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Feature-specific neural reactivation during
episodic memory
Michael B. Bone 1,2✉, Fahad Ahmad1 & Bradley R. Buchsbaum 1,2

We present a multi-voxel analytical approach, feature-specific informational connectivity

(FSIC), that leverages hierarchical representations from a neural network to decode neural

reactivation in fMRI data collected while participants performed an episodic visual recall task.

We show that neural reactivation associated with low-level (e.g. edges), high-level (e.g. facial

features), and semantic (e.g. “terrier”) features occur throughout the dorsal and ventral visual

streams and extend into the frontal cortex. Moreover, we show that reactivation of both low-

and high-level features correlate with the vividness of the memory, whereas only reactivation

of low-level features correlates with recognition accuracy when the lure and target images

are semantically similar. In addition to demonstrating the utility of FSIC for mapping feature-

specific reactivation, these findings resolve the contributions of low- and high-level features

to the vividness of visual memories and challenge a strict interpretation the posterior-to-

anterior visual hierarchy.
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Not all of our conscious memories for past events have the
same quality of experience: some are vague and fuzzy,
while others are sharp and detailed—sometimes nearly on

par with the “fidelity” of direct perceptual experience. What
accounts for this variability in the sharpness and “resolution” of
memories? Researchers studying mental imagery, episodic
memory, and working memory have converged on the idea that
memories are constructed from the same neural representations
that underlie direct perception1–7, a process known as neural
reactivation8,9. Researchers have found that measures of neural
reactivation throughout the dorsal and ventral visual streams
reflect the content of episodic memory4,5,7,10,11, including
low-level image properties such as edge orientation and
luminosity6,12,13, as well as high-level semantic properties14,15.
Moreover, the degree of neural reactivation is correlated with
memory vividness16–20.

The parallels between perception and memory extend beyond
the representational overlap within posterior visual regions. As
with perception, visual memory is subject to capacity con-
straints21, and depends on similar executive processes, such as
selective attention20,22–25 and working memory26–28. These
executive processes serve to enhance and maintain neural reac-
tivation of task-relevant image features within posterior visual
regions via top-down projections from the frontal cortex29–34.

Although there is strong evidence that a network of frontal
cortical areas contributes to visual memory, there is a debate over
the nature of the representations within these regions. By one
account, frontoparietal regions encode abstract task-level repre-
sentations such as category membership35–38, rules, and stimulus-
response mappings39. However, stimulus-specific responses have
also been discovered within prefrontal regions18,40–43, with some
areas of the frontal cortex supporting both task-general and
stimulus-specific representations in a high-dimensional state
space44–46. Whereas evidence for stimulus-specific representa-
tions within the frontal cortex has been growing over the last
decade, there is still little information about the granularity of
sensory features represented in the frontal cortex, as the tools for
detecting such representations are just beginning to emerge.

The detection of feature-specific neural representations has
advanced significantly over the past few years with the advent of
brain-inspired deep convolutional neural networks47 (CNN).
Early attempts at identifying and localizing neural activity asso-
ciated with specific visual features focused on either high-level
sematic/categorical features14,48–52, low-level features such as
edges6,53 or both54,55—limiting findings to a small portion of the
cortical visual hierarchy. In contrast, features extracted from the
layers of a deep CNN have been linked to activity over nearly the
entire visual cortex during perception, with a correspondence
between the hierarchical structures of the CNN and cortex56–60.

The architecture of feed-forward CNNs is such that features from
higher layers of the network are composed of features from lower
layers, resulting in strong inter-layer correlations. Thus, any method
that does not control for these inter-layer correlations will be prone
to falsely detect reactivation of features from (nearly) all levels of the
visual hierarchy when only a small subset of the feature-levels are
present within a given brain region. Güçlü and van Gerven57 and
Seeliger et al.60 developed a method to address this issue that first
assigns the layer that best predicts a given voxel/source’s activity to
that voxel/source, and then uses the proportion of voxel/sources
assigned to each layer within a region of interest (ROI) to infer the
feature-levels represented within that cortical region. This approach,
however, may overlook feature-levels that are weakly represented
within a given region, due to the simplifying assumption that only
one feature level is represented per voxel/source.

To overcome some of these previous limitations in identifying
feature-specific reactivation during memory recall, we introduce

feature-specific informational connectivity (FSIC), a measure that
incorporates a voxel-wise modeling and decoding approach6,
coupled with a variant of informational connectivity61,62. Our
method exploits trial-by-trial variability in the retrieval of episodic
memories by measuring the synchronized shifts in reactivation
across cortical regions. We demonstrate that this approach iden-
tifies feature-specific reactivation while accounting for inter-layer
correlations and retaining sensitivity to more weakly represented
features.

We use FSIC to examine feature-specific reactivation across
the neocortex during a task where subjects recall and visualize
naturalistic images. The experiment has two video viewing
runs, used to train the encoding models, and three sets of
alternating encoding and retrieval runs (Fig. 1a). During
encoding runs participants memorize a sequence of color
images while performing a 1-back task. In the following
retrieval runs, participants’ recall and recognition memory of
the images are assessed. Feature-specific neural reactivation is
measured while participants visualize a cued image within a
light-gray rectangle, followed by a memory vividness rating. An
image is then presented that is either identical to the cued
image or a similar lure, and the participants judge whether they
had seen the image during encoding, followed by a rating of
their confidence in this response.

Given the purported role of the frontal cortex in coordinating
visual representations within posterior sensory regions29–34, we
hypothesize that neural reactivation for all visual feature-levels
should occur within—and be synchronized between—these cor-
tical regions. Beyond establishing the cortical distribution of
feature-specific visual representations, we are also interested in
their connection to memory performance. To this end, we
investigate the relationship between feature-specific reactivation
during recall and both subjective (vividness ratings) and objective
(recognition accuracy) behavioral memory measures. We hypo-
thesize that reactivation of all feature levels will correlate with the
vividness of the recalled image, and that lower level representa-
tions will have the strongest correlation because these features are
most clearly associated with the phenomenology of vivid
memories22,63. We also hypothesize that during recognition
memory, participants will preferentially rely upon low-level visual
features because of the close semantic overlap between the
encoded images and the lures (which the subjects are aware of
before the experiment starts due to their experience during the
practice runs; see Supplementary Fig. 11 for example image
pairs); thus, we predict that recognition accuracy will correlate
with lower-level reactivation during recall and that this correla-
tion will be significantly greater than the correlation with higher-
level reactivation.

Consistent with our first hypothesis, FSIC reveals neural
reactivation of low-level, mid-level, high-level, and semantic
features during recall throughout the cortex, including much of
the dorsal and ventral visual streams, as well as the frontal cortex.
As for our behavioral hypotheses, reactivation of lower- and
higher-level features correlate with subjective vividness, but,
contrary to our expectation, the correlation for the feature levels
was approximately equivalent. Moreover, while subjects with
greater lower-level reactivation within the early visual cortex
during recall have higher recognition accuracy, trial-by-trial
variation in low-level feature reactivation predicts correct
responses only for participants with higher-than-average recog-
nition performance on lure trials.

