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Genome-wide association study of MRI markers of
cerebral small vessel disease in 42,310 participants
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Cerebral small vessel disease is a major cause of stroke and dementia, but its genetic basis is

incompletely understood. We perform a genetic study of three MRI markers of the disease in

UK Biobank imaging data and other sources: white matter hyperintensities (N= 42,310),

fractional anisotropy (N= 17,663) and mean diffusivity (N= 17,467). Our aim is to better

understand the disease pathophysiology. Across the three traits, we identify 31 loci, of which

21 were previously unreported. We perform a transcriptome-wide association study to

identify associations with gene expression in relevant tissues, identifying 66 associated genes

across the three traits. This genetic study provides insights into the understanding of the

biological mechanisms underlying small vessel disease.
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Cerebral small vessel disease (CSVD) causes a quarter of all
strokes and is the most common pathology underlying
vascular dementia1. Radiological markers include lacunar

infarcts, white matter hyperintensities (WMH) and cerebral
microbleeds. Despite its importance there is limited under-
standing of the pathogenesis and this is reflected in a lack of
specific treatments for the disease. A number of arterial pathol-
ogies have been described including focal atheroma and diffuse
arteriosclerosis. Brain parenchymal lesions include small infarcts,
as well as regions of more diffuse white matter damage with
ischaemic demyelination, axonal loss and gliosis, corresponding
to WMH seen on T2-weighted magnetic resonance imaging
(MRI). WMH themselves increase with age, and are associated
with both stroke and dementia risk2. Studying MRI markers of
CSVD such as WMH may provide important insights into SVD
pathogenesis, by allowing asymptomatic disease to be studied in
large community populations. Previous genome wide association
studies (GWAS) have identified a number of loci associated with
increased WMH risk, suggesting not only vascular but also glial
and other neuronal cell genes may be involved3–7. However, such
studies have been moderately powered. GWAS in other complex
diseases including stroke8 have demonstrated the importance of
very large sample sizes in identifying risk loci. The recent avail-
ability of data from the brain imaging substudy in UK Biobank
offers an opportunity to greatly expand the sample size in which
to explore the genetic basis of WMH and CSVD.

Previous GWAS studies of MRI marker of CSVD have largely
focused on WMH. Diffusion tensor imaging (DTI) also measures
white matter damage, but is likely to be more sensitive to dis-
ruption of normal function and structure rather than WMH
which measure pathology alone. It allows estimation of mean
diffusivity (MD) and fractional anisotropy (FA). MD looks at the
diffusion of water molecules and is sensitive to diffuse white
matter injury. FA measures the directionality of diffusion and is a
marker of the integrity of white matter tracts. Previous studies
have shown DTI parameters are abnormal throughout the white
matter in CSVD, and not only within WMH, and are stronger
predictors of dementia in CSVD than WMH9,10. DTI measures
therefore might provide a more sensitive phenotype to identify
CSVD risk genes. To date there has only been a single GWAS
using DTI which identified a single locus5. We hypothesize that
GWAS of DTI parameters might identify additional genetic loci,
reflecting abnormalities in normal white matter structures
occurring with CSVD. We also compare genetic associations
between WMH and the DTI biomarkers, FA, and MD.

Using UK Biobank11,12, the Cohorts for Heart and Aging
Research in Genomic Epidemiology (CHARGE) consortium4,13

and a WMH study in stroke patients7, we perform a GWAS of
WMH in 42,310 individuals. Within UK Biobank, we perform a
GWAS of DTI markers of white matter integrity. In addition to
identifying genetic variants associated with the individual MRI
markers of CSVD, we aim to identify genetic sharing between the
different CSVD markers, and with other traits including common
cardiovascular risk factors. Using external expression data, we
also perform a transcriptome-wide association study (TWAS) to
prioritize and identify new candidate genes for CSVD14.

From our genome-wide association studies, we identify 31 genetic
loci, 21 of which have not been described in previous studies. We
find genetic correlations with stroke, longevity, blood pressure,
smoking and anthropometric traits. Transcriptome-wide association
studies identify 66 candidate genes across the three imaging traits.

Results
Genome-wide association study. We conducted a GWAS on
WMH in 18,381 European individuals from UK Biobank. The

results were meta-analyzed with GWAS results from the
CHARGE and WMH-Stroke multi-ethnic studies, for a total of
42,310 individuals. The intercept from LD score regression
(LDSC) analysis (intercept= 1.00) suggested no statistical infla-
tion. The quantile-quantile plot is available in Supplementary
Fig. 1. From the meta-analysis, we identified 19 independent loci
(r2 < 0.1) significantly associated (p ≤ 5 × 10−8) with WMH, ten of
which are previously unreported (Fig. 1, Supplementary Data 1).
By linear regression, we found that these ten variants account for
0.69% of the WMH variance in UK Biobank (14,577 individuals
with non missing genotypes), while all 19 variants account for
1.79%. The regional plots for the top significant loci are available
in Supplementary Fig. 2. We also performed a meta-analysis
restricted to Europeans and found very similar results as 86% of
participants in the three studies altogether were European (see
Supplementary Fig. 3) (Table 1).

