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Loss of MBNL1 induces RNA misprocessing
in the thymus and peripheral blood
Łukasz J. Sznajder 1,5,6✉, Marina M. Scotti1,5, Jihae Shin1,3, Katarzyna Taylor1,4, Franjo Ivankovic 1,

Curtis A. Nutter1, Faaiq N. Aslam1, S. H. Subramony2, Laura P. W. Ranum1 & Maurice S. Swanson 1,6✉

The thymus is a primary lymphoid organ that plays an essential role in T lymphocyte

maturation and selection during development of one arm of the mammalian adaptive immune

response. Although transcriptional mechanisms have been well documented in thymocyte

development, co-/post-transcriptional modifications are also important but have received

less attention. Here we demonstrate that the RNA alternative splicing factor MBNL1, which is

sequestered in nuclear RNA foci by C(C)UG microsatellite expansions in myotonic dystrophy

(DM), is essential for normal thymus development and function. Mbnl1 129S1 knockout mice

develop postnatal thymic hyperplasia with thymocyte accumulation. Transcriptome analysis

indicates numerous gene expression and RNA mis-splicing events, including transcription

factors from the TCF/LEF family. CNBP, the gene containing an intronic CCTG microsatellite

expansion in DM type 2 (DM2), is coordinately expressed with MBNL1 in the developing

thymus and DM2 CCTG expansions induce similar transcriptome alterations in DM2 blood,

which thus serve as disease-specific biomarkers.
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The thymus plays a crucial role in adaptive immunity
by providing a conducive environment for T lymphocyte
(T cell) differentiation1,2. As thymocytes mature,

approximately 90–95% undergo apoptosis, either from lack of
effective T-Cell Receptor (TCR) recombination and signaling,
or alternatively, in response to negative selection to ablate
high-affinity TCRs capable of recognizing self-antigens3.
Defects in T cell selection and/or the loss of mature T cell
populations, can result in a compromised immune state where
cytotoxic CD8+ T cells are unable to exert cytotoxic functions
against intracellular pathogens, or helper CD4+ T cells are unable
to effectively provide B cell help to drive protective humoral
immunity. While transcriptional regulation has been shown to
play a vital role in both thymic organogenesis and T cell devel-
opment4, co-/post-transcriptional events have also been impli-
cated in thymocyte differentiation5,6. Indeed, alternative splicing
(AS) adds another layer of complexity and diversity for devel-
opmental and tissue-restricted expression and splicing patterns
for many gene transcripts that shift during development and
aging7–9.

Due to the complexity of interactions between the RNA
sequence elements and trans-acting splicing factors that control
splicing and 3′-end cleavage/polyadenylation, RNA processing is
particularly susceptible to mutations implicated in disease10,11.
For example, the Muscleblind-like (MBNL) family of alternative
splicing factors triggers the switch from fetal to adult splicing
programs for its RNA targets and loss of MBNL1 activity is a
major pathogenic factor in the multisystemic disease myotonic
dystrophy (DM) type 1 (DM1) and type 2 (DM2)12,13. DM1 and
DM2 are autosomal dominant disorders caused by microsatellite,
or short tandem repeat (STR), CTG and CCTG expansions (exp)
encoded in either the 3′ untranslated region (UTR) of DMPK
(DM1) or the first intron of CNBP (DM2), respectively. In both
DM types, transcription of these mutant STRs results in the
expression of C(C)UGexp RNAs that are retained in the nucleus
as RNA foci together with MBNL proteins14. This MBNL
sequestration process results in downstream pre-mRNA mis-
processing, including errors in AS and alternative 3′-end clea-
vage/polyadenylation (APA)15,16 that result in pathological
manifestations17.

Although DM1 and DM2 are classified as a muscular dystro-
phy, the immune system is also affected and both DM types are
characterized by a number of cellular and humoral abnormalities
in peripheral blood. For example, although hypogammaglobuli-
nemia and low lymphocyte counts occur in both DM types, they
are especially prevalent in DM2 and are associated with an
increased risk of autoimmune disease in DM218,19. In addition,
thymic hyperplasia and thymoma, as well as increased risk for
other cancer types, have been reported in DM20–23. Although the
immune phenotype contributes to DM1 and DM2 complexity,
the consequence of MBNL depletion on adaptive immunity has
not been investigated.

The thymus is active in developing mice and highly active in
the pre-pubescent period in humans, but subsequently undergoes
progressive involution with reduced thymic output. In this study,
we report that loss of MBNL1 expression in 129S1-Mbnl1ΔE3/ΔE3

knockout (KO) mice results in postnatal thymic hyperplasia and
thymocyte accumulation and we identify misprocessing of
developmental splicing events critical for T lymphocyte matura-
tion. Importantly, these splicing changes are also detectable in
DM2, but not DM1, peripheral blood. Additionally, we provide
evidence that the degree of splicing dysregulation is proportional
to DM2 CCTG STR length and CNBP intron 1 retention level.
Based on this analysis, we propose a set of AS events that are
readily detectable in whole blood and serve as biomarkers for
DM2 disease.

