-allowed PET compo-
nents (see detailed calculation of PET in Supplementary Note 2).

In sum, we conclude that for all 7 PGs with non-vanishing
PET, all the GC cases between two gapped phases with 1 fine-
tuning parameter are direct TQPTs that change either Z2 index or
valley CN, and they all induce the discontinuous change of the
symmetry-allowed PET components. Based on these results, we
propose the following criteria to find realistic systems to test our
theoretical predictions: (i) whether it breaks the 2D inversion or
two-fold rotation with axis perpendicular to the 2D plane, (ii)
whether it has significant SOC, and (iii) whether there is a tunable
way to realize the GC. Applying these conditions to the existing
material systems for 2D TQPTs, we find two realistic material
systems, namely the HgTe/CdTe QW and the layered material
BaMnSb2, which are studied in the following.

HgTe/CdTe QW. It has been demonstrated6,47 that the TQPT
between the QSH insulator and NI phases in the HgTe/CdTe QW
can be achieved by tuning the HgTe thickness d. Tuning applied
electric field E was theoretically predicted as an alternative way to
achieve TQPT48,49, making the system an ideal platform to study
the PET jump at TQPTs. Here, the stacking direction of the QW
is chosen to be (111) instead of the well-studied (001) direction50,
since the latter would allow a two-fold rotation that forbids PET.
Without the applied electric field, the (111) QW has the TR
symmetry and the C3v symmetries (generated by three-fold
rotation along (111) and the mirror perpendicular to ð�110Þ);
adding electric field along (111) does not change the symmetry
properties. We should then expect one independent symmetry-
allowed PET component γ222 similar to Eq. (18) in the Methods,
where 2 labels the direction ð11�2Þ.

The electronic band structure of the (111) QW can be
described by the 6-band Kane model with the bases
ð Γ6; ± 1

2

�� �
; Γ8; ±

3
2

�� �
; Γ8; ±

1
2

�� �
Þ. The electric field E along (111)

can be introduced by adding a linear electric potential that is
independent of orbitals and spins. In this electron Hamiltonian,
there are two inversion-breaking (IB) effects, the inherent IB
effect in the Kane model and the applied electric field, and we
neglect the former for simplicity. Note that such approximation
does not lead to vanishing PET even for E ¼ 0 because the IB
electron-strain coupling will be kept.

We first discuss the inversion-invariant E ¼ 0 case and focus
on the PET jump induced by varying the width d. In this case,
there are two doubly degenerate bands closest to the Fermi
energy, namely E1; ±j i and H1; ±j i bands with opposite parities.
With the method proposed in ref. 6, we find that the gap between
two bands closes at the Γ point around d = 65Å as shown in
Fig. 2a. The GC must be a Z2 TQPT owing to the opposite parities
of the two bands, and it belongs to scenario (i) of p3m1/p31m
discussed in Table 1 and the Methods. We further include the
electron-strain coupling, and numerically plot the independent

a b

dc

Fig. 2 HgTe/CdTe QW. This figure shows the energy dispersion and the PET of the HgTe QW with the stacking direction (111). In a, the lower panel shows
the energy of E1 (blue) and H1 (red) bands at Γ point as a function of the width d, and the upper panel shows the energy dispersion at d= 60, 65, 70Å
from left to right, respectively. The GC happens around d ≈ 65Å, which is slightly different form the well-known d= 63Å reported in ref. 47 for the (001)
stacking direction owing to the anisotropy effect. b The PET component γ222 as a function of d. In c, the lower panel plots the gap m as a function of the
electric field E with d= 62Å, showing that the gap closes at E � 0:0136 VÅ−1. The upper panel of c demonstrates the energy dispersion at
E ¼ 0:01;0:0136;0:017VÅ−1 from left to right, respectively. d The PET component γ222 as a function of E.
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PET component γ222 as the function of the width in Fig. 2b,
which shows a jump around d= 65Å (see Supplementary
Note 5).

Next we study the TQPT induced by the applied electric field.
In order to realize the GC at a nonzero value of the electric field,
we fix the width of the QW at d= 62Å, away from 65Å. After
adding the linear electric potential along (111) in the 6-band
Kane model, we numerically find that the GC at Γ point happens
at E � 0:0136VÅ−1, as shown in Fig. 2c. Such GC belongs to
scenario (i) of p3m1/p31m and is still a Z2 TQPT since the extra
IB term cannot influence the Z2 topology change. The PET
component γ222 is numerically shown in Fig. 2d, showing the
jump across the TQPT. The PET jump in Fig. 2b, d has the order
10 ~ 100 pCm−1, and thus is possible to be probed by the current
experimental technique51.