Results
Neural reactivation. To measure neural reactivation during
memory recall, an encoding-decoding approach was used6 to
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predict the neural activity in response to a set of features com-
prising a seen or imagined image. The correlation between model
predictions and the activity measured during visual recall was
then used to decode the cued image.

Brain activity measured during the 1-back task runs and the
first two video runs was used to train cortical surface-based
vertex-wise encoding models for each of four visual feature levels:
low-level visual features, mid-level visual features, high-level
visual features, and semantic features. Given recent work showing
a correspondence between visual features derived from an image
recognition CNN and the features underlying human vision57,64,
the encoding models used features extracted from layer activa-
tions in a DNN (layers 2, 7, 13, and 16 of VGG1665) to predict
neural activity (Fig. 1b).

To identify brain regions that were well-modeled by the vertex-
wise feature-specific encoding models, neural activity predicted

by the encoding models for each trial and feature-level were
grouped into 148 bilateral cortical Freesurfer ROIs66. For each
ROI and trial, predictions of neural activity for all encoded images
were correlated with the observed neural activity during the 6-s
recall period. The predictions were then sorted by correlation
coefficient, and the rank of the prediction associated with the
cued image was recorded. To make the rank measure more
interpretable it was mean-centered so that a value significantly >0
indicates neural reactivation.

Figure 2 depicts neural reactivation for all cortical ROIs during
episodic recall (for decoding performance shown time-point by
time-point over the entire retrieval period see Supplementary
Fig. 2). Consistent with previous findings4,5,7,11,64, the ability to
decode recalled memories was greatest throughout the dorsal and
ventral visual streams for all feature levels. Significant decoding
was also seen in the lateral prefrontal cortex, particularly within
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Fig. 1 Procedure and visual features. a Alternating image encoding and retrieval tasks. During encoding, participants performed a 1-back task while viewing
a sequence of color photographs accompanied by matching auditory labels. During retrieval, participants (1) were cued with a visually presented label, (2)
retrieved and maintained a mental image of the associated photograph over a 6 s delay, (3) indicated the vividness of their mental image using 1–4 scale,
(4) decided whether a probe image matched the cued item, and (5) entered their confidence rating with respect to the old/new judgment. b For each
image, features were extracted from layer node activations using the VGG16 deep neural net (DNN). Activations from the 2nd, 7th, and 13th
convolutional (conv) layers, and the last fully connected layer were used, corresponding to low-visual, middle-visual, high-visual, and semantic (visual
object semantics) features, respectively. Owing to copyright concerns, images used in the study could not be included in the figure. The images depicted in
the figure are for explanatory purposes only.
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Fig. 2 Neural reactivation during episodic recall. Reactivation for each bilateral ROI and feature level (column= feature). Reactivation was significantly
greater than chance throughout the dorsal and ventral visual streams and within the lateral and orbital frontal cortex during recall. The t-values are
thresholded at p < 0.05, one-tailed bootstrap, FDR corrected.
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the inferior frontal sulcus. Moreover, decoding accuracy for low-
level features in the calcarine sulcus during perception of the
recognition probe was significantly greater when using 3 by 3
features (mean rank= 11.7) vs. the same approach using 1 by 1
features (mean rank= 10.1) [t(26)=5.51, p < 0.001, two-tailed
paired-samples t-test], indicating that some spatial representa-
tional structure was preserved despite eye movements. Overall,
our findings indicate widespread neural reactivation associated
with all feature-levels during episodic recall.

Feature-specific informational connectivity. Despite strong
findings indicating reinstatement of all CNN feature-levels
throughout the cerebral cortex, correlations between features
from different network layers (Supplementary Fig. 3) makes it
difficult to independently assess the contribution of each feature
level to memory reactivation. Thus, to assess the independent
contribution of each feature level to reactivation, one must sta-
tistically account for neural activity associated with all non-target
features. To that end, we developed feature-specific informational
connectivity (FSIC)—a variant of informational connectivity61.

The key insight underlying FSIC is that trial-by-trial memory
fidelity will naturally vary between feature levels as a result of
differences in the proportion of recalled features and the extent to
which the features can be used to separate the target image from
the other recalled images. Each feature layer will therefore be
associated with a unique (but not independent) pattern of
reactivation over trials. Moreover, assuming feature-specific
information is shared across regions, as suggested by the
theorized role of the frontal cortex in the coordination of
reactivation during recall29–34, regions that represent the same, or
very similar, feature-specific information should display similar
trial-by-trial reactivation patterns.

FSIC works by extracting the trial-by-trial reactivation pattern
for a given feature-level from a representative seed region and
looking for a significant match in a target ROI elsewhere in the
cortex. Owing to the correlation between features from different
levels of the neural network (VGG16), as well as the expected

trial-by-trial correlation in the number of features recalled across
feature levels (e.g., the detailed recall of low-level features
may often be accompanied by the detailed recall of high-level
features), we controlled for the trial-by-trial variability associated
with non-target feature levels. FSIC therefore measures the
correlation between trial-by-trial feature-specific neural reactiva-
tion in a seed ROI and a target ROI while regressing out the
reactivation associated with all non-target feature-levels (features
extracted from VGG16; see Supplementary Note 3) in the target
ROI. By capturing this interregional trial-by-trial variance in
reactivation fidelity, FSIC not only has greater specificity than
simply assessing mean decoding accuracy, it potentially has
greater sensitivity (see Supplementary Note 4).

Before applying FSIC to experimental data we validated the
approach with a simulation to determine whether FSIC detects
neural reactivation associated with a specific visual feature-level,
while eliminating false positives. Functional magnetic resonance
imaging (fMRI) data was simulated for 200 subjects using the
node activations/outputs from the CNN in response to the
experimental stimuli (see fMRI Data Simulation for details).
Figure 3a depicts the classification accuracy results for this
simulated data. Despite each ROI representing features from only
one feature-level, significant effects are present for all feature-
levels within each ROI. Figure 3b depicts neural reactivation
results using FSIC assuming identical trial-by-trial reactivation
fidelity (i.e., the proportion of recalled features) across feature-
levels. In contrast to the naive classification accuracy method,
FSIC accurately identifies neural reactivation associated with only
the features present within each ROI, albeit with a small amount
of signal smearing to features in adjacent layers. No signal
smearing was found when trial-by-trial reactivation fidelity was
assumed to be independent across feature-levels (see diagonal of
Supplementary Fig. 4c)—an assumption that more accurately
modeled the off-diagonal of Fig. 4b (compare Supplementary
Fig. 4b, c)—so the simulation’s results depicted in Fig. 3b likely
overestimate the amount of signal smearing one can expect when
applying the technique to real data. Moreover, similar, yet
generally weaker, results were found when the seed ROIs
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Fig. 3 Simulated results for decoding accuracy and feature-specific informational connectivity. fMRI data was simulated (200 simulated subjects; see
Methods section) and then run through the processing pipeline for FSIC (see Methods section) to validate the approach. ROIs only contain features from
the indicated feature-level. a Image classification performance (rank measure) for all combinations of ROI and feature-level. Correlations between feature-
levels result in the classification accuracy measure falsely indicating the presence of features that are not present within the target ROI. b FSIC results for
all combinations of ROI and feature-level assuming identical trial-by-trial memory accuracy across feature-levels. A separate seed was used for each
feature-level corresponding to that feature-level (the results are also depicted in Supplementary Fig. 4b along the diagonal). Significant FSIC results only
indicate the presence of the feature-level contained within each ROI, except for relatively weak evidence for the presence of adjacent feature-levels (e.g., a
significant effect associated with mid-level features was found within the low-level ROI). Error bars are 90% CIs; *indicates p < 0.05, one-tailed bootstrap,
FDR corrected.
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contained an equal proportion of vertices representing each
feature-level (seeds in the above results only contained the target
feature-level), suggesting that the feature-specificity of FSIC is not
dependent on the selection of seed ROIs that only contain the
target feature-level (Supplementary Fig. 4a). FSIC may therefore
be used to greatly improve our ability to isolate neural
reactivation associated with specific features when compared to
the naive approach.