GWAS of DTI parameters (FA and MD) was only performed
in UK Biobank, as we did not have DTI data for the other cohorts
(N= 17,663 and 17,467 respectively). We reduced each set of FA
and MD DTI imaging measures in 48 brain regions to the first
principal component which accounted for 38% (FA) and 41%
(MD) of the variance in these measures (Supplementary Table 1,
Supplementary Fig. 4). Association results showed no statistical
inflation (FA intercept: 1.01; MD intercept: 1.01) and identified
eight independent loci for FA (seven previously unreported loci),
and six for MD (five previously unreported loci) (Table 2,
Supplementary Data 2–3, Supplementary Figs. 5–8). We further
investigated the significance of the FA and MD top SNPs from
each genome-wide significant locus in the 48 brain regions
separately (Supplementary Fig. 9). Results show a mixed pattern
with some associations being across most brain regions, while
others are more specifically associated with specific brain regions.
By analyzing the first principal component, we capture the global
white matter DTI measure signal.

Although a number of loci were shared between WMH and DTI
markers, there were additional loci that appeared to be specifically
associated with only WMH or DTI markers (Fig. 2). One significant
locus in a high LD region on chromosome 2 was common to WMH
and FA (respective lead SNPs: rs72934505, pWMH= 4.31 × 10−13;
rs76122535, pFA= 5.57 × 10−09; r2= 0.95). Three significant loci
are common to FA and MD, two located on chromosome 5
(rs35544841, pFA= 2.72 × 10−25, pMD= 1.80 × 10−34; rs4150221,
pFA= 1.39 × 10−09, pMD= 4.40 × 10−08), and one located
on chromosome 6 (respective lead SNPs: rs3129171, pFA= 1.67 ×
10−09; rs1233587, pMD= 5.75 × 10−12, r2= 0.42).

Pathway enrichment analysis. We performed a pathway
enrichment analysis from our GWAS summary statistics using
the Gene Ontology (GO) annotations15,16. We found 6, 0, and 4
GO terms which are significantly enriched for WMH, FA and
MD respectively (false discovery rate (FDR) correction, adjusted
α= 0.05, see Supplementary Table 2); there was no overlapping
enriched GO term between WMH and MD results. Among these
significant results, the GO term “D5 dopamine receptor b;inding”
(p= 1.95 ×10−06) was the most significantly enriched molecular
function term for WMH GWAS results, dopamine receptors
being known to be involved in neurodegenerative diseases17. For
MD, the GO term “voltage-gated calcium channel activity
involved in AV node cell action potential” (p= 4.09 × 10−07) was
the most significant one, concordant with a vascular mechanism
underlying CSVD.

Genetic sharing with MRI measures. In order to evaluate genetic
sharing between the MRI markers of CSVD (WMH, MD, and
FA), we calculated genome-wide genetic correlation using
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LDSC18 and performed colocalization analysis on the associated
loci (Fig. 2)19.

SNP heritability estimates (h2) were 0.18 (se= 0.02) for WMH,
0.32 (se= 0.04) for FA and 0.27 (se= 0.04) for MD. There was
strong evidence of genetic sharing between WMH, FA and MD

with high genetic correlation estimates (WMH/FA: rg=−0.25,
se= 0.06, p= 3.2 × 10−5; WMH/MD: rg= 0.41, se= 0.08, p=
8.7 × 10−8; FA/MD: rg=−0.77, se= 0.03, p= 2.7 × 10−114).

We also assessed the genetic correlation between our imaging
biomarkers and traits from 479 available GWAS summary
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Fig. 1 Genome-wide association Manhattan plots for WMH, FA and MD. Manhattan plots are shown for each of the phenotypes: WMH (top), FA (middle),
and MD (bottom).
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statistics (Supplementary Data 4). By applying FDR multiple
testing correction for the 479×3 tests (p ≤ 7×10-4), we identified
23 significant genetic correlations with 18 traits (Fig. 3), which
could be categorized into five groups (stroke, longevity, blood
pressure, behavior and anthropometric traits).

We performed a sensitivity analysis based on the meta-analysis
with only the UK Biobank and the CHARGE WMH studies,
which did not include stroke patients. We found very similar
genetic correlation results for the 18 traits which were
significantly correlated with WMH (Supplementary Data 5).

With reference to common cardiovascular risk factors, significant
associations were found for systolic and diastolic blood pressure,
smoking, waist/hip ratio, BMI and alcohol use, but no association
was found for diabetes or any lipid subfraction (cholesterol,

triglyceride, HDL or LDL) (Supplementary Fig. 10 and Supple-
mentary Data 4). We computed the variance explained by
cardiovascular risk factors on WMH in UK Biobank using a linear
regression and adjusting for the same covariates as in the GWAS.
Although percentages are very small, these risk factors were highly
significantly associated with WMH (Supplementary Table 3).

For each associated locus, we performed a multi-trait
colocalization analysis19 including the three MRI markers of
CSVD and stroke phenotypes from the MEGASTROKE study8.
Twelve of the 31 MRI marker (WMH, FA, MD) associated loci
colocalized with an alternate CSVD MRI marker and/or one or
more stroke phenotypes from the MEGASTROKE study (with
posterior probability > 0.7) (Supplementary Data 6). Of these
twelve loci, eleven showed colocalization between at least two

Table 1 Top association SNPs for independent loci for WMH meta-analysis.