Layered material BaMnSb2. BaMnSb2 is a 3D layered material
that consists of Ba-Sb layers and Mn-Sb layers, which are stacked
alternatively along the (001) direction (or equivalently z direc-
tion). The electrons in px and py orbitals of Sb atoms in the Ba-Sb
layers account for the transport of the material. Owing to the
insulating Mn-Sb layers, the tunneling along the z direction
among different Ba-Sb layers is much weaker than the in-plane
hopping terms, and thus BaMnSb2 can be treated as a quasi-2D
material52. Therefore, we can only consider one Ba-Sb layer,
whose structure is shown in Fig. 3a. Owing to the zig-zag dis-
tortion of the Sb atoms (solid lines in Fig. 3a), the symmetry
group that captures the main physics is spanned by the TR
symmetry T and two mirror operations my and mz that are
perpendicular to y and z axes, respectively. It turns out that the

mirror symmetry mz does nothing but guarantee the z-
component of the spin to be a good quantum number in the
low energy52, allowing us to view the system as a spin-conserved
TR-invariant 2D system with PG p1m1. Slightly different from
the demonstration in the Methods, the mirror here is perpendi-
cular to y instead of x, and thereby PG p1m1 now requires
γyyy = γyxx = γxyx = γxxy = 0 and leaves the other four compo-
nents as symmetry-allowed.

To describe this system, a tight-binding model with px and py
orbitals of Sb atoms was constructed in ref. 52 based on the first-
principle calculation, and the form of the model is reviewed in
Supplementary Note 6A for integrity. This model qualitatively
captures all the main features of the electronic band structure of
BaMnSb2. The key parameter of the model is the distortion
parameter α that describes the zig-zag distortion of the Sb atoms.
When α is tuned to a critical value αc ≈ 0.86, the gap of the system
closes at two valleys K± = (π, ±ky0) near X along X − M in the BZ,
as shown in Fig. 3b. This GC results in a TQPT between the QSH
state and the NI state in one Ba-Sb layer, as confirmed by the direct
calculation of Z2 index (Fig. 3c) according to expression in ref. 53.
Since the two GC momenta are invariant under T my , this GC case
satisfies the definition of scenario (iii) for p1m1. We further
numerically verify the PET jump induced by the GC with the tight-
binding model. The jump of the symmetry-allowed PET compo-
nents is found at the TQPT around α = αc in Fig. 3d, while the
components forbidden by the symmetry stay zero. According to
Fig. 3d, both the jump and background are of the same order of
magnitude, 0.1 eÅ−1 for γyxy,yyx and 0.01 eÅ−1 for γxxx,xyy,
indicating that the jump is experimentally measurable. The Z2
topology change and the PET jump can also be analytically verified
based on the effective model as discussed in Supplementary Note 6.

Discussion
In conclusion, we demonstrate that for all PGs that allow non-
vanishing PET, the piezoelectric response has a discontinuous
change across any TQPT in 2D TR invariant systems with sig-
nificant SOC. Potential material realizations include the HgTe/
CdTe QW and the layered material BaMnSb2.

The early study on MoS2 has demonstrated that the values of the
PET obtained from the effective model might be (though not
always) quite close to those from the first principles calculations25.
Therefore, although our theory is based on the effective Hamilto-
nian, the predicted jump of the PET is quite likely to be significant
and even the sign change of PET, such as Fig. 2b, d for the HgTe
case, might exist in realistic materials. The evaluation of the PET
from the first principles calculations is left for the future.