Figure 4b depicts the results obtained from applying FSIC to
fMRI data measured during visual episodic recall (the results are
robust to layer selection: Supplementary Fig. 5; for FSIC during
recognition see Supplementary Fig. 6). The figure displays the
partial correlation of neural reactivation for each feature level
within the corresponding seed ROIs (rows; ROIs from Fig. 4a
marked with blue; see ROI/Seed Selection in the Methods for
details) and all four target feature levels within all other ROIs

(columns), controlling for all non-target feature levels (Fig. 4c
depicts the partial regression coefficients from 4b averaged over
all ROIs). Off-diagonal results indicate the partial correlation
between different feature-levels, whereas on-diagonal results
indicate the partial correlation within the same feature-level
(Fig. 3 depicts a simulation of the latter). The partial regression
coefficients within the diagonal were significantly greater than the
coefficients within the off-diagonal [on-diagonal: mean= 0.075;
off-diagonal: mean= 0.013; difference: mean= 0.063, 90% CI
lower bound= 0.062, p < 0.001, one-tailed, paired-samples boot-
strap]. According to our simulation results, the weak partial
correlation coefficients within the off-diagonal indicate that trial-
by-trial variation in memory reactivation is largely independent
across feature-levels (Supplementary Fig. 4b, c), i.e., reactivation
of one feature level is only weakly related to the reactivation of a
different feature level. In contrast, the significantly greater partial
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regression coefficients along the diagonal indicate widespread
neural reactivation for low-visual, high-visual, and semantic
features that extends beyond the occipital cortex into higher-
order regions of the dorsal and ventral visual streams, as well as
the frontal cortex. Reactivation of mid-level features was,
however, primarily limited to the occipital cortex; and this
difference is not due to the relatively small size of the mid-level
seed ROI (see Supplementary Fig. 7). Although expected for
higher-order features35,67–69, the widespread presence of low-
level visual features within higher-order regions (see Table 1),
appears to challenge a strict interpretation of the cortical visual
hierarchy, which would predict results similar to what we
observed for mid-level visual features.

Relation between reactivation and vividness ratings. With the
cortical distribution of feature-specific neural reactivation estab-
lished, we then assessed how feature-specific reactivation during
recall relates to behavioral measures of memory performance (for
the relations with reactivation during the recognition task see
Supplementary Fig. 10). To test whether memory vividness (see
Supplementary Note 1 for vividness behavioral results) largely
results from the reactivation of lower-level visual features22,63,
measures of low- and mid-level reactivation (lower-level features),
and high-level and semantic reactivation (higher-level features)
were averaged together, along with the associated ROIs (Fig. 5a),
forming four separate reactivation measures: one for each unique
combination of feature-level and ROI. The within-subject corre-
lations between these reactivation measures and vividness was
examined with an linear mixed-effect (LME) model, where
vividness rating was the dependent variable (DV), the four
reactivation measures were independent variables (IVs), and the
subject and image were crossed random effects (random-intercept
only, due to model complexity limitations). Figure 5b shows
partial regression coefficients associated with the four reactivation
measures (corrected for multiple comparisons over the four
coefficients using FDR). As predicted, lower- and higher-level
reactivation within corresponding ROIs positively correlated with
subjective vividness. Against our second prediction, however, the
lower-level partial correlation coefficient was not significantly
greater than the higher-level coefficient [lower-level coefficient-
higher-level coefficient: 0.005, p= 0.423, one-tailed, paired-
samples bootstrap], indicating that lower and higher-level fea-
tures contribute approximately equally to subjective vividness.

In addition to the positive partial correlations, we found that
reactivation of higher-level features within the lower-level ROI
negatively correlated with vividness. We argue (see Supplemen-
tary Note 5) that the observed negative partial correlation

between vividness and neural reactivation of higher-level features
within the lower-level ROI is consistent with a predictive coding
account of perception and memory recall.

Relation between reactivation and recognition accuracy. We
hypothesized that recognition accuracy during the old/new task
(see Supplementary Note 2 for the recognition task behavioral
results) would selectively correlate with reactivation associated
with lower-level visual features during episodic memory recall,
due to the lure image being semantically similar to the original
image but differing in its low-level visual features. To test this
claim, the same analytical approach described above for the
correlation between reactivation and vividness was used, repla-
cing vividness with accuracy as the DV (correct= 1, incorrect=
0). No significant correlations were found [low feature, low ROI:
β= 0.001, p= 0.972; low feature, high ROI: β= 0.037, p= 0.318;
high feature, low ROI: β= –0.010, p= 0.863; high feature, high
ROI: β= –0.031, p= 0.318; two-tailed bootstrap, FDR corrected].
Next, we examined the correlation between-subjects using a
similar model to the one used for the within-subject analysis
(except the DV and IVs were within-subject averages, and subject
and image were not included as random effects). As predicted, we
found a significant partial correlation between recognition
memory accuracy and lower-level reactivation within the lower-
level ROI, which was significantly greater than the correlation
with higher-level features in the higher-level ROI [lower-level
coefficient - higher-level coefficient: 1.199, p= 0.032; one-tailed
bootstrap, paired samples] (Fig. 5c; within- and between-subject
coefficient p-values were grouped together when controlling for
multiple comparisons using FDR to account for the lack of
within-subject findings; see Supplementary Fig. 9a, b for the
results divided into old and lure trial accuracy).

The between-subject correlation between recognition accuracy
and low-level reactivation suggests that only some subjects
successfully use neural reactivation within early visual regions to
improve recognition memory. The null within-subject correlation
between recognition accuracy and low-level reactivation might
stem from this individual difference. To explore this possibility,
the relation between memory accuracy and neural reactivation
was calculated for each subject (using the within-subject linear
model, except subject and image were not used as random
effects). The resulting partial regression coefficients for each
combination of ROI and feature-level were then separately
correlated with the subjects’ memory accuracy for all trials,
lure trials, and “old” trials (Supplementary Fig. 11a–c, respec-
tively). Significant positive correlations with lure-trial accuracy
were found for lower- and higher-level features within the

Table 1 Low-level feature-specific informational connectivity during imagery within the frontal cortex.