Results
MBNL1 loss leads to dysregulation of thymic gene expression.
Our previous in situ hybridization study of Mbnl gene expression
during mouse embryogenesis revealed that Mbnl1 is highly
expressed in the thymus suggesting that the MBNL1 protein
regulates RNA processing during thymic development24. To
confirm this observation and extend our understanding of Mbnl1
developmental expression, we retrieved publicly available RNA
sequencing (RNA-seq) data of embryonic (E12.5-E18.5) and
newborn (P0) mouse thymus25. Differential gene expression
analysis confirmed that Mbnl1 expression increased during thy-
mic organogenesis with 5.7-fold higher expression at P0 com-
pared to E12.5, and Mbnl1 was in the 99.4 percentile of expressed
genes at P0 with 14− and 8−fold higher expression than Mbnl2
and Mbnl3, respectively (Fig. 1a and Supplementary Fig. 1a). In
agreement with our prior in situ results, Dmpk expression level
was very low in the developing thymus in striking contrast to
Cnbp (Supplementary Fig. 1b).

During studies to assess genetic modifier effects on develop-
mental regulation of RNA processing in the mouse Mbnl1 KO
model of DM, B6.129S1-Mbnl1ΔE3/ΔE3 mixed background mice
were backcrossed to obtain either 129S1-Mbnl1ΔE3/ΔE3 or B6-
Mbnl1ΔE3/ΔE3 N10 congenic lines. For subsequent studies, we
selected 129S1-Mbnl1ΔE3/ΔE3 mice, hereafter referred to as 129-
Mbnl1 KO mice, due to their shortened lifespan compared to B6-
Mbnl1 KOs with a median survival of 22 and 37 weeks of age,
respectively (Fig. 1b). To determine if MBNL1 loss caused RNA
misprocessing, thymi were isolated from 9-week-old (P63) 129-
Mbnl1 KO and wild type (WT) littermates (Supplementary
Fig. 1c). Paired-end (PE) RNA-seq demonstrated that Mbnl1
was in the 99.6 percentile of expressed genes in thymus whereas
Mbnl2 and Mbnl3 expression remained 18- and 12-fold lower,
respectively (Fig. 1a and Supplementary Fig. 1a). In agreement
with previous studies on other cells and tissues, Mbnl2 expression
increased 2-fold following MBNL1 loss (Supplementary Fig. 1d).
Differential gene expression analysis revealed that ~5% of
genes expressed in the 129-Mbnl1 KO thymus were mis-
regulated (Fig. 1c). Of 1436 genes that showed expression changes
in Mbnl1 KO thymus, 630 were upregulated while 806 were
downregulated (Fig. 1c and Supplementary Fig. 1e) and 54% of
these corresponded to expression differences that occur during
embryonic development (Supplementary Fig. 1f). Interestingly,
variations in the immunoglobulin heavy (Ighv) and kappa (Igkv)
clusters were among the most downregulated genes (Fig. 1d).
Because the TCR beta variable (Tcrb-V) region also showed mis-
regulation (Supplementary Fig. 1g), we assessed both the Tcrb and
Tcra repertoires in our RNA-seq dataset. Surprisingly, 2 out of 3
129-Mbnl1 KO thymi showed altered clonotype frequencies for
both Tcrb and Tcra transcripts suggesting clonal expansion of
thymocytes (Fig. 1e–g and Supplementary Fig. 1h). Since these
results demonstrated that MBNL1 loss led to aberrant thymic gene
expression and TCR alterations, we next investigated potential
effects of these changes on thymus and thymocyte development.

Thymic pathology in 129-Mbnl1 knockout mice. Analysis of
129-Mbnl1 KO mice revealed a time-dependent and striking
enlargement of the thymus (Fig. 2a and Supplementary Fig. 2a).
Gross thymic morphology and weight in 129-Mbnl1 KOs were
undetectable at 4–13 weeks of age, but by 19 weeks of age the KO
thymus had significantly enlarged with normalized thymic wet
mass weight increased from 3- to 88-fold (median 24-fold) com-
pared to WT (Fig. 2b). Approximately 76% of males, and 40% of
females, had an enlarged thymus characterized by lobulated or
other irregular morphology. Histological assessment indicated
massive thymocyte overgrowth especially in the thymic cortex
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(Fig. 2c) and viable thymocyte counts revealed 4- to 30-fold
increased cellularity in 129-Mbnl1 KO enlarged thymi compared
to WT (Fig. 2d). As expected, Mbnl1 expression was ~5-times
higher in developing thymocytes compared to medullary thymic
epithelial cells (mTEC) (Supplementary Fig. 2b).

Mouse thymocytes progress from CD4−CD8−double negative
(DN), through immature CD8+ single positive (ISP), to CD4
+CD8+ double positive (DP) developmental stages in the thymic
cortex and become CD4+ or CD8+ single positive cells in the
medulla26 (Supplementary Fig. 2c). Flow cytometry highlighted
an increased ratio of DN and ISP and/or mature CD8+, as well as
reduction of DP, cells (Fig. 2e, f and Supplementary Fig. 2d).
Since ISP are larger than DP and mature CD8+ thymocytes26, we
analyzed the size distribution of the CD8+ subpopulation. The
forward angle light scatter (FSC) analysis revealed an age-related
increase in relative cell size distribution in 129-Mbnl1 KO
compare to WT indicating aberrant accumulation of ISP cells
(Fig. 2g and Supplementary Fig. 2e). Interestingly, Notch1
regulates maturation of mouse thymocytes and is highly
expressed at both DN and ISP stages, and we observed an
increase in Notch1 RNA in 9-week-old 129-Mbnl1 KO thymi
(Supplementary Fig. 2f)27–29. In agreement, significantly lower
Cd4 expression was detected by RNA-seq (Supplementary Fig. 2f).
Finally, to extend our 129-Mbnl1 KO characterization, we
analyzed peripheral T cells in spleen, and noted an age-related

change in the CD4+/CD8+ ratio, possibly due to thymic
dysfunction (Supplementary Fig. 2g, h).