Although we only focus on two realistic material systems in this
work, the theory can be directly applied to other material systems.
For example, the calculations for the HgTe/CdTe QW are also
applicable to InAs/GaSb QWs, which share the same model54. The
QSH effect has also been observed in the monolayer 1T’-WTe255–57,
but its inversion symmetry58 forbids the piezoelectric effect.
Therefore, a significant inversion breaking effect from the envir-
onment (such as substrate) is required to test our prediction in this
system. While the SOC strength in graphene is small, it has been
shown that the bilayer graphene sandwiched by TMDs has
enhanced SOC and serves as a platform to observe TQPT59,60,
where the PET jump is likely to exist. The piezoelectric effect has
been observed in several 2D material systems51,61,62, and therefore,
the material systems and the experimental technique for the
observation of the PET jump are both available. Since the PET jump
is directly related to the TQPT, it further provides a new experi-
mental approach to extract the critical exponents and universality
behaviors of the TQPT, which can only be analyzed through
transport measurements nowadays.

a

d

b

c

Fig. 3 Layered Material BaMnSb2. a Illustration of the Ba-Sb layer, where
each dashed circle stands for the projection of two Ba atoms onto the Sb layer
and the solid dots are Sb atoms. The solid lines connecting Sb atoms indicate
the zig-zag distortion, and the red dashed box marks the unit cell with 1 and 2
labeling the two Sb atoms. b The band structure of the TB model for BaMnSb2
along M − X − M for α=0.86 (red), α= 1 (orange), and α=0.7 (blue),
respectively, where X is at ky = 0. In c and d, the Z2 index and PET
components obtained from the TB model are plotted as a function of α,
respectively. In d, the PET components are in the unit eÅ−1, the gray dashed
line is at α=0.86, and the inset is the zoom-in version of the boxed region.
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This work only focuses on 2D TR invariant systems with SOC,
and the generalization to systems without SOC, without TR
symmetry, or in 3D is left for the future. Despite the similarity
between Eq. (3) and the expression of CN, the generalization to
TR-breaking systems with non-zero CNs requires caution, due to
the change of the definition of polarization63. Another interesting
question is whether the PET jump exists across the transition
between states of different higher-order64–67 or fragile
topology34,68. We notice that although the dynamical piezo-
electric effect may exist in metallic systems69, its description is
different from Eq. (3). It is thus intriguing to ask how the
dynamical PET behaves across the transitions between insulating
and semimetal phases.

Methods
Expression for the PET. According to refs. 15,63, the expression for the PET of
insulators, Eq. (3), is derived for systems with zero CNs and within the clamped-
ion approximation where ions exactly follow the homogeneous deformation and
thus cannot contribute to the PET. Even though the ion contribution might be
non-zero in reality, the approximation is still legitimate in our study of PET jump
since the ion contribution varies continuously across the GC of electronic bands.

Eq. (3) involves the derivative of the periodic part of the Bloch state jφn;ki with
respect to the strain tensor ujk. jφn;ki can always be expressed as jφn;ki ¼P

G f n;k;G Gj i with G the reciprocal lattice vector, and the derivative in fact means
j∂ujkφn;ki �

P
Gð∂ujk f n;k;GÞjGi

15. In this way, the ill-defined ∂uij Gj i is avoided,
despite that Gj i is not continuous as changing the strain. If replacing the j∂ujkφn;ki
in Eq. (3) by a momentum derivative j∂kjφn;ki with j different from i, the PET

expression transforms into −eCϵij/(2π), where ϵij = −ϵji, ϵxy = 1, and C is the
Chern number of the 2D insulator5

C ¼
Z

d2k
2π

X
n

Fn
kx ;ky

: ð13Þ

This reveals the similarity between the PET expression and the expression of
the CN.

PG p1. For p1, no special constraints are imposed on the PET. There are two GC
scenarios for the PG p1 with TR symmetry:

(i) gap closes at TRIM (T 2 G0),
(ii) gap closes not at TRIM (T =2G0).

In scenario (ii), G0 contains no symmetries other than the lattice translation,
which we refer to as the trivial G0.

PGs p1m1, c1m1, and p1g1. All three PGs, p1m1, c1m1, and p1g1, are generated by
a mirror-related symmetry U and the lattice translation. U is a mirror operation for
p1m1/c1m1 and a glide operation for p1g1. The difference between p1m1 and c1m1
lies on the directions of the primitive lattice vectors relative to the mirror line,
which is not important for our discussion here. Without loss of generality, we
choose the mirror or glide line to be perpendicular to x, labeled as mx or gx,
respectively. The glide operation is thus denoted as gx ¼ fmx j0 1

2g, where 0 1
2

represents the translation by half the primitive lattice vector along y. The U
symmetry in these three PGs requires

γijk ¼ �1ð Þi �1ð Þj �1ð Þkγijk ð14Þ

with (−1)x = −1 and (−1)y = 1, resulting that γxxx = γxyy = γyxy = γyyx = 0 while
γxxy, γxyx, γyxx, γyyy are allowed to be nonzero. For the symmetry analysis here, the
PET behaves the same under the glide and mirror operations since uij is considered
in the continuum limit. Based on G0, we obtain in total 4 GC scenarios for these
three PGs:

(i) the GC at TRIM (G0 contains T ),
(ii) G0 contains U but not T ,
(iii) G0 contains UT but not T ,
(iv) G0 is trivial.