Frontal ROI β SE t-values Lower bound Upper bound p (FDR corrected)

Middle frontal sulcus 0.083 0.021 3.90 0.050 0.117 0.004**
Superior precentral sulcus 0.083 0.021 3.90 0.047 0.117 0.004**
Superior circular sulcus 0.083 0.021 3.89 0.047 0.115 0.004**
Inferior precentral sulcus 0.083 0.021 3.87 0.046 0.118 0.004**
Superior frontal gyrus 0.077 0.022 3.47 0.039 0.114 0.004**
Anterior midcingulate 0.068 0.022 3.16 0.034 0.104 0.004**
Superior frontal sulcus 0.067 0.023 2.97 0.027 0.107 0.008**
Middle frontal gyrus 0.057 0.022 2.61 0.022 0.093 0.010*
Anterior cingulate 0.055 0.022 2.55 0.018 0.091 0.023*
Short insular gyri 0.053 0.021 2.48 0.016 0.090 0.022*
Precentral gyrus 0.053 0.022 2.44 0.018 0.089 0.016*
Inferior frontal gyrus -opercular 0.048 0.022 2.25 0.013 0.083 0.020*

The table lists the significant FSIC results (and associated statistics) within the frontal cortex depicted in the first row and first column of Fig. 4b.
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corresponding ROIs, suggesting that the hypothesized positive
within-subject correlation between memory accuracy and neural
reactivation may only be evident for subjects with relatively
high recognition accuracy. This possibility was tested using the
same model as the original within-subject analysis on the thirteen
subjects (half of the 27 rounded down) with the highest average
memory accuracy on the lure trials (Fig. 5d; see Supplementary
Fig. 8e for the 13 subjects with the lowest average memory
accuracy, and see Supplementary Fig. 8c–f for the results divided
into old and lure trials). For this high-performance group, we
focused on the partial regression coefficients that were significant
in the above analysis, i.e., the lower- and higher-level visual
features within the corresponding ROIs. Of the two coefficients,
only the one associated with lower-level features was significantly
greater than zero [lower-level: β= 0.081, p= 0.028; higher-level:
β= 0.031, p= 0.320; one-tailed bootstrap, FDR corrected], but it
was not significantly greater than the higher-level coefficient

[lower-level coefficient - higher-level coefficient: 0.050, p= 0.155;
one-tailed, paired-samples bootstrap]. Thus, there is a relation-
ship between low-level feature reactivation and recognition
memory performance, but it is limited to the higher performing
subset of participants.

Discussion
The primary goal of the current study was to reveal the feature-
level composition of neural reactivation patterns measured
throughout the neocortical mantle during a task requiring vivid
recall of a diverse set of naturalistic images. Using FSIC, we found
that visual features from all selected levels of the CNN were
represented throughout the cortical visual hierarchy; but these
representations were not evenly distributed across ROIs (see the
diagonal of Fig. 4b). Consistent with previous work indicating a
correspondence between the hierarchical organization of the

c d

a b

Fig. 5 Correlations between feature-specific neural reactivation, vividness, and recognition accuracy. a ROI weights combining the low- and mid-level
and high- and semantic-level ROIs. b Within-subject partial regression coefficients measuring the relation between neural reactivation during recall and
vividness for all combinations of feature-level and ROI. c Between-subject partial regression coefficients measuring the relation between neural reactivation
and recognition accuracy (during the Old/New task) for all combinations of feature-level and ROI. d Within-subject partial regression coefficients
measuring the relation between neural reactivation and recognition accuracy for the 13 subjects with the highest average “new”/lure trial accuracy. The
error bars are 95% CIs; *indicates p < 0.05, two-tailed bootstrap, FDR corrected over the four coefficients.
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layers of a CNN and the cortical regions of the visual processing
stream57,64, the distribution of features, revealed by FSIC and the
locations of peak neural reactivation for each feature-level
(Fig. 4a), was organized according to the posterior-to-anterior
cortical visual hierarchy.

We also showed that lower-level visual features were repre-
sented within higher-order cortical regions, and higher-level
features within lower-order regions (Fig. 4b). Unlike strictly feed-
forward CNN’s, the cortex comprises a complex network of both
feed-forward and feed-back connections that can bypass inter-
mediate areas, facilitating direct communication between lower-
and higher-order regions70–73, thereby enabling the maintenance,
modulation and combination of features at multiple levels74–80.
For example, the inferior frontal gyrus (IFG) has been implicated
in the selective maintenance of task-relevant visual information
via top-down connections with the visual cortex during working
memory and mental imagery30,31,34,77,81,82. With FSIC we
showed that the IFG contains representations of visual features
from all levels of the visual hierarchy during the recall of natur-
alistic scenes (but not during recognition; see Supplementary
Fig. 6), and that the reinstatement of these representations within
the IFG is correlated with the reinstatement of the same features
within the occipital cortex, suggesting that the region facilitates
feature-specific neural reactivation in early visual areas.

Low-level visual, high-level visual, and semantic features, but
not mid-level visual features, were identified in many higher-
order visual and frontal regions beyond the IFG. While this was
expected of high-level and semantic features, finding low-level
features represented within the frontoparietal cortex and higher-
order regions of the ventral visual stream was more surprising
(although, not unprecedented: Martin et al.83 identified one
higher-order region, the perirhinal cortex, that contained both
visual and conceptual representations, but the visual representa-
tions were not necessarily low-level).

This raises the question of the function of such low-level fea-
tures within these putative higher-order regions—a question that
recent advances within the field of computational neural net-
works may illuminate. Like the receptive fields of neurons within
the visual cortex84,85, the nodes of feed-forward CNNs that per-
form visual classification and localization tasks are organized such
that the lower-order layers have small receptive fields and weak
semantics, whereas the higher-order layers have large receptive
fields and strong semantics86. Consequently, the resolution of the
semantic-sensitive layers is low, resulting in the loss of fine details
essential for some tasks (e.g., the classification of small objects).
To address this problem, recent CNNs have incorporated top-
down connections and “skip” connections (which bypass adjacent
layers) to directly combine the outputs of lower- and higher-order
layers of the network, thereby increasing the effective resolution
of the semantic-sensitive layers87. This approach has been proven
to be effective for a variety of tasks requiring both accurate
semantics and fine visual details, including classification and
localization of small objects88, and salient object detection (a key
element of attentional processes) and boundary delineation
(important for the coordination of grasping behavior, among
other tasks)89. Given the functional roles of the higher-order
ventral visual stream in visual object classification90 and the
frontoparietal cortex in attention and grasping behavior91,92, we
posit that the presence of low-level visual representations within
these regions may likewise facilitate visual classification, atten-
tional allocation and motor planning tasks specifically, and any
task that requires both accurate semantics and fine visual details
more generally.