CHR:BP rsID A1/A2 A1_FREQ WMH_P FA_P MD_P HGNC genes Novel

1:197499003 rs12120143 T/C 0.03 6.45 × 10−09 3.78 × 10−02 3.79 × 10−01 DENND1B Yes
2:43118872 rs7566761 A/G 0.20 7.62 × 10−13 1.95 × 10−01 6.57 × 10−01 AC098824.6a No
2:56128091 rs7596872 A/C 0.10 2.06 × 10−20 3.92 × 10−01 1.48 × 10−02 EFEMP1 No
2:188003118 rs17576323 C/T 0.20 3.15 × 10−08 3.38 × 10−01 6.92 × 10−01 AC007319.1 Yes
2:203916487 rs72934505 G/T 0.13 4.31 × 10−13 7.34 × 10−08 7.28 × 10−05 ICA1L, WDR12, CARF, NBEAL1,

CYP20A1
No

3:183380035 rs830179 A/G 0.32 4.67 × 10−09 3.21 × 10−01 1.11 × 10−03 KLHL24 Yes
5:121510586 rs17148926 C/A 0.17 4.07 × 10−09 1.54 × 10−03 4.46 × 10−05 CTC-441N14.4 Yes
6:151016058 rs275350 C/G 0.41 8.83 × 10−17 3.96 × 10−03 4.54 × 10−05 PLEKHG1 No
7:100361391 rs3215395 ID/G 0.29 2.18 × 10−08 1.21 × 10−02 4.42 × 10−03 ZAN Yes
10:105459116 rs4630220 A/G 0.29 1.21 × 10−14 2.88 × 10−03 3.32 × 10−05 SH3PXD2A No
13:111040681 rs11838776 A/G 0.28 7.90 × 10−11 1.97 × 10−01 1.03 × 10−02 COL4A2 No
14:100581636 rs11160570 T/C 0.26 6.10 × 10−13 1.09 × 10−02 3.19 × 10−05 EVL, DEGS2 No
15:65326833 rs12906662 A/T 0.47 6.42 × 10−09 8.81 × 10−01 1.85 × 10−01 MTFMT, SLC51B Yes
16:51451683 rs17616633 T/C 0.44 7.33 × 10−11 2.01 × 10−01 4.97 × 10−02 RP11-437L7.1a Yes
16:87237568 rs12928520 T/C 0.44 1.26 × 10−13 8.18 × 10−01 2.10 × 10−01 C16orf95 Yes
17:19224397 rs6587216 G/C 0.19 8.01 × 10−09 1.72 × 10−01 1.57 × 10−02 EPN2 Yes
17:43128906 rs8071429 T/A 0.37 2.61 × 10−16 9.17 × 10−05 4.14 × 10−06 DCAKD, NMT1 No
17:73882148 rs7214628 G/A 0.19 4.99 × 10−36 1.06 × 10−01 1.75 × 10−03 WBP2, TRIM47, TRIM65 No
19:45411941 rs429358 C/T 0.15 1.15 × 10−09 1.87 × 10−02 6.92 × 10−04 APOE Yes

CHR:BP chromosome and position in bp, rsID the SNP ID, A1/A2, tested and non-tested alleles (ID is for insertion/deletions), A1_FREQ the allele frequency of the tested allele in the UK Biobank population
for WMH, WMH_P, FA_P and MD_P the p-values for WMH, FA and MD respectively, HGNC genes the nearest genes to the lead SNP and its proxies (r2≥ 0.8), genes symbols are in italic to comply with
the nomenclature, Novel this column indicated if the association has already been described in previous GWAS.
aThe lead SNP and/or proxies lie in an intergenic region.

Table 2 Top association SNPs for independent loci for FA and MD GWAS.

CHR:BP rsID A1/A2 A1_FREQ WMH_P FA_P MD_P HGNC genes Novel

2:203664929 rs76122535 G/C 0.13 2.68 × 10−12 5.57 × 10−09 4.02 × 10−06 ICA1L, WDR12, CARF, NBEAL1 Yes
2:217325317 rs34380167 ID/C 0.27 2.81 × 10−02 1.16 × 10−08 8.98 × 10−05 SMARCAL1, RPL37A Yes
5:82862328 rs35544841 ID/G 0.20 6.89 × 10−07 2.72 × 10−25 1.80 × 10−34 VCAN No
5:139719991 rs4150221 C/T 0.26 8.30 × 10−01 1.39 × 10−09 4.40 × 10−08 HBEGF Yes
6:26979765 rs374598428 ID/C 0.14 2.78 × 10−02 1.52 × 10−8 2.01 × 10−07 LINC00240, VN1R12P Yes
6:28719755 rs1233587b T/A 0.30 1.36 × 10−01 1.67 × 10−07 5.75 × 10−12 ZFP57a Yes
6:29155749 rs3129171b A/G 0.24 6.65 × 10−03 1.67 × 10−09 3.79 × 10−09 ZFP57a, OR2J2, OR2H4P,

XXbac-BPG308J9.3
Yes

6:31329092 rs7772614 A/C 0.38 1.93 × 10−02 3.54 × 10−05 8.44 × 10−10 HLA-B, HLA-S Yes
10:105682296 rs11813268 T/C 0.15 6.17 × 10−04 5.62 × 10−05 7.31 × 10−09 STN1 Yes
16:89951460 rs112730611 T/C 0.17 1.27 × 10−02 1.36 × 10−09 3.86 × 10−06 SPIRE2, TCF25 Yes
17:44013964 rs55939347 ID/T 0.22 2.49 × 10−04 2.98 × 10−04 1.84 × 10−08 LINC02210-CRHR1, MAPT-AS1,

MAPT, KANSL1
Yes

20:61154871 rs6062264 T/C 0.28 8.53 × 10−02 1.02 × 10−08 6.77 × 10−02 MIR1-1HG Yes