Gene ontology analysis of differentially expressed genes in WT
versus Mbnl1 KO thymi revealed enrichment in multiple
categories in the KO, including regulation of cell population
proliferation (168 genes, FDR= 3 × 10−10) and apoptotic process
(124 genes; FDR= 4 × 10−3) (Supplementary Data 1; sheet 21).
Apoptosis is a critical aspect of thymocyte development, and cells
that respond inappropriately, either too sensitive or insensitive, to
apoptotic signals can cause a block in thymocyte development
and accumulation of thymocytes30. Therefore, we tested the
possibility that apoptosis was altered between 4 and ~22 (20 ± 2)
weeks of age. Interestingly, Mbnl1 KOs showed reduced
sensitivity to dexamethasone-induced apoptosis with the greatest
effect at 22 weeks of age (Supplementary Fig. 2i, j).

Cumulatively, these data suggested that aging 129-Mbnl1 KO
thymocytes can be retained in the thymus possibly due to an
abnormal developmental process, including defective prolifera-
tion and/or apoptotic signaling. Although gene expression
changes were detectable as early as 9 weeks of age when thymi
were in the normal size range, 42% of 129-Mbnl1 KOs did not
develop enlarged thymi. Factors such as age, sex and genetic
strain background impacted the penetrance of this phenotype.

Since MBNL1 is an RNA processing factor that regulates
alternative splicing during postnatal development, we next
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examined the 129-Mbnl1 KO thymic transcriptome to test if RNA
mis-splicing contributes to thymic pathology.

Altered RNA splicing in Mbnl1 knockout thymus. To investi-
gate the impact of MBNL1 deficiency on thymic pre-mRNA
processing we performed alternative splicing (AS) analysis using
our RNA-seq dataset. We computed percent spliced in (PSI) for
skipped exons (SE), mutually exclusive exons (MXE) and alter-
native 5′ and 3′ splice sites (A5SS and A3SS) as well as retained
introns (RI)31. In total, 2% of detected AS events met our mis-
splicing criteria (|ΔPSI | > 0.05, FDR < 0.05) (Fig. 3a). Among 866
changed AS events, SE was the most common outcome with
mean 0.25 (0.05–1 range) |ΔPSI | value (Fig. 3b, c). Mis-splicing
included MBNL1-regulated events that have been well docu-
mented in other tissues, including SE Clasp1 exon (E)20, A5SS
Ncor2 E46 and MXE Dnm2 E10 and 11 (Fig. 3d and Supple-
mentary Fig. 3). Moreover, 129-Mbnl1 KO mice also showed
striking splicing alterations in several genes, including tran-
scription factors implicated in thymocyte/T-cell development
such as Lef1 E6 and Tcf7 E5 as well as Tcf7 E10 (Fig. 3d, e)32,33.
To support our computational splicing analysis, we performed
RT-PCR assays on 129-Mbnl1 KO and WT thymi as well as
isolated thymocytes and confirmed significant changes in Lef1,
Tcf7 and other transcripts (Fig. 3f and Supplementary Fig. 4a, b).
Finally, we tested whether the AS events were also affected in B6-
Mbnl1 and B6.129-Mbnl1 KO lines. We confirmed that thymic
RNA misprocessing was independent of strain background since
129-Mbnl1 and B6-Mbnl1 congenics, as well as B6.129-Mbnl1

mixed background thymi, showed AS changes (Fig. 3g and
Supplementary Fig. 4c, d). In agreement with low Mbnl2 and
Mbnl3 expression levels in thymus, neither Mbnl2ΔE2/ΔE2 nor
Mbnl3ΔE2/Y KOs showed a thymic splicing defect (Fig. 3g and
Supplementary Fig. 4e, f).

To test if mouse Lef1 E6 splicing was directly regulated by
MBNL1, MBNL1-CLIP-seq clusters were identified near these SE
events in publicly available data performed on mouse C2C12
myoblasts34 (Fig. 3h). CLIP-seq reads formed a cluster located 21
nucleotides downstream of Lef1 E6 and overlapped with nine
YGCY/A (Y= pyrimidine) MBNL1 binding motifs predicted to be
located mainly in bulges and stem-loops (Supplementary Fig. 4g,
h). Compound knockdown of both Mbnl1 and Mbnl2 RNAs in
C2C12 myoblasts resulted in Lef1 E6 skipping (Fig. 3h). To
determine if MBNL proteins regulate splicing in human
cells, MBNL paralog siRNA-mediated knockdown experiments
were performed using human T lymphocyte (Jurkat) cells. As
expected, MBNL1 siRNA knockdown also shifted splicing
of human LEF1 E6 (Fig. 3i and Supplementary Fig. S4i). Finally,
we performed similar analysis for Tcf7/TCF7 (Supplementary
Fig. 4g and i, j). Therefore, MBNL1 loss in thymocytes caused pre-
mRNA misprocessing and this developmental RNA processing
factor directly regulated the alternative splicing of critical
transcription factors required for normal T-cell development.