We have demonstrated that features at all levels of the visual
hierarchy are reactivated throughout the cortex during episodic
recall. However, a caveat must be considered. It is possible that

the finding of low-level features within the frontal cortex (Fig. 4b:
top-left; Table 1) was due to correlations of neural activity
unrelated to feature-reactivation across brain regions (i.e., noise
correlations), and therefore not representative of low-level fea-
tures within the frontal cortex. If this was the case, then we should
attain very similar results if the same seed ROI is used, irre-
spective of feature-level. However, when the low-level seed ROIs
are used for the mid-level FSIC analysis, little evidence for mid-
level features within the frontal cortex was found (Supplementary
Fig. 4c), providing strong evidence that our findings of feature-
specific neural reactivation are not the result of noise correlations.

To investigate the functional contributions of feature-specific
neural reactivation to memory, we tested whether vividness of
memory recall positively correlates with neural reactivation—
particularly of low-level visual features. Although previous
research had found correlations between vividness and neural
reactivation throughout early and late regions of the ventral and
dorsal visual streams16–20, the relative contributions of the rein-
statement of lower- and higher-level visual features remained an
open question. By measuring the reactivation of features from
different levels of the visual hierarchy, as opposed to inferring
feature-level based upon the location of reactivation (i.e., reverse
inference93), we found that the reinstatement of lower- and
higher-level visual features correlated with vividness to an
approximately equal degree. While we did predict that vividness
should correlate with reinstatement of both low- and high-level
visual features, the low-level correlation was expected to be
stronger based upon the assumption that the recall of visual
details constituting a vivid memory is primarily dependent upon
the reinstatement of low-level features22,63.

This assumption, however, may overlook the inference of low-
level features from high-level features. According to the predictive
coding account of perception, visual experience results from the
reciprocal exchange of bottom-up and top-down signals
throughout the cortical hierarchy94–99. During perception, top-
down connections convey predictions, which are compared
against the perceptual input to generate an error signal. This
signal is then propagated back up the hierarchy to update the
predictions and enhance memory of the features that diverged
from expectations100,101. We propose that during episodic
memory recall, higher-level features are used to infer lower-level
features, while the sparsely recalled lower level features that were
not accurately predicted during perception serve to constrain this
inference to be specific to the recalled episode (individually
storing lower-level features that are effectively stored in the more
compressed higher-level features would be inefficient). Therefore,
according to a predictive coding account of visual recall, the
number and accuracy of remembered visual details (i.e., memory
vividness) should depend upon the reactivation of both high- and
low-level features. Moreover, because participants were instructed
not to rate generic imagery related to the cue as vivid, the top-
down inference of low-level features that were not present in the
encoded image should correlate negatively with vividness, which
is what we found. Thus, the partial correlations between sub-
jective vividness and feature-specific neural reinstatement are
consistent with a predictive coding account of visual perception
and memory recall.

Whereas our vividness results serve to demonstrate a connec-
tion between feature-specific neural reactivation and the sub-
jective quality of memory, we were also interested in establishing
the relationship between feature-specific neural reactivation and
an objective memory measure: recognition memory accuracy.
Although previous work102 has shown that recognition accuracy
is predicted by item/image-specific neural reactivation, there is no
direct evidence that the finding was due to the reactivation of
low-level features. The recognition memory task participants
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performed in our study required access to fine-grained memory
information to identify a probe image drawn from the same
semantic category as old or new. Given the strong semantic
overlap between the two images, higher-level semantic-like fea-
tures alone would be unlikely to provide enough information to
distinguish the images. Thus, we hypothesized that the recall of
lower-level features would be required to perform well on the
task. Overall, our results supported this hypothesis (Fig. 5c, d and
Supplementary Fig. 8). We found that reactivation of lower-level
features within the early visual cortex positively correlated with
recognition accuracy within- and between-subjects, albeit the
within-subject result only held for subjects with greater-than-
average recognition accuracy on lure trials.

What might be the cause of this individual difference in the
relationship between neural reactivation and recall accuracy? One
possibility is that the participants differ in their reliance upon the
reinstatement of higher- vs. lower-level features when comparing
the presented image with the memorized image. Our original
hypothesis that reactivation of lower-level features should posi-
tively correlate with recognition accuracy within-subjects
assumed that all subjects would utilize lower-level representa-
tions when performing the task. Our failure to find the hypo-
thesized within-subject effect appears to be the result of greater
than expected individual variation in the ability or tendency of
subjects to reactivate low-level visual features during memory
retrieval. Future studies will be required to explore the cause and
implications of these important individual differences.

The contributions of this study were fourfold. First, we
developed FSIC, a measure of feature-specific neural reactivation
that controls for the inherent correlations between hierarchically
organized feature-levels without sacrificing sensitivity. Second,
FSIC revealed that neural reactivation during episodic memory is
more widespread than previously thought—particularly for low-
level features (e.g., edges)—which we posit subserves numerous
cognitive functions requiring both fine visual detail and accurate
object/scene categorization. Third, we found that neural reacti-
vation of lower-level and higher-level visual features contributed
equally to the subjective vividness of recall, which we argue
supports a predictive coding account of perception and recall.
Lastly, we confirmed that reactivation of low-level visual features
correlates with recognition accuracy on a task requiring fine-
grained memory discrimination. Overall, the current study’s
results show the potential for FSIC, and other feature-specific
approaches that can decompose neural pattern representations, to
test and elucidate the mechanisms underpinning long held the-
ories about the brain basis of memory and cognition.

Methods
Participants. Thirty-seven right-handed young adults with normal or corrected-
to-normal vision and no history of neurological or psychiatric disease were
recruited through the Baycrest subject pool, tested and paid for their participation.
Informed consent was obtained, and the experimental protocol was approved by
the Rotman Research Institute’s Ethics Board. Subjects were either native or fluent
English speakers and had no contraindications for MRI. Data from ten of these
participants were excluded from the final analyses for the following reasons:
excessive head motion (5; removed if > 5 mm within run maximum displacement
in head motion), fell asleep (2), did not complete experiment (3). Thus, 27 parti-
cipants were included in the final analysis (15 males and 12 females, 20–32-year-
old, mean age= 25).

Stimuli. One-hundred and eleven colored photographs (800 by 600) were gathered
from online sources. For each image, an image pair was acquired using Google’s
similar image search function, for a total of 111 image pairs (222 images). Twenty-
one image pairs were used for practice, and the remaining 90 were used during the
in-scan encoding and retrieval tasks (see Supplementary Fig. 11 for example image
pairs). Each image was paired with a short descriptive audio title in a synthesized
female voice (https://neospeech.com; voice: Kate) during encoding runs; this title
served as a visually presented retrieval cue during the in-scan retrieval task. Two
videos used for model training (720 by 480 pixels; 30 fps; 10 m 25 s and 10 m 35 s

in length) comprised a series of short (~4 s) clips drawn from YouTube and Vimeo,
containing a wide variety of themes (e.g., still photos of bugs, people performing
manual tasks, animated text, etc.). One additional video cut from “Indiana Jones:
Raiders of the Lost Ark” (1024 by 435 pixels; 10 m 6 s in length) was displayed
while in the scanner, but the associated data was not used in this experiment
because the aspect ratio (widescreen) did not match the images.