PG p3. PG p3 is generated by 3-fold rotation C3 and the lattice translation. Owing
to C3, the PET satisfies the following relation

γijk ¼
X
i0 j0k0

½RðC3Þ�ii0 ½RðC3Þ�jj0 ½RðC3Þ�kk0γi0 j0k0 ; ð15Þ

where

RðC3Þ ¼
� 1

2 �
ffiffi
3

p

2ffiffi
3

p

2 � 1
2

 !
: ð16Þ

Solving the above equation gives two independent components γxxx and γyyy as

γyxy ¼ γyyx ¼ γxyy ¼ �γxxx ð17Þ

γxxy ¼ γxyx ¼ γyxx ¼ �γyyy :

Again, we classify the GC for p3 according to G0, resulting in three different
scenarios:

(i) G0 contains T ,
(ii) G0 contains C3 but not T ,
(iii) G0 is trivial.

Here we do not have a scenario for G0 containing C3T but no T , since ðC3T Þ3
is equivalent to T .

PGs p31m and p3m1. Both PGs p31m and p3m1 are generated by the lattice trans-
lation, the three-fold rotation C3, and a mirror symmetry which we choose to be mx

without loss of generality. The difference between the two PGs lies on the direction of
the mirror line relative to the primitive lattice vector: the mirror line is parallel or
perpendicular to one primitive lattice vector for p31m or p3m1, respectively. C3 and mx

span the point group C3v, which makes the PET satisfy Eq. (14) and Eq. (15). As a
result, we have

γxxx ¼ γxyy ¼ γyxy ¼ γyyx ¼ 0 ð18Þ

γxyx ¼ γxxy ¼ γyxx ¼ �γyyy

for the PET, and thus γyyy serves as the only independent symmetry-allowed PET
component. We classify the GC scenarios into 4 types according to G0:

(i) G0 contains T ,
(ii) G0 contains at least one of the three mirror symmetry operations in C3v

(again labeled as U ¼ mx , C3mx, or C
2
3mx) but no T ,

(iii) G0 contains UT but no T ,
(iv) G0 is trivial.

Valley CN. In all the valley CN cases (Fig. 1d, e, n, o), the GC points are at
generic positions in the 1BZ. The valleys can be physically defined as the
positions where the Berry curvature diverges as the gap approaches to zero. The
positions of the Berry curvature peaks around the gap closing can be clearly seen
in numerical calculations, as long as those peaks are well separated in the
momentum space. (See Supplementary Note 4 for more details.) With the
positions of the valleys determined, the valley CN on one side of the GC is not
necessarily quantized to integers since the integral of Berry curvature is not
over a closed manifold. However, the change of valley CN across the GC is
always integer-valued, since it is equal to the CN of the Hamiltonian given by
patching the two low-energy effective models on the two sides of the GC at
large momenta, which lives on a closed manifold. One physical consequence
of the quantized change of valley CN is the gapless domain-wall mode46,
which can be experimentally tested with transport or optical measurements70.
We verify the quantized change of valley CN and demonstrate the
corrsponding gapless domain-wall mode with a tight-binding model in Sup-
plementary Note 4.

The above argument relies on the constraint that the valleys are well
separated in 1BZ, preventing the two states from being adiabatically connected.
Without the contraint of well-defined valleys, the valleys are allowed to be
merged, and two phases with different valley CNs might be adiabatically
connected. Therefore, we refer to the topology characterized by valley CN as
locally stable21, though globally unstable. Nevertheless, we restrict all valleys to
be well-defined in our discussion and refer to the corresponding gap closing case
as a TQPT.

Data availability
The datasets generated during and/or analyzed during the current study are available
from the authors on reasonable request.

Code availability
The mathematica code generated during and/or analyzed for the current study are
available from the authors on reasonable request.
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