Thymic mis-splicing replicated in peripheral blood cells. The
dysregulation of alternative splicing in Mbnl1 KO thymus led us
to test if similar RNA misprocessing events were detectable in
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spleen, a secondary lymphoid and erythroid organ in the
mouse35. We isolated spleens as well as splenocytes from 129-
Mbnl1 KO and WT mice and assessed Lef1 E6, Tcf7 E5 and Tcf7
E10 splicing by RT-PCR (Supplementary Fig. 5a, c). As expected,
tested AS events showed the same mis-splicing pattern as
detected in Mbnl1 KO thymus. To determine if RNA mis-splicing
identified in thymocytes and splenocytes might be detectable in
blood lymphocytes, we harvested predominantly lymphoid in
origin peripheral blood mononuclear cells (PBMCs) along with
other DM-relevant tissues from B6.129-Mbnl1 KOs and age-
matched WT mice. Using RT-PCR, misprocessing of Lef1 E6 and
Tcf7 E5, together with other previously reported MBNL-regulated
AS events, was observed in PBMCs as well as other tissues
(Fig. 4a, b and Supplementary Fig. 5d, e).

Recently, we identified CNBP CCUG expansion (CCUGexp)
induced intron 1 retention (CNBP-IRexp) in DM2 tissues,
including human PBMCs, and proposed this CNBP-IRexp event
as an accessible and early-stage biomarker for DM236. CNBP,
unlike DMPK, is expressed at a relatively high level in mouse

thymus (Supplementary Fig. 1b) and human PBMCs where it is
expressed 24-fold higher than DMPK (Fig. 4c and Supplementary
Fig. 6a). The mis-splicing events detected in Mbnl1 KO thymus
and PBMCs motivated us to test whether MBNL1 sequestration
by CCUG expansion mutations might cause similar AS changes
in DM2 peripheral blood. Human PBMCs were isolated from
DM2 blood (previously characterized in ref. 36) with large >1000
CCTG repeats (DM2-LR) and short ~100 CCTG (DM2-SR)
expansions together with DM1 and other controls followed by
RNA-seq. Since DM2 and DM1 blood specimens were collected
extramurally at DM patient conferences and shipped to our
laboratory, the PBMC RNA-seq data revealed transcriptomic
signatures characteristic of blood samples stored for prolonged
periods, including previously reported changes in LEF1 E6
(Supplementary Fig. 6b-d)37. To overcome this difficulty, four
MBNL1-dependent SE events were selected that were stable for at
least 48 h at ambient temperature (Supplementary Fig. 6e)37. We
observed significant AS changes in NCOR2 E47, MBNL1 E5 and
two other transcripts only for DM2-LR, but not for DM2-SR,
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DM1, C9orf72-linked ALS/FTD (C9-ALS/FTD) and sporadic (s)
ALS (Fig. 4d-f and Supplementary Fig. 6f). As expected, the
severity of AS changes in DM2-LR and DM2-SR was associated
with both CCTGexp size and CNBP-IRexp levels (Supplementary
Fig. 6f-h).

Finally, we generated cDNA from a large cohort of lympho-
blastoid cell lines (LCLs) from DM2, DM1, as well as disease and
unaffected controls, and tested LEF1 E6 and SPTAN1
E23 splicing profiles by RT-PCR (Fig. 4f and Supplementary
Fig. 6i). As expected, significant changes were only detected for
DM2. Collectively, these results showed that MBNL1-dependent
pre-mRNA misprocessing is detectable in thymocytes, spleno-
cytes, PBMCs, LCLs, and STR expansion-induced spliceopathy
was detected primarily in DM2 cells expressing CNBP RNAs with
long CCUG repeat expansions. However, the CNBP-IRexp level in
DM2-SR was elevated but still significantly lower compared to
DM2-LR36 (Supplementary Fig. 6h).

Blood RNA splicing biomarkers for DM2. To minimize the
transcriptome artifacts induced by prolonged blood storage and/
or processing, control and DM2 blood samples were directly
collected into RNA/DNA preservation tubes (see Methods). All
samples were screened for the CNBP-IRexp by RT-PCR and/or
genomic blotting was performed to detect C(C)TGexp mutations
(Fig. 5a). RNA-seq was performed using 6 samples for each group
and CNBP-IRexp was detected in DM2 (Supplementary Fig. 7a).
As expected, there was a strong correlation between CNBP-IRexp

detection by RT-PCR and RNA-seq (Pearson’s r= 0.96) (Sup-
plementary Fig. 7b).