Procedure. Before undergoing MRI, participants were trained on a practice version
of the task incorporating 21 practice image pairs. Inside the MRI scanner, parti-
cipants completed three Video viewing runs and three encoding-retrieval sets. The
order of the runs was as follows: first Video viewing run (short clips 1), second
Video viewing run (short clips 2), third Video viewing run (Indiana Jones clip),
first encoding-retrieval set, second encoding-retrieval set, third encoding-retrieval
set. A high-resolution structural scan was acquired between the second and third
encoding-retrieval sets, providing a break.

Video viewing runs were 10 m 57 s long. For each run, participants were
instructed to pay attention while the video (with audio) played within the center of
the screen. The order of the videos was the same for all participants.

Encoding-retrieval sets were composed of one encoding run followed by one
retrieval run. Each set required the participants to first memorize and then recall 30
images drawn from 30 image pairs. The image pairs within each set were selected
randomly, with the constraint that no image pair could be used in more than one
set. The image selected from each image pair to be presented during encoding was
counterbalanced across subjects. This experimental procedure was designed to
limit the concurrent memory load to 30 images for each of three consecutive pairs
of encoding-retrieval runs.

Encoding runs were 6 m 24 s long. Each run started with 10 s during which
instructions were displayed on-screen. Trials began with the appearance of an
image in the center of the screen (1.8 s), accompanied by a simultaneous
descriptive audio cue (e.g., a picture depicting toddlers would be coupled with the
spoken word “toddlers”). Images occupied 800 by 600 pixels of a 1024 by 768 pixel
screen. Between trials, a crosshair appeared centrally (font size= 50) for 1.7 s.
Participants were instructed to pay attention to each image and to encode as many
details as possible so that they could visualize the images as precisely as possible
during the imagery task. The participants also performed a 1-back task requiring
the participants to press “1” if the displayed image was the same as the preceding
image, and “2” otherwise. Within each run, stimuli for the 1-back task were
randomly sampled with the following constraints: (1) each image was repeated
exactly four times in the run (120 trials per run; 360 for the entire session), (2)
there was only one immediate repetition per image, and (3) the other two
repetitions were at least four items apart in the 1-back sequence.

Retrieval runs were 9 m 32 s long. Each run started with 10 s during which
instructions were displayed on-screen. Thirty images were then cued once each (the
order was randomized), for a total of 30 trials per run (90 for the entire scan).
Trials began with an image title appeared in the center of the screen for 1 s (font=
Courier New, font size= 30). After 1 s, the title was replaced by an empty
rectangular box shown in the center of the screen (6 s), and whose edges
corresponded to the edges of the stimulus images (800 by 600 pixels). Participants
were instructed to visualize the image that corresponded to the title as accurately as
they could within the confines of the box. Once the box disappeared, participants
were prompted to rate the subjective vividness (defined as the relative number of
recalled visual details specific to the cued image presented during encoding) of their
mental image on a 1–4 scale (1= a very small number of visual details were
recalled, 4= a very large number of visual details were recalled) (3 s) using a four-
button fiber optic response box (right hand; 1= right index finger; 4= right little
finger). This was followed by the appearance of a probe image (800 by 600 pixels)
in the center of the screen (3 s), that was either the same as or similar to the trial’s
cued image (i.e., either the image shown during encoding or its pair). While the
image remained on the screen, the participants were instructed to respond with “1”
if they thought that the image was the one seen during encoding (old), or “2” if the
image was new (responses made using the response box). Following the
disappearance of the image, participants were prompted to rate their confidence in
their old/new response on a 1–4 scale (2 s) using the response box. Between each
trial, a crosshair (font size= 50) appeared in the center of the screen for either 1, 2,
or 3 s.

Randomization sequences were generated such that both images within each
image pair (image A and B) were presented equally often during the encoding runs
across subjects. During retrieval runs each image appeared equally often as a
matching (encode A - > probe A) or mismatching (encode A - > probe B) image
across subjects. Owing to the need to remove several subjects from the analyses,
stimulus versions were approximately balanced over subjects.

Setup and data acquisition. Participants were scanned with a 3.0-T Siemens
MAGNETOM Trio MRI scanner using a 32-channel head coil system. Functional
images were acquired using a multiband Echo-planar imaging (EPI) sequence
sensitive to BOLD contrast (22 × 22 cm field of view with a 110 × 110 matrix size,
resulting in an in-plane resolution of 2 × 2 mm for each of 63 2-mm axial slices;
repetition time= 1.77 s; echo time= 30 ms; flip angle= 62 degrees). A high-
resolution whole-brain magnetization prepared rapid gradient echo (MP-RAGE)
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3-D T1-weighted scan (160 slices of 1 mm thickness, 19.2 × 25.6 cm field of view)
was also acquired for anatomical localization.

The experiment was programmed with the E-Prime 2.0.10.353 software
(Psychology Software Tools, Pittsburgh, PA). Visual stimuli were projected onto a
screen behind the scanner made visible to the participant through a mirror
mounted on the head coil.

fMRI preprocessing. Functional images were converted into NIFTI-1 format,
motion-corrected and realigned to the average image of the first run with AFNI’s
(Cox 1996) 3dvolreg program. The maximum displacement for each EPI image
relative to the reference image was recorded and assessed for head motion. The
average EPI image was then co-registered to the high-resolution T1-weighted MP-
RAGE structural using the AFNI program align_epi_anat.py103.

The functional data for each experimental task (Video viewing, 1-back encoding
task, retrieval task) was then projected to a subject-specific cortical surface
generated by Freesurfer 5.3104. The target surface was a spherically normalized
mesh with 32,000 vertices that was standardized using the resampling procedure
implemented in the AFNI program MapIcosahedron105. To project volumetric
imaging data to the cortical surface we used the AFNI program 3dVol2Surf with the
“average” mapping algorithm, which approximates the value at each surface vertex
as the average value among the set of voxels that intersect a line along the surface
normal connecting the white matter and pial surfaces.