CHR:BP chromosome and position in bp, rsID the SNP ID, A1/A2, tested and non-tested alleles (ID is for insertion/deletions), A1_FREQ the allele frequency of the tested allele in the UK Biobank population
for WMH, WMH_P, FA_P and MD_P the p-values for WMH, FA and MD respectively, HGNC genes the nearest genes to the lead SNP and its proxies (r2≥ 0.8), genes symbols are in italic to comply with
the nomenclature, Novel this column indicated if the association has already been described in previous GWAS.
aThe lead SNP and/or proxies lie in an intergenic region.
bAssociated SNPs for different traits which are in LD: rs1233587/rs3129171 (r2= 0.42).
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MRI biomarkers (Fig. 2), and three showed colocalization with at
least one stroke phenotype. The WMH locus located on
chromosome 5 (top SNP: rs17148926, candidate SNP in
HyprColoc: rs17433120) was shared across WMH, FA, MD,
any stroke (AS), any ischemic stroke (AIS) and small vessel stroke
(SVS). The WMH locus on chromosome 13 (top SNP:
rs11838776) was shared between WMH and SVS. These two loci
were not significantly associated at GWAS significance with SVS
in the MEGASTROKE study (rs17433120: p= 2.059 × 10−07,

rs11838776: p= 1.086 × 10−07). The FA locus on chromosome 6
(top SNP: rs374598428, candidate SNP in HyprColoc:
rs36022097) was shared between FA, MD and large artery
stroke (LAS).

Pleiotropic effects of the 31 associated loci across WMH, FA
and MD were evaluated with PhenoScanner to investigate locus-
specific sharing across traits20. Eighteen were significantly
associated with at least one additional trait (p ≤ 5 × 10−8) in the
PhenoScanner database, primarily anthropometric, vascular,
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hematological, respiratory, and psychiatric traits (Fig. 4, Supple-
mentary Data 7).

Prioritizing candidate genes, tissues, and cell types. To identify
genes whose expression is associated with risk of CSVD, we
performed a TWAS integrating our GWAS results with expres-
sion quantitative locus (eQTL) data from CSVD-relevant tis-
sues14. We focused our analyses on Genotype-Tissue Expression
(GTEx)21 arterial and blood tissues and two larger eQTL studies
from the CommonMind Consortium (CMC, brain)22 and Young
Finns Study (YFS, blood)23,24. Arterial tissues from GTEx were
more enriched by partitioned heritability analysis than the other
tissues although there was not enough power to identify sig-
nificantly enriched tissues for WMH and MD (Supplementary
Figs. 11–13). Only the artery tibial tissue from GTEx was sig-
nificantly enriched for FA. We also looked for cell-type enrich-
ment by annotating each SNP to a brain cell type (pericytes,
fibroblasts, microglia, smooth muscle cells, endothelial cells, oli-
godendrocytes, astrocytes) using mouse expression data25 and
using MAGMA enrichment analysis. We did not find any sig-
nificant result after correcting the significance threshold for the
number of cell types (see Supplementary Table 4).

From TWAS analysis of six tissues, we identified 33 significant
gene expression/trait associations for WMH, 19 for FA and 27 for
MD (at p ≤ 1.5 × 10-6, accounting for multiple testing correction)
respectively (Fig. 5, Supplementary Data 8). In the 66 genes
identified, 30 had no GWAS significant SNP (p ≤ 5 × 10−8) for
WMH, FA or MD in the single-variant analysis implying that the
gene-level TWAS analysis identifies associated loci which are not
detected in the GWAS. Within each significant gene, TWAS
results were mostly consistent across tissues, although a few genes
had different direction of expression across tissues (ICA1L,
KLHL24). We additionally performed a gene-set enrichment
analysis from TWAS results for all genes, in each imaging trait for
the six tissues. No significant GO terms were identified.

We further performed colocalization analysis for those genes
whose expression was significantly associated with WMH, FA or
MD. This complementary analysis aims to determine in which
genes eQTL and MRI biomarker association signals colocalize as
this can help prioritize candidate genes within a region. Of the 66
genes identified in the TWAS analyses, 48 of the MRI biomarkers
and eQTL colocalized with a posterior probability ≥ 0.8 (COLOC
hypothesis 4, H4) and so are consistent with the same underlying
causal variant.

These results highlight regions and genes that are specific to
each trait or contribute pairwise across traits. For example, on
chromosome 17, DCAKD and NMT1 imputed expression levels
were significantly associated with WMH and MD, but not FA.
Shared association for WMH and FA was detected on chromo-
some 2 (genes CARF, FAM117B, ICA1L, NBEAL1). We also
found shared association for FA and MD on chromosomes 6
(gene ZNA165), 16 (gene CDK10) and 22 (gene SEC14L6).

Discussion
We performed genome-wide association studies of CSVD related
imaging traits in up to 42,310 individuals. We identified 33
associations overall, 19 with WMH (ten of which were previously
unreported), eight with FA (seven previously unreported) and six
with MD (five previously unreported). Our findings provide
insights into the pathogenesis of CSVD, highlighting multiple
pathways associated with disease risk. This study expands our
previous study7 with the inclusion of the CHARGE summary
statistics, and an additional 9,952 UK Biobank participants,
increasing total sample size from 11,266 to 42,310.