Since CNBP, unlike DMPK, is expressed at a relatively high level
in human whole blood and we failed to detect splicing changes in
DM1 PBMCs, the DM2 transcriptome was compared to both
unaffected and DM1 controls (Supplementary Fig. 7c). Differential
gene expression analysis revealed only ~0.2% of genes detected in
human whole blood were mis-regulated (Supplementary Fig. 7d)
and of the 58 genes that showed expression changes in DM2, 36
were upregulated while 22 were downregulated (Supplementary
Fig. 7e). Similarly, <0.2% of detected AS events were altered in
DM2 blood (Fig. 5b). Among 202 changed AS events, SE was the
most common mis-splicing outcome with mean 0.19 (0.05–0.61
range) |ΔPSI | value (Fig. 5c, d). To identify the key splicing events
in blood that would serve as reliable DM2 biomarkers, we selected
37 AS events based on parametric (gene expression, ΔPSI, FDR)
and nonparametric (gene structure complexity, wiggle plot
distribution) criteria (Fig. 5e and Supplementary Fig. 8). Impor-
tantly, 70% (n= 26) of AS events overlapped with our Mbnl1 KO
thymus results, including LEF1 E6 (Fig. 5e, f), and out of the 11
remaining AS events, 9 alternative exons were not identified in the
mouse genome. For example, LGALS E5 is not present in mouse
genome but was changed in Jurkat cells with MBNL1 knockdown,
which indicated that these human AS exons are regulated by
MBNL proteins (Supplementary Fig. 4e, f). Since whole blood AS
events differ between patients, we selected 14 readily testable RT-
PCR AS events and analyzed them in a large cohort of whole
blood samples from DM2, DM1, sALS and unaffected controls.
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We demonstrated that these AS events are changed in DM2 and
not in disease control samples (Fig. 5g, h and Supplementary
Fig. 9a-e).

DM2 is a late-onset and progressive disease so we next
examined if the AS changes detected in DM2 blood could be
confounded by splicing defects observed during aging. We
retrieved publicly available RNA-seq data from 7 younger
(26–32-year old) and 7 older (94 year-old) adult female PBMCs38.
Out of 1,333 age-associated splicing events only 8 overlap with 202
AS events detected in DM2 (Supplementary Fig. 10a-e). Only
MAP4K4 E20 was significantly changed in these 37 selected AS
events. Finally, we tested whether DM2-specific AS changes reflect
a developmental delay in splicing pattern transitions from
undifferentiated cells in bone marrow to differentiated cells in
PBMCs. Out of 6209 developmentally associated events, 38
overlap with 202 AS events detected in DM2, including LEF 1
E6 (Supplementary Fig. 10f-j).

Since we noticed Tcrb and Tcra repertoire mis-regulation in
Mbnl1 KO mice, we next assessed both TCR alpha and beta chain
transcript repertoires in the whole blood RNA-seq dataset (Fig. 5i
and Supplementary Fig. 9d). Our results indicated a reduced
number of clones in DM2 compared to unaffected controls that was
associated with the degree of spliceopathy (Supplementary Fig. 9e).

Based on these results, we concluded that specific mis-splicing
outcomes provide blood-based biomarkers for DM2, and rapid
analysis of whole blood samples presents a significant diagnostic
advantage to detect this likely under-reported disease.

Discussion
As thymocytes develop into functional T cells, approximately
90–95% are selectively deleted throughout the maturation process
to ablate high affinity binding of self-antigens as well as promote
recognition of non-self on antigen presenting cells (APCs)39.
Transcriptional regulation has been shown to play a vital role in
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thymic organogenesis and thymocyte development40–42. For
example, immune tolerance requires negative selection mediated
by medullary thymic epithelial cells (mTECs), which are char-
acterized by promiscuous expression of tissue-specific antigens
regulated by the AIRE gene and other factors to promote self-
tolerance43,44. While AIRE facilitates global transcription for self-
antigen expression, co-/post-transcriptional RNA alternative
splicing during thymocyte education may also be crucial to create
the diverse repertoire of self-epitopes that T cells encounter in the
periphery. Surprisingly, only a few RNA splicing factors,
including CELF2, HNRNPL, and SRSF2, have been implicated in
thymic T cell development or thymopoiesis5,6,45,46.

Here, we demonstrate that loss of the developmentally regu-
lated RNA alternative splicing factor MBNL1 leads to dysregu-
lated gene expression and RNA mis-splicing in the thymus
resulting in mis-expression of important thymic regulatory fac-
tors. RNA-seq analysis uncovered several thymocyte/lymphocyte
transcripts mis-spliced in Mbnl1 KOs, including Lef1 and Tcf7.
Both Tcf7 and Lef1 have been studied extensively in thymocyte
development32,33,47. Tcf7-/- mice are characterized by disrupted
thymocyte development, decreased thymic cellularity with
decreased DP and SP thymocytes48,49 in relatively young mice
(6–8 weeks of age) similar to the cell population effects observed
in HNRNPL-deficient thymus5. However, when Tcf7-/- mice are
aged, 50% develop enlarged thymi50. By contrast, Tcf7-/-; Lef1-/-