The three video scans (experimental runs 1-3), because they involved a
continuous stimulation paradigm, were directly mapped to the surface without any
pre-processing to the cortical surface. The three retrieval scans (runs 5, 7, 9) were
first divided into a sequence of experimental trials with each trial beginning
(t= –2) 2 s prior to the onset of the retrieval cue (verbal label) and ending 32 s later
in 2 s increments. These trials were then concatenated in time to form a series of 90
trial-specific time-series, each of which consisted of 16 samples. The resulting trial-
wise data blocks were then projected onto the cortical surface. To facilitate separate
analyses of the “imagery” and “old/new judgment” retrieval data, a regression
approach was implemented. For each trial, the expected hemodynamic response
associated with each task was generated by convolving a series of instantaneous
impulses (i.e., a delta function) over the task period (10 per second; imagery: 61;
old/new: 31) with the Statistical Parametric Mapping (SPM) canonical
hemodynamic response. Estimates of beta coefficients for each trial and task were
computed via a separate linear regression per trial (each with 16 samples: one per
time-point), with vertex activity as the dependent variable, and the expected
hemodynamic response values for the “recall” and “old/new judgment” tasks as
independent variables. The “recall” beta coefficients were used in all subsequent
neural analyses of the “imagery”/recall period (i.e., all neural analyses except for
FSIC during the recognition period) and the “old/new judgment” beta coefficients
were used in all subsequent neural analyses of the “old/new judgment”/recognition
period (i.e., FSIC during the recognition period; see Supplementary Fig. 6). Data
from the three encoding scans (runs 4, 6, 8) were first processed in volumetric
space using a trial-wise regression approach, where the onset of each image
stimulus was modeled with a separate regressor formed from a convolution of the
instantaneous impulse with the SPM canonical hemodynamic response. Estimates
of trial-wise beta coefficients were then computed using the “least squares sum”106

regularized regression approach as implemented in the AFNI program 3dLSS. The
360 (30 unique images per run, 4 repetitions per run, 3 total runs) estimated beta
coefficients were then projected onto the cortical surface with 3dVol2Surf.

Deep-neural network image features. We used the pretrained TensorFlow
implementation of the VGG16 deep-neural network (DNN) model65 (see http://
www.cs.toronto.edu/~frossard/post/vgg16 for the implementation used). Like
AlexNet (the network used in previous studies57), VGG16 uses Fukushima’s107

original visual-cortex inspired architecture, but with greatly improved top-5 (out of
1000) classification accuracy (AlexNet: 83%, VGG16: 93%). The network’s accuracy
was particularly important for this study because we did not hand-select stimuli
(images and video frames) that were correctly classified by the net. The VGG16
model consists of a total of thirteen convolutional layers and three fully connected
layers. Ninety image pairs from the memory task and 3775 video frames (three
frames per second; taken from the two short-clip videos; video 1: 1875 frames;
video 2: 1900 frames; extracted using “Free Video to JPG Converter” https://www.
dvdvideosoft.com/products/dvd/Free-Video-to-JPG-Converter.htm) were resized
to 224 × 224 pixels to compute outputs of the VGG16 model for each image/frame.
The outputs from the units in the second convolutional layer (layer 2), the seventh
convolutional layer (layer 7), the last convolutional layer (layer 13), and the final
fully connected layer (layer 16) were treated as vectors corresponding to low-level
visual features, mid-level visual features, high-level visual features and semantic
features, respectively.

Convolutional layers were selected to represent visual features because they are
modeled after the structure of the visual cortex107, and previous work showed that
the features contained within the convolutional layers of AlexNet (which has a
similar architecture to VGG16) corresponded to the features represented
throughout the visual cortex57. The first (1), middle (7), and last (13) convolutional
layers were initially selected to represent the low-, mid-, and high-level features.
The layer activations were then visually inspected to confirm whether they
represent the appropriate features. The low-level layer was required to have similar

outputs to edge filters. Layer 2 better approximated edge filters than layer 1, so
layer 2 was used instead. The high-level layer was required to have features that
selectively respond to complex objects. Layer 13 contained such features (e.g., the
face-selective feature in Fig. 1b), so it was retained. There were no a priori demands
on the type of features represented by the middle layer, so layer 7 was retained.

The training clips/images did not contain all the object categories of the 90
images used in the encoding/retrieval parts, and some images/clips contained
objects that were not in the list of 1000 ImageNet object categories. Consequently,
some relevant semantic features may not be effectively mapped onto brain activity.
To address these issues, VGG16’s softmax output layer (the last layer of the CNN)
was chosen to represent visual object semantics because it contains the probability
distribution that the input image belongs to each of the 1000 pretrained ImageNet
categories, thereby representing categorical confusion. Because related object
categories are confused with each other in deep CNNs (e.g., “grille” confused with
“convertible”; for more examples see Fig. 4 in Krizhevsky et al.108), the inclusion of
these categorical errors reduces the sparsity of the semantic feature vector, while
capturing broader (less exact) object semantics. This enables semantic feature-brain
mappings to be learned by the encoding models when the training set contains
images that are semantically related to the test set images, and when the training/
test set images contain objects from categories that are semantically related to one
or more ImageNet categories—as opposed to images from identical semantic
categories (according to twelve independent raters, there are strong semantic
relationships between training/test set images and the categorical labels VGG16
assigns: an average of 60% of the training/test set images had at least one label in
the top 5 (out of 1000) that had a clear/direct semantic relation to the image—
which was significantly greater than the 6% attained with shuffled labels (t(10)=
12.7, p < 0.001, one-tailed); see Supplementary Fig. 12 for more details). However,
networks can also confuse visually similar, but semantically unrelated categories,
increasing the likelihood that semantic and (high-level) visual features will be
conflated. This potential confound is addressed by controlling for the correlations
between feature levels—a focus of the current study.

To account for the low retinotopic spatial resolution resulting from participants
eye movements, the spatial resolution of the convolutional layers (the fully
connected layer has no explicit spatial representation) was reduced to 3 by 3
(original resolution for layer 2: 224 by 224; layer 7: 56 by 56; layer 13: 14 by 14).
The resultant vector length of low-level visual features, mid-level visual features,
high-level visual features and semantic features was 576, 2304, 4608, and 1000,
respectively. Convolutional layer activations were log-transformed to improve
prediction accuracy6.

Encoding model. Separate encoding models were estimated for all combinations of
subject, feature level and brain surface vertex6. Let vit be the signal from vertex i
during trial t. The encoding model for this vertex for a given feature level, l, is:

vit ¼ hTf lt þ ϵ

Here flt is a 100 × 1 vector of 100 image features from the layer of VGG16
representing the target feature level, l, associated with the current trial/image, t
(only the 100 features from layer l with the largest positive correlations with the
vertex activity, vi, were selected to make the computation tractable. Correlations
were performed immediately before each non-negative lasso regression using data
from the movie and encoding tasks), h is a 100 × 1 vector of model parameters that
indicate the vertex’s sensitivity to a particular feature (the superscript T indicates
transposition) and ϵ is zero-mean Gaussian additive noise.

The model parameters h were fit using non-negative lasso regression (R package
“nnlasso”109) trained on data drawn from the encoding and movie viewing tasks
(excluding the Indiana Jones video because its widescreen aspect ratio differed
significantly from the encoded images) using threefold cross validation over the
encoding data (cross validation was performed over images, so trials containing
presentations of the to-be-predicted image were not included in the training set; all
movie data was used in each fold). The non-negative constraint was included to
reduce the possibility that a complex linear combination of low-level features may
approximate one or more high-level features. The regularization parameter
(lambda) was determined by testing five log-spaced values from ~1/10,000 to 1
(using the nnlasso function’s path feature). For each value of the regularization
parameter, the model parameters h were estimated for each vertex and then
prediction accuracy (sum of squared errors; SSE) was measured on the held-out
encoding data. For each vertex, the regularization parameter (lambda) that
produced the highest prediction accuracy was retained for image decoding during
recall.