To identify the genes and transcribed proteins influenced by
the loci identified in our GWAS, we performed a transcriptome-
wide association study, integrating mRNA expression data from
relevant tissues. We coupled TWAS with colocalization analysis
to identify trait-gene expression associations which were due to
the same underlying causal variant. This approach enabled us to
pinpoint the likely causal gene and tissue for a number of loci.
They also suggest that some loci may act via increasing the small
artery disease itself, while other may act via increasing brain
responses to injury. The associations of elevated ADAMTSL4
(ADAMTS-like 4), increased SLC25A44 (Solute Carrier Family 25
Member 44), and decreased CALCRL (Calcitonin receptor-like)
with WMH, and of SEC14L6 (SEC14 Like Lipid Binding 6) with
FA and MD, appear specific to the arteries, and therefore may
increase risk via increasing the severity of the small vessel arter-
iopathy. Genes in the immediate vicinity of loci, or identified in
the TWAS study, are associated with Mendelian vascular
(COL4A2, LOX, EPHB4, STN1) or eye (VCAN, ADAMTSL4,
CRB1) disease. One might expect these proteins to instead be
involved in the core vascular processes underlying small vessel
disease. Notably, four of these (COL4A2, LOX, VCAN,
ADAMTSL4) are key extracellular matrix proteins, providing
support for the hypothesis that the disruption of the cere-
brovascular matrisome plays a central role in the pathogenesis of
both monogenic and apparently sporadic CSVD26. In contrast for
the chromosome 17q25 locus that has been described previously3,
our analyses point to an association of decreased levels of
TRIM47 (Tripartite Motif Containing 47) in the brain with
WMH. Similarly, among the loci which were not reported in
previous publications, our analyses point to an association of
CD82 (Cluster of Differentiation 82) with FA and MD in the
brain. One might expect these genes to be involved pre-
dominantly in the response of the brain parenchyma to ischemia.

Our findings also provide evidence to support the involvement
of inflammatory and immunological processes in CSVD pathol-
ogy. Most notably we identified associations of both FA and MD
with variants in the human leukocyte antigen (HLA) region on
chromosome 6, a gene complex encoding the cell-surface proteins
involved in regulation of the immune system. For each of these
traits, there were multiple independent loci (r2 < 0.1) spanning
the extended HLA region reaching genome-wide significance.
From these results alone we were not able to determine whether
specific HLA alleles were associated: this should be the focus of
future analyses. However this finding provides support for the
hypothesis that inflammatory processes either in the vessels
themselves, or at the blood-brain barrier, contribute to CSVD
pathogenesis27.

The relationship between MRI markers of CSVD and
dementia, particularly due to Alzheimer’s Disease (AD),
remains controversial. WMH are a strong risk factor for
dementia, and this is often assumed to be via ischemic damage
contributing to both vascular and mixed dementia. However, a
specific association of WMH with AD has also been proposed.
WMH are increased in AD patients, and are an early core
feature of autosomal dominant AD, occurring 6 years before
symptom onset28. In this study we identified associations at
genome-wide significance at the APOE locus, as well as with
the chromosome 17 inversion which contains the MAPT gene,
encoding microtubule associated protein tau, one of the key
proteins involved in AD pathogenesis. Whether these asso-
ciations reflect the fact the AD related changes influence WMH
itself, or whether there is interplay between AD pathology and
CSVD, as has been proposed29,30, is not clear from these
data alone.

We also compared genetic associations between WMH and the
DTI biomarkers, FA and MD. WMH represent pathological
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changes on MRI scans which on a population basis are usually
caused by CSVD. DTI markers also measure white matter
damage but are likely to be more sensitive to disruption of normal
function and structure rather than measuring pathology alone.

Our study performed comprehensive analysis of the genetic
architecture of these different white matter markers. While there
was significant genetic correlation between WMH and DTI
markers, we also identified significant genetic differences. A
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number of loci were risk factors for both WMH and DTI markers,
but others were specific to either WMH or DTI. Of note we found
that three of the four loci which were selectively associated with
DTI markers and colocalized between only FA and MD, overlap
with genes that contain variants previously reported in GWAS for
intelligence, cognition or schizophrenia (HBEGF31,32, SMAR-
CAL133, VN1R12P31,34). Two other GWAS loci specific to FA
and/or MD, were also found associated with schizophrenia, aut-
ism (OR2J235,36), intelligence and psychiatric measurements
(MAPT37–39). We also found from the TWAS analyses genes in
which variants were found associated autism, schizophrenia,
neuroticism, depression, cognitive ability and intelligence
(BTN3A240, CRHR1-IT141, DND1P141, KANSL1-AS141, MAPT,
MICA35, PLEKHM138, SLC35A4, ZNF16535) and they were also
mainly specific to FA and MD. These findings suggest DTI
measures represent a marker of alterations to normal brain net-
works, and that such networks may play in role in the genesis of
psychiatric disorders.

Our TWAS study identified an association of decreased levels
of Calcitonin receptor-like (CALCRL) with increased WMH.
CALCRL is a protein which, when associated with RAMP1,
produces the calcitonin gene related peptide (CGRP) receptor, or
when associated with RAMP2, produces the adrenomedullin
(ADM) receptor. CGRP and ADM are potent vasodilators with
ameliorating effects on cardiovascular disease. There is evidence
from mice that targeting the CGRP pathway could ameliorate
cerebral ischemia42,43, and trials have investigated its influence on
cerebral ischemia in postoperative aneurysmal subarachnoid
hemorrhage44. Whether targeting CGRP or ADM could amelio-
rate the long-term ischemic changes underlying CSVD should be
the subject of further study.