double KO (DKO) mice have no detectable defects in thymocyte
development but they die shortly after birth51. Interestingly, Tcf7;
Lef1 DKO mice display increased T cell developmental disruption
compared to single KO mice, suggesting functional redundancy
between Tcf1 and Lef1 in thymic development52. Both Tcf7 and
Lef1 alternative splicing is disrupted in Mbnl1 KO thymus. The
Lef1 alternative exon altered by MBNL1 loss is located in the
context dependent regulatory domain (CRD) and skipping of this
exon reduces LEF1 binding affinity to the Tcra enhancer region
resulting in decreased transcription and reduced TCR alpha
chain53. Interestingly, prior studies have demonstrated that
CELF2 promotes LEF1 E6 inclusion by interacting with sequences
overlapping the MBNL1 CLIP-seq cluster (Supplementary
Fig. 4g) indicating a possible compensatory role6,53. Additionally,
Tcf7 regulates transcription of beta catenin dependent transcripts
and can serve as a negative regulator of Lef154,55. The alternative
exon included in Mbnl1 KO mice encodes a c-clamp domain
containing the ‘CRARF’ sequence that stabilizes binding between
TCF7 and DNA56,57. The combined alternative splicing of both
Tcf7 and Lef1 pre-mRNAs with the increased expression of Lef1
suggests that TCR alpha chain production is compromised in the
MBNL-deficient thymus.

DM1 and DM2 are both classified as myotonic dystrophies and
a common pathomechanism for these diseases involves MBNL
sequestration on C(C)UGexp RNAs. However, there are several
molecular features that differentiate DM1 and DM2. While CNBP
is expressed ubiquitously, and at a significantly higher level than
DMPK, DM2 is generally considered less severe than DM1 with
less muscle and brain RNA misprocessing. A potential reason for
this discrepancy is that STR RNA toxicity is mitigated by RBFOX
protein sequestration by CCUGexp, but not CUGexp, RNAs58.
Interestingly, we demonstrated that this DM2 spliceopathy, other
than CNBP-IRexp, occurs with large, but not with relatively small
(~100 CCTGs), DM2 CCTG expansions nor in DM1 blood cells.
Our results indicate that similar to DM1, the extent of mis-
processing in DM2 correlates with CCTG expansion size as well
as CNBP-IRexp level (Supplementary Fig. 11).

Another important aspect of this study is that only a few RNA
binding proteins involved in splicing, translation and RNA decay
have been shown to play regulatory roles in T cell development
and activation45, so it is important to extend our knowledge of

co-/post-transcriptional regulation of the immune system. The
relatively high level of CNBP and MBNL1 expression in the
thymus, and the inhibition of MBNL1 RNA processing activity in
DM2 due to sequestration on CCUGexp RNAs, prompted us to
determine if similar RNA mis-splicing events also occurred in
DM2 PBMCs and whole blood. Our finding that specific RNA
mis-splicing events in Mbnl1 KO thymus are also detectable in
DM2 whole blood and PBMCs indicates that human T cell
development may also be altered by CNBP CCTGexp mutations.
While the molecular basis of immune system dysfunction in DM
patients is currently unclear, previous studies have shown a
decrease in peripheral T cell populations in DM1 proportional to
expansion length59 and a high frequency of autoreactive T cell
associated autoimmune disorders in DM218. This work suggests
that RNA mis-splicing in the immune system may be a char-
acteristic feature of other RNA-mediated diseases, and further
examination of additional microsatellite repeat expansion diseases
that lead to loss of RBP functions may uncover immune deficits
previously overlooked.

Methods
Mbnl1 knockout mice. All relevant ethical regulations for animal testing and
research were observed, and this study received ethical approval from the Uni-
versity of Florida Institutional Animal Care and Use Committee (IACUC). Mice
were housed under specific pathogen free conditions. All animal procedures and
endpoints were in accordance with IACUC guidelines and animals were sacrificed
in accordance to IACUC approved protocols. B6.129S1-Mbnl1ΔE3/ΔE3, Mbnl2ΔE2/
ΔE2 and Mbnl3ΔE2/Y have been described60–62, and N10 congenic 129S1-Mbnl1ΔE3/
ΔE3 and B6-Mbnl1ΔE3/ΔE3 lines were derived from B6.129S1-Mbnl1ΔE3/ΔE3 mixed
background mice.

Immunoblotting. Dissected tissues were homogenized in lysis buffer (20 mM
HEPES-KOH, pH 8.0, 100 mM KCl, 0.1% Igepal CA-630 (Sigma), 0.5 mM phe-
nylmethylsulphonyl fluoride, 5 μg/mL pepstatin A, 1 μg/mL chymostatin, 1 mM ε-
aminocaproic acid, 1 mM p-aminobenzamidine, 1 μg/mL leupeptin, 2 μg/mL
aprotinin) by disposable pestle followed by sonication on ice and centrifugation
(16,100 × g, 15 min, 4°C). Protein lysates were quantitated using the DC Protein
Assay (Bio-Rad) according to manufacturer’s instructions. Total proteins (50 μg/
lane) were resolved on 12.5% SDS-acrylamide and transferred to nitrocellulose
membranes. Blots were blocked for 1 h in 5% non-fat dry milk in 1× PBS, 0.1%
Tween-20 (Sigma). Primary antibodies, anti-MBNL1 A2764 (a gift from Dr.
Charles Thornton, 1:5,000) and anti-GAPDH 6c5 (Abcam, ab8245, 1:10,000) were
used for immunoblotting either overnight, 4 °C or 2 h, room temperature (RT).
Blots were washed 3-times 1× PBS, 0.1% Tween-20 (Sigma), 10 min, RT prior
to secondary antibody detection with anti-rabbit IgG or anti-mouse-IgG, con-
jugated to horseradish peroxidase (HRP) (GE Healthcare, NA934V and NA931V,
1:5,000) in wash buffer. Secondary antibodies were incubated 1 h, RT in wash
buffer. Membranes were washed, as described above, and developed in Western
Lightning Plus ECL detection reagents (Perkin Elmer) and exposed to Biomax Film
(Kodak). Uncropped and unprocessed scans of the blots are provided in the Source
Data file.