Image decoding. Encoding models were used to predict neural activity during
recall for each combination of subject, feature-level, ROI, and retrieval trial (74
bilateral cortical FreeSurfer ROIs). The accuracy of this prediction was assessed as
follows: (1) for each combination of subject, feature-level, and ROI the predicted
neural activation patterns for the 90 images viewed during the encoding task were
generated using a model that was trained on the movie and encoding task data,
excluding data from encoding trials wherein the predicted image was viewed using
threefold cross validation; (2) for each retrieval trial, the predictions were corre-
lated (Pearson correlation across vertices within the given ROI) with the observed
neural activity during recall resulting in 90 correlation coefficients. (3) the
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correlation coefficients were ranked in descending order, and the rank of the
prediction associated with the recalled image was recorded (1= highest accuracy,
90= lowest accuracy). (4) This rank was then subtracted from the mean rank
(45.5) so that 0 was chance, and a positive value indicated greater-than-chance
accuracy for the given trial (44.5= highest accuracy, –44.5= lowest accuracy).

Seed ROI selection. The goal of the ROI seed selection was to identify the ROIs
with the greatest reactivation for the target feature level relative to the non-target
feature levels, controlling for mean reactivation across ROIs. The procedure for
generating weight values for each ROI (Fig. 3a) was as follows: (1) compute the
average classification accuracy across subjects during image perception (data taken
from the old/new recognition task during the retrieval blocks) for each feature-level
and ROI. (2) z-score classification accuracy across ROIs for each feature level,
thereby controlling for differences in mean reactivation (across ROIs) between
feature levels. (3) set all values less than zero to zero, so that ROIs with z-scores less
than zero (i.e., ROI’s with relatively low reactivation of the target feature-level)
would not be assigned a non-zero weight. (4) For each ROI and feature-level,
subtract the greatest value associated with the other feature levels from the target
feature’s value. (5) Set all values less than zero to zero. As a result of steps 4 and 5,
only those ROIs that show greater relative reactivation for the target feature level
than all other feature levels will have a non-zero weight, and this weight will be
proportional to the difference between the relative reactivation of the target feature
level and the greatest non-target feature level. (6) Normalize the values across ROIs
to sum up to one (i.e., divide each value by the sum of all values) for each feature
level. (7) set values <0.05 to 0 to retain only those ROIs that were assigned a non-
negligible weight (this was done so that more non-seed ROIs could be included as
targets in the FSIC analysis). (8) Normalize the values across ROIs for each feature
level again, because the weights will no longer sum to one if any weights were set to
zero in step 7.

Feature-specific informational connectivity. For the FSIC analyses, partial
regression coefficients were calculated (using trial-by-trial reactivation data from
the recall period) with separate LME models for all combinations seed ROI and
target ROI. For each LME model, reactivation(rank measure) of the associated
feature level for the seed ROI was the dependent variable (DV), reactivation for
each of the four feature levels within the target ROI were the independent variables
(IV), and participant and image were crossed random effects (random-intercept
only, due to model complexity limitations). Statistical assessments were performed
using bootstrap analyses (n= 2409 trials; trials with no vividness response were
excluded), calculated with the BootMer function110 using 1000 samples and cor-
rected for multiple comparisons across ROIs using false discovery rate111 (FDR).

fMRI data simulation. The simulation used the same experimental structure and
stimuli (for training and testing the models) as the true experiment. For each
simulated subject, 800 artificial vertices were created, with each vertex containing
one, randomly selected, feature extracted from the CNN VGG16 as described in the
“Deep-neural network image features” section. For each vertex, the feature-specific
activation associated with the video frame or image presented at each time-point or
trial was used to simulate the vertex’s activity. Vertices were grouped into eight
ROIs with 100 vertices each. There were two ROIs per feature-level (one repre-
senting the seed ROI, and the other representing the target ROI), such that features
assigned to the vertices in each ROI were extracted from the assigned level. The two
ROIs assigned the same level contained identical features, i.e., they were duplicates,
except for the subsequent application of independent gaussian noise. For the
analysis depicted in Supplementary Fig. 4b, the seed ROIs contained 25 vertices
representing each of the four feature-levels (for 100 vertices total). Memory loss
during recall was simulated by randomly setting a fraction of the features to zero.
The same features were set to zero across ROIs representing the same feature level
for a given trial, simulating cross-ROI information transfer. Trial-by-trial variation
in memory accuracy was simulated by varying the fraction of feature loss over trials
(randomly selected using a uniform distribution from 40 to 95%). Lastly, inde-
pendent gaussian noise (mean 0, standard deviation 1) was added to all data, with
the signal-to-noise ratio (SNR) varying across simulated subjects (either 15, 25, or
35%, equally distributed), to simulate all unaccounted-for variation in vertex
activity, and individual variations thereof.

Linear models and statistics. Statistical assessment of mean neural reactivation
(Figs. 2 and 3a) was performed using a separate LME model for each ROI, with
neural reactivation as the DV and subject and image as crossed random effects
(n= 2409 trials for all within-subject analyses; trials with no vividness response
were excluded). Confidence intervals and p-values were calculated with bootstrap
statistical analyses (1000 samples) using the BootMer function110 and corrected for
multiple comparisons across ROIs using false discovery rate111 (FDR). For the
within-subject correlations between feature-specific reactivation, vividness ratings
(Fig. 5b), and recognition accuracy, LME models were used, with vividness ratings
or recognition accuracy (correct vs. incorrect) as the dependent variable (DV), the
four neural reactivation measures for each combination of ROI (lower-level and
higher-level) and feature-level (lower-level and higher-level) as independent vari-
ables (IV), and participant and image as crossed random effects (random-intercept

only, due to model complexity limitations). Confidence intervals and p-values were
calculated with bootstrap statistical analyses (10,000 samples) using the BootMer
function and corrected for multiple comparisons across coefficients using FDR. For
the between-subject correlations between feature-specific reactivation and recog-
nition accuracy (Fig. 5c), a single linear model was used (n= 27 subjects), with
mean recognition accuracy as the dependent variable (DV) and the means of the
four neural reactivation measures as independent variables (IV). Confidence
intervals and p-values were generated with bootstrap statistical analyses
(10,000 samples) and corrected for multiple comparisons using FDR across coef-
ficients—including the four coefficients from the within-subject recognition
accuracy LME (i.e., eight coefficients in total).

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Data for all analyses covered in the article is available at https://github.com/
MichaelBBone/FSIC-During-Episodic-Memory/releases.

Code availability
Code for the analyses covered in Figs. 3–5 (i.e., the neural simulation, FSIC and
behavioral correlations) is available at https://github.com/MichaelBBone/FSIC-During-
Episodic-Memory.
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