Our study has limitations. Participants were of pre-
dominantly European ancestry and our findings can therefore
not be generalized to individuals of all ancestries. Our study
included three sets of GWAS results for WMH—two were from
population based studies while the third was from a cohort of
stroke patients. The stroke group had more severe WMH. The
genetic architecture of WMH in community populations and
stroke patients appears to be similar6. However to explore
whether inclusion of these stroke cases may have altered results
we performed a sensitivity analysis excluding these cases, and
very similar associations for the same 18 loci were found. We
included all cases in the discovery cohort to increase power to
identify new associations. We did not include a replication
cohort. Elevated blood pressure is a significant risk factor for
CSVD. We did not adjust for blood pressure in our analysis as
this can result in biased estimates of genetic effects45, or worse
can lead to false positive associations due to collider bias46. In
TWAS analyses, we focused on artery and blood tissues from
GTEx, blood from the YFS and brain tissue from the CMC
study. More specific cell types in relation to CSVD pathogen-
esis would also greatly help in the understanding of underlying
biological processes. We did not include in our analyses the
different brain tissue GTEx expression data as they were far
from being enriched in the partitioned heritability analysis we
performed. Also, it is important to not overinterpret TWAS
results in terms of causality as imputed gene expression might
be associated with non-causal SNPs; for this reason, we con-
ducted colocalization analyses to help in prioritizing these
genes. In following up GWAS results, we focused primarily on
using TWAS results to highlight potentially implicated genes.
It should not be forgotten that other mechanisms, such as
alterations in protein function, splicing, and various epigenetic
processes could also confer disease risk. Indeed a common
missense variant in TRIM47 (p.Arg187Trp) might be the
underlying risk mechanism at the 17q25 locus.

In summary we identified 33 associations (31 loci) with CSVD-
related imaging traits. Our findings increase the knowledge of the
genetic basis of CSVD-related imaging traits, showing that certain
loci confer risk of both WMH and DTI measures, while others are
related to one or the other. Our results highlight the involvement
of the cerebrovascular matrisome in CSVD, and provide further
evidence of the involvement of inflammatory mechanisms.

Methods
UK Biobank study population. UK Biobank is a major data health resource
including ~500,000 participants from across the UK, aged between 40 and 69 years
at recruitment47. The UK Biobank includes clinical and phenotypic information for
a broad range of traits and includes MRI imaging data on a subset of participants.
In this study, we used the UK Biobank imaging data on ~20,000 individuals
released in October 201811,12. MRI was performed on two identical Siemens Skyra
3.0 T scanners (Siemens Medical Solutions, Germany), running VD13A SP4, with a
standard Siemens 32-channel RF receiver head coil. Identical acquisition para-
meters and careful quality control (QC) was used for all scans. We selected indi-
viduals described for three phenotypes all of which variables already obtained from
the UK Biobank MRI data by the central MRI analysis centre in Oxford (1) total
volume of WMH (from T1 and T2_FLAIR images) WMH (field 25781), (2) FA
(fields 25056-25103) and (3) MD (fields 25104-25151) (see Supplementary Data 9
for field description). Individuals diagnosed with stroke, or with other major CNS
disease which could be associated with white matter damage (e.g., multiple
sclerosis, Parkinson disease, dementia or any other CNS neurodegenerative con-
dition) were excluded from the analysis (see Supplementary Table 5 for removed
codes description).

Additional WMH cohorts. We obtained WMH summary statistic results from the
CHARGE consortium through the database of Genotypes and Phenotypes (dbGaP)
(study: phs000930.v6.p1). This multi-ethnic study included 21,079 individuals free
of dementia and stroke of European (N= 17,936), African (N= 1943), Hispanic
(N= 795), and Asian (N= 405) ancestry4.

We also obtained WMH GWAS summary statistics from a study in 2850
ischemic stroke patients7, including 2694 and 156 individuals of European and
African ancestry respectively. In the original study, individuals with any monogenic
cause of stroke, vasculitis, or any other non-ischemic cause of WMH such as
demyelinating and mitochondrial disorders were excluded from this dataset.

Image analysis assessment. We used WMH, FA and MD imaging-derived
phenotypes generated by an image-processing pipeline developed and run on
behalf of UK Biobank (https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/
brain_mri.pdf)11,12. WMH trait was log-transformed and normalized for brain
volume (field 25009). For each biomarker, outliers outside the ± 6 s.d. range were
removed.

DTI measures were available as part of the UK Biobank central analysis for 48
individual white matter regions. To obtain a single global measure of global white
matter FA and MD from the DTI images, principal component analysis (PCA) was
performed on the FA and MD measures of each of the 48 different brain tracts
analyzed, using FactoMineR48, as a dimension reduction method. The first
principal component for FA and MD was used for association analysis (see
Supplementary Table 1 for more details about the PCA analysis). In addition, as a
secondary analysis, we performed analysis for each brain region independently.

