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An open source and reduce expenditure ROS
generation strategy for chemodynamic/
photodynamic synergistic therapy
Conghui Liu 1,2, Yu Cao1, Yaru Cheng1, Dongdong Wang1, Tailin Xu 1, Lei Su 1, Xueji Zhang1,2✉ &

Haifeng Dong 1✉

The therapeutic effect of reactive oxygen species (ROS)-involved cancer therapies is sig-

nificantly limited by shortage of oxy-substrates, such as hypoxia in photodynamic therapy

(PDT) and insufficient hydrogen peroxide (H2O2) in chemodynamic therapy (CDT). Here, we

report a H2O2/O2 self-supplying nanoagent, (MSNs@CaO2-ICG)@LA, which consists of

manganese silicate (MSN)-supported calcium peroxide (CaO2) and indocyanine green (ICG)

with further surface modification of phase-change material lauric acid (LA). Under laser

irradiation, ICG simultaneously generates singlet oxygen and emits heat to melt the LA. The

exposed CaO2 reacts with water to produce O2 and H2O2 for hypoxia-relieved ICG-mediated

PDT and H2O2-supplying MSN-based CDT, acting as an open source strategy for ROS

production. Additionally, the MSNs-induced glutathione depletion protects ROS from

scavenging, termed reduce expenditure. This open source and reduce expenditure strategy is

effective in inhibiting tumor growth both in vitro and in vivo, and significantly improves ROS

generation efficiency from multi-level for ROS-involved cancer therapies.
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Reactive oxygen species (ROS), mainly including active
superoxide anions (O2

−), hydroxyl radicals (•OH), and
singlet oxygen (1O2), act as significant signaling and reg-

ulatory molecules at physiologic levels, conversely, will damage
cells once the concentration elevate at an abnormal level1. Ele-
vated ROS level is one of the characteristics of tumor micro-
environment (TME), and along with high ROS elimination rates
exist in cancer cells to maintain a steady equilibrium state, called
self-adaptation mechanisms. Thus, cancer cells are more sensitive
to further enhanced oxidative stress beyond the cellular toler-
ability threshold2. On this basis, ROS-mediated therapies, such as
photodynamic therapy (PDT)3–6 and chemodynamic therapy
(CDT)7–11, are developed to disrupt the cellular self-adaptation
mechanisms and induce cell death based on ROS-generating
agents12.

The PDT utilities light-activated photosensitizers to convert
oxygen (O2) to ROS13, whereas CDT takes advantage of an in situ
Fenton or Fenton-like reaction between hydrogen peroxide (H2O2)
and catalysts to generate cytotoxic hydroxyl radical (•OH)14,15.
Recently, the PDT/CDT combination therapy has been con-
tinuously explored to amplify the tumor oxidative stress and
achieve better anticancer therapeutic effect than monotherapy16–20.
However, the TME feature of hypoxia, depletable amount of H2O2

and the glutathione (GSH) depletion effect on ROS still limit ROS
efficiency15,21,22. Two different feasible strategies have been pro-
posed to relieve hypoxia in PDT and supplement the cellular
amount of H2O2 in CDT, respectively, amplifying endogenous O2/
H2O2 generation11,23–26 or directly delivering exogenous O2/H2O2

into cells27–29. To date, there have indeed been some nanosystems
for synergistic PDT/CDT, but most of them only overcome part of

the limitations. For example, Liu et. al constructed sorafenib@Fe3+-
tannic acid nanoparticles with GSH depletion property for PDT/
CDT19. Copper ferrite nanospheres18, copper/manganese silicate
nanospheres16, and ROS-activatable liposomes30 have been repor-
ted for hypoxia-relieved and GSH-depleting synergistic PDT/CDT.
At present, simultaneous hypoxia relief, H2O2 supplement, and
GSH-depletion nanosystems have been little reported, which is
highly desirable in PDT/CDT combination therapy. CaO2, a safe
solid inorganic peroxide, can decompose to simultaneously release
O2 and H2O2 in contacting with water31 and have been widely
applied in remediation of environmental contamination32. There-
fore, the introduction of CaO2 into ROS-involved therapies seem to
hold great promise for enhanced ROS generation.

Herein, a H2O2/O2 self-supplying thermoresponsive nanosys-
tem, (MSNs@CaO2-ICG)@LA, consisting of manganese silicate
(MSNs) supported calcium peroxide (CaO2) nanoparticles (NPs)
and indocyanine green (ICG) with further surface coating of a
phase-change material lauric acid (LA, melting point: 44~46 °C),
is reported for photodynamic/chemodynamic synergistic cancer
therapy (Fig. 1). In this nanosystem, the CaO2 is protected from
water by LA until the outer layer LA is melted owing to the
photothermal effect of ICG under the irradiation of a near-
infrared (NIR) 808 nm laser. The exposed CaO2 reacts with water
to rapidly generate H2O2 and O2, and accompanies exposure of
inner MSNs. The released O2 can relieve hypoxia for enhanced
ICG-mediated PDT. The interaction between MSNs and GSH
lead to release of Fenton-like agent Mn2+ for H2O2-supple-
menting CDT and magnetic resonance imaging (MRI)-guided
therapy. This GSH depletion further enhance the ROS generation
efficiency. Thus we report a smart system (MSNs@CaO2-ICG)
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Fig. 1 Open source and reduce expenditure ROS generation strategy. The scheme of fabrication process and therapeutic mechanism of thermo-
responsive (MSNs@CaO2-ICG)@LA NPs for synergistic CDT/PDT with H2O2/O2 self-supply and GSH depletion.
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@LA can simultaneously overcome the