Histology. Paraformaldehyde (4%) fixed thymi were paraffin embedded using an
automatic processor (VIP6, Leica) with graded ethanol (70–100%) and xylene by
the University of Florida Molecular Pathology Core. Coronal sections (5 μm) were
cut on a rotary microtome (Microm International). Sections were deparaffinized in
xylene and rehydrated in graded ethanol (100-80%) prior to hematoxylin (RICCA
Chemical) and eosin (Sigma) staining. Sections were dehydrated through graded
ethanol (95–100%) and xylene prior to mounting with Cytoseal60 (Richard Allen
Scientific). Histological tissue sections were scanned and saved as brightfield digital
images using a whole slide scanner (Scanscope CS, Aperio, Leica, Vienna) and
software (Aperio ImageScope 12.4).

Thymocyte and splenocyte harvests. Thymus and spleen were dissected into ice
cold 1× PBS and connective tissue and fat removed. Single cell suspensions were
made by mincing tissue through 100 μm cell strainers (BD Biosciences) into 1×
PBS, pH 7.4. Cells were pelleted 400 × g, 10 min, RT and resuspended in 150 mM
ammonium chloride, 1 mM potassium bicarbonate, 0.01 mM EDTA, pH 7.2
(Thermo Fisher) for red blood cell lysis. Cells were resuspended in RPMI-1640
(Mediatech) supplemented with 10% fetal bovine serum (FBS) (cRPMI; Hyclone).
Viable cells were enumerated using Trypan Blue exclusion dye (Sigma).

Flow cytometry. Thymocyte composition was analyzed using anti-CD4 (RM4-5)-
PE-Cy7 (1:200) or -APC (1:200) and anti-CD8 (53-6.7)-Pacific Blue (1:100) or
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-PE-Cy5 (1:200) (BD Biosciences). Splenocytes were characterized using anti-CD3-
Alexa700 (17A2, 1:200), anti-CD45/B220-Pacific Blue (RA3-6B2, 1:100), anti-CD4-
PE-Cy7 (RM4-5, 1:200) and anti-CD8-PE-Cy5 (53-6.7, 1:200). Cells (2 × 106) were
stained in 1× PBS, 0.5% BSA (FACS Buffer, Sigma) and analyzed using a BD LSR II
(BD Biosciences). All cells analyzed were gated away from debris based on forward
angle light scatter (FSC) and side angle light scatter (SSC) profiles and data were
analyzed using FlowJo Data Analysis Software (Tree Star).

Apoptosis analysis. Thymocytes were plated in 24-well culture dishes (Corning)
at 1.5 × 106 cells per well in cRPMI medium. Dexamethasone solubilized in DMSO
(Sigma) was added to each well at final concentrations of 10−7 M and 0M (vehicle
only control) for each test sample. Cells were incubated 12 h at 37 °C, 5% CO2 in a
humidified chamber. Post treatment, cells were collected into 5 mL round bottom
tubes and centrifuged 400 × g, 5 min, RT. Cells were resuspended in FACS Buffer
and stained with anti-CD4 and anti-CD8 antibodies. Post incubation 30 min, 4 °C,
light safe, cells were washed in FACS Buffer and centrifuged as above. Apoptotic
markers Annexin V and propidium iodide staining were completed using FITC
Annexin V Apoptosis Detection Kit I (BD Biosciences, 556547) according to
manufacturer’s protocol.

Blood samples. For blood isolation, mice (7 weeks of age) were terminally anes-
thetized with ketamine-xylazine based on the weight of the animal, then the
posterior vena cava was severed, and blood collected by heparinized capillary
(Fisherbrand) to BD Microtainer blood collection tubes with K2EDTA (BD) and
additional tissues were isolated for RNA extraction. All relevant ethical regulations
for work with human participants were complied with and patient blood samples
were collected following written informed consent as approved by the University of
Florida Institutional Review Board (IRB). Sampling age is included in Supple-
mentary Data 1. Blood was collected into DNA/RNA Shield Blood Collection
Tubes (Zymo Research) or BD Vacutainer Tubes, ACD A (BD Biosciences). Per-
ipheral blood mononuclear cells (PBMC) were isolated from the buffy coat of
collected whole blood, followed by density gradient separation using Lympholyte-
H according to manufacturer’s provided protocol (Cedarlane). Red blood cells were
lysed and removed by using the RBC Lysis Buffer (Roche). PBMCs were washed
with PBS and used for either genomic DNA isolation (Flexigene kit; Qiagen), total
RNA extraction (TRIzol).