Genetic data and QC. We used genotype data imputed to the Haplotype Reference
Consortium panel and released by UK Biobank in June 2017. Imputation and QC
procedures from the UK Biobank study are described in47. From the UK Biobank
sample QC description, we excluded (1) related individuals with a KING kinship
coefficient ≥ 0.0884 (to keep only one individual per group of up to second-degree
relationships)49, (2) individuals with mismatch between genotype and reported sex,
(3) outliers in terms of heterozygosity and genotype missingness (individuals with a
missing rate > 5%), (4) individuals not contained in a homogeneous cluster of
European ancestries based on PCA and k-mean clustering (k= 4) on the two first
PCs. After this filtering, we performed further PCA on non-correlated common
SNPs (r2 < 0.2 and minor allele frequency ≥ 5% (MAF)) with PLINK 2.0 software
(www.cog-genomics.org/plink/2.0/)50–52. Population outliers were iteratively
excluded if they were outside the ±8 s.d. range for the first 10 PCs (see Supple-
mentary Table 6 for numbers of participants removed at each QC step, and
Supplementary Figs. 14–16 for PCA plots for genetic population structure). For
SNP QC, we removed SNPs with an imputation INFO score <0.5, a MAF < 1% or a
Hardy-Weinberg disequilibrium p-value ≤ 1 × 10−10.

Genome-wide association study. Association analysis was performed using linear
regression on WMH (N= 18,381), FA (N= 17,663) and MD (N= 17,467) for ~9.7
million SNPs with PLINK 2.0 (www.cog-genomics.org/plink/2.0/)50,51 based on
genotype dosages from imputation. Covariates included (1) age at MRI (derived
from UK Biobank fields 34, 52 and 53), (2) sex (field 31), (3) genotyping array (field

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-15932-3 ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:2175 | https://doi.org/10.1038/s41467-020-15932-3 | www.nature.com/naturecommunications 9

https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/brain_mri.pdf
https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/brain_mri.pdf
http://www.cog-genomics.org/plink/2.0/
http://www.cog-genomics.org/plink/2.0/
www.nature.com/naturecommunications
www.nature.com/naturecommunications


22000; Affymetrix UK BiLEVE or UK Biobank Axiom Array), (4) the UK Biobank
assessment centre (field 54; Cheadle or Newcastle), (5) the first 10 PCs, (6) MRI
head motion indicators which are mean tfMRI head motion (field 25742) and
Mean rfMRI head motion (field 25741) (see Supplementary Tables 7–9 for further
details). Missing values for MRI head motion indicators were imputed using the R
package mice with the predictive mean matching method53 based on all covariates.
A meta-analysis was performed of the UK Biobank WMH GWAS results with
GWAS results from two multi-ethnic studies described above, the CHARGE study
(N= 21,079)4 and the WMH study in stroke patients (WMH-Stroke; N= 2850)7,
giving a total of 42,310 individuals. As beta values were not available in the
CHARGE study, a Z-score based meta-analysis was performed using METAL54.
Genomic inflation was assessed by using LDSC intercepts55. Genome-wide statis-
tical significance was set as P ≤ 5 × 10−8. Significant independent loci were defined
as clumped significant association results with PLINK (--clump-kb 1000 --clump-
r2 0.1), i.e., groups of SNPs in LD (r2≥ 0.1) in 1000 kb windows and represented by
the most significant SNP, and merged across overlapping 250 kb neighboring
genetic windows. Regional association plots, showing LD between independent top
association SNPs and 250 kb neighboring SNPs were constructed based on a subset
of 1000 UK Biobank individuals as a reference LD panel.

Gene-set enrichment analysis from GWAS results. From GWAS summary
statistics, we conducted gene based analysis and gene set enrichment analysis using
MAGMA program56,57. Genes boundaries were defined using NCBI 37.3 gene
annotations (https://ctg.cncr.nl/software/MAGMA/aux_files/NCBI37.3.zip). SNPs
were mapped to genes and within 10 kb flanking regions. Gene-based association
analysis was then performed using summary statistics from all GWAS tested SNPs
for WMH, FA and MD. We used the European ancestry UK Biobank reference
dataset to take into account the LD structure in the gene-based association testing.
We conducted gene-set enrichment analysis based on GO terms and mouse brain
cell-type expression data25. For the first analysis, we defined gene sets with GO
annotations (http://geneontology.org/, May 2019 release)15,16, kept gene sets with
more than three genes and applied the competitive enrichment testing. Results
were reported according to the three main categories of GO terms called biological
process (GO:0008150), molecular function (GO:0003674) and cellular component
(GO:0005575). For the second analysis, we used mouse brain expression data and
defined cell types gene sets as the top 100 or top 500 most differentially expressed
genes between the cell types versus all 15 cell types. We translated mouse gene
names into the ortholog human gene names. We defined significantly enriched
gene-sets by adjusting p-values with the Benjamini-Hochberg FDR multiple testing
correction and setting a 5% threshold.

Assessment of pleiotropy. We annotated association results with PhenoScanner
(R Package phenoscanner v1.0)20. For each independent locus, we queried the
top significant SNP and its proxies (SNPs with r2 > 0.8) using our European
ancestry UK Biobank reference dataset (sampling of 1000 individuals from our
population study). We retained PhenoScanner GWAS association results with a
p-value < 5 × 10−8.

Multiple trait colocalization analysis. We performed colocalization analysis to
identify shared genetic loci between WMH, FA and MD and stroke traits with the
HyPrColoc program19. We downloaded GWAS summary statistics for stroke traits
from the MEGASTROKE study, a large GWAS of stroke, and its major subtypes8.
Genetic loci in the colocalization analysis were defined as the top hit per inde-
pendent associated locus with +/−500 kb flanking regions. We identified coloca-
lized traits by setting a posterior probability threshold of 0.7. We retained in the
results combinations of traits containing the trait the genetic locus was
associated with.

Heritability and genetic correlation. For WMH, FA and MD traits, SNP herit-
ability and genetic correlations were assessed using LDSC18,55. For QC, we filtered
well-imputed SNPs by using the HapMap3 LD reference in the European popu-
lation58. We excluded SNPs from the major histocompatibility complex as they
display high LD and could bias the LDSC analysis results. Genetic correlations were
assessed between the WMH, FA and MD traits, and also with 479 phenotypes from
open source GWAS summary statistics data from (1) the Navigome online tool59,
(2) a recent study on blood pressure60, (3) a recent study on AD61 and (4) the
MEGASTROKE study8. We tested for statistical significance of the observed
genetic correlation after applying both FDR (q-value < 0.05) and Bonferroni (p <
0.05/(479 × 3)) multiple testing correction methods.

We also partitioned the SNP heritability of WMH, FA and MD by functional
category62,63 using the 44 tissues in the GTEx data21 and in astrocyte, neuron, and
oligodendrocyte expression data64.

Contribution of risk factors and genetic loci to WMH. We estimated the
contribution of the top associated SNPs to WMH variance in UK Biobank by
deriving the difference in coefficient of determination (R2) between the two
nested linear regression models (including covariates with and without the top
associated SNPs). We also estimated the contribution of vascular risk factors to

WMH variance. The vascular risk factors we chose and the UK Biobank fields
used to derive them are listed in Supplementary Table 3. For each of WMH
and the vascular risk factors, we performed a regression model incorporating
the same covariates as in the GWAS and derived the residuals (model: trait ~
covariates). Then we regressed residuals for each risk factor on WMH
residuals (model: WMH residuals ~ risk factor residuals) and retrieved the
adjusted R2.

TWAS and colocalization analysis. We performed a TWAS with FUSION14,
from gene expression models derived from the CMC22, YFS23,24,65, and GTEx v7
datasets21. The CMC gene expression tissues (labeled as CMC-brain) were
collected from dorsolateral prefrontal cortex in individuals with schizophrenia
or control individuals (N= 452). In the YFS study (labeled as YFS-whole blood),
peripheral blood gene expression has been collected for 1650 participants (N=
1,264). Among the available GTEx tissues, we focused our TWAS analysis on
aorta artery (N= 267), coronary artery (N= 152), tibial artery (N= 388) and
whole blood (N= 369), based on the assumption that these tissues would be the
most relevant for CSVD pathogenesis. Bonferroni correction for multiple testing
was applied taking into account the total number of tested genes across the
tissues. TWAS results were further investigated with colocalization analysis of
eQTLs and GWAS signals with the R package COLOC66, to assess whether the
observed eQTL and GWAS associations were consistent with a common shared
association.

Gene-set enrichment analysis from TWAS results. From all genes TWAS
results, we conducted a gene-set enrichment analysis using the program TWAS-
GSEA67 for GO terms (downloaded from MSigDB, February 2019 Gene Ontology
release)68,69. TWAS-GSEA preforms first a fixed-effects linear regression on the
model TWASpvalueg ¼ GeneSetg þ GeneLengthg þ eQTLnumberg þ εg with g as
the gene index. In a second step, after FDR multiple testing correction, significant
gene sets were tested by mixed linear regression taking into account the correlation
between the gene expressions as a random effect. The gene expression correlation
matrix was computed from predicted expression in 1000 Genomes European sub-
population (N= 489). We performed this gene-set enrichment analysis for WMH,
FA and MD and the six tissues we selected.

Ethical considerations. This research has been conducted using the UK Biobank
Resource under application number 36509. UK Biobank received ethical approval
from the Research Ethics Committee (reference 16/NW/0274). CHARGE summary
statistics were obtained through the dbGaP portal application number 19896
(study: phs000930.v6.p1). Summary statistics from the WMH study in stroke
patients were obtained through agreement with the authors7. All studies obtained
informed consent from all participants and got ethical approval from their local
ethics committee; full ethical permissions of contributing studies have been pre-
viously published.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
This analysis used publicly available data from the UK Biobank (www.ukbiobank.ac.uk,
field codes are described in the Supplementary Data 13 and the Supplementary Table 7),
WMH stroke study (http://cerebrovascularportal.org/informational/downloads) and
CHARGE (https://www.ncbi.nlm.nih.gov/gap/, we used data from the study phs000930.
v6.p1, the currently available version is phs000930.v7.p1). The GWAS summary statistics
from WMH, FA, and MD for the UK Biobank and stroke studies are available via the
Cerebrovascular Disease Knowledge Portal (http://www.cerebrovascularportal.org/) Data
Downloads page (http://www.kp4cd.org/dataset_downloads/stroke). We obtained the
CHARGE summary statistic data directly from dbGaP. We are unable to make them
available via the cerebrovascular disease portal due to dbGaP and CHARGE access
regulations, and these can be obtained direct from dbGaP (https://www.ncbi.nlm.nih.
gov/gap/). In our post-GWAS analyses, we used the Gene Ontology database (http://
geneontology.org/), MAGMA software gene definitions (https://ctg.cncr.nl/software/
magma), the PhenoScanner database (http://www.phenoscanner.medschl.cam.ac.uk/),
LDSC LD scores (https://github.com/bulik/ldsc), GWAS summary statistics (the list of
Pubmed IDs is provided in the Supplementary Data 5), FUSION software weights and
reference LD (http://gusevlab.org/projects/fusion/), differential expression data in mouse
brain cell types (http://betsholtzlab.org/VascularSingleCells/database.html).

Code availability
All code used to perform the different analyses is available in https://github.com/
elodiepersyn.
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