Cell culture and nucleofection. Jurkat cells (American Type Culture Collection;
ATCC) were cultured in RPMI 1640 medium with GlutaMAX (Gibco), supple-
mented with 10% fetal bovine serum (BioFluid) and 100 U/mL penicillin/strepto-
mycin (ThermoFisher). Cells were cultured in water-jacketed incubators at 37 °C
and 5% CO2. Nucleofection of 2 × 106 cells were performed using Cell Line
Nucleofector Kit V (Lonza) and Nucleofector II (Amaxa Biosystems) using pro-
gram X-005. Jurkat cells were nucleofected with siRNA targeting MBNL1 (100 nM
siMBNL1 and 100 nM control siRNA; Thermo Fisher Scientific), MBNL1 and
MBNL2 (100 nM siMBNL1, 100 nM siMBNL2), or control siRNA (200 nM
siRNA). Oligonucleotide sequences are included in Supplementary Data 1.

RNA isolation. Total RNA from DNA/RNA Shield Blood Collection Tubes was
isolated by using Quick-DNA/RNA Blood Tube Kit with DNase treatment
according to manufacturer’s provided protocol (Zymo Research). Total RNA was
isolated by using TRIzol Reagent and the Direct-zol RNA MiniPrep Kit with
DNase treatment according to manufacturer’s provided protocol (Zymo Research).
Mouse tissues were homogenized in TRIzol (Ambion) with 1.5 mm zirconium
beads in a Bead Ruptor 12 (OMNI International). Total RNA was isolated from
thymus using PolyTron (Kinematica) homogenization in TRI Reagent (Sigma)
followed by treatment with the RNeasy Kit (Qiagen) according to the manu-
facturer’s instructions. RNA was quantitated on a Nanodrop, Quant-iT RiboGreen
RNA Assay Kit (Thermo Fisher) and/or Qubit RNA BR Assay Kit (Thermo Fisher
Scientific). RNA quality was assessed using a Bioanalyzer 2100 (Agilent
Technologies).

Splicing analysis by RT-PCR. Total RNA was reverse transcribed using the
GoScript Reverse Transcription System (Promega), SuperScript II or SuperScript
III (Thermo Fisher Scientific) with random primers according to manufacturer’s
protocol. PCR was conducted using GoTaq G2 Flexi DNA Polymerase (Promega).
PCR products were resolved on agarose gels stained with ethidium bromide and
gels visualized on an ImageQuant 400 (GE Healthcare) or Molecular Imager
ChemiDoc XRS+ (BioRad) and analyzed using Multi Gauge software (Version 3.0;
FujiFilm) or Image Lab (Version 6.0.1; BioRad). All primers and PCR product sizes
are listed in Supplementary Data 1 (sheet 2). Original gel photos are provided in
the Source Data file.

RNA sequencing and computational analysis. Thymic RNA-seq (2 × 50 paired-
end reads) were performed by The New York Genome Center from 9 weeks of age
WT and 129S1-Mbnl1ΔE3/ΔE3 thymic total RNA. For human PBMC and whole
blood strand-specific, rRNA- and globin- (only whole blood) depleted RNA-seq
libraries were prepared using the KAPA Stranded RNA-seq Kit with RiboErase

HMR Globin (Kapa Biosystems) per manufacturer’s instructions, except for the use
of custom Illumina-compatible index primers to allow multiplexing. Library size
distribution was assessed using the High Sensitivity NGS Fragment Analysis Kit
(DNF-747) on a Fragment Analyzer (Agilent) and 2 × 76 paired-end sequencing
was performed using an Illumina NextSeq 500.

Publicly available RNA-seq data were retrieved from the Gene Expression
Omnibus (GEO) database and are listed in Supplementary Data 1. Reads were
aligned to the human hg38 or mouse mm10 genomes. Salmon63 was used for
transcript expression quantification and differential gene expression analysis was
performed using DESeq264. MiXCR was used for repertoire analysis and Shannon’s
equitability was computed65,66. For splicing analysis, reads were aligned using
STAR67 followed by rMATS31 (Version 4) analysis. The IGV browser68 was used
for data visualization and ggsashimi69 was used for Sashimi plot generation. CLIP-
seq data were derived from DMseq.org70.

Statistical information and data visualization. Whole transcriptome statistical
analysis for gene expression and alternative splicing were performed using DEseq2
and rMATS, respectively. Other statistical analyses, including survival analysis,
were performed by using GraphPad Prism software (Version 8). The normal dis-
tribution was assessed by the Shapiro–Wilk test followed by parametric or non-
parametric tests. For multiple comparison one-way ANOVA was followed post hoc
test. Details are specified in the figure legends. Graphs where generated in
GraphPad Prism software. Heat maps were generated in R using the ggplot2
package.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The GEO accession numbers for all RNA-seq data used in this study are listed in
Supplementary Data 1 file (sheet 3 and 4). RNA-seq data generated during this study
have been deposited in GEO under accession GSE138691. The source data underlying all
Figures and Supplementary figures are provided as the Source Data and Supplementary
Data 1 files. All data and biological materials are available from the corresponding author
upon reasonable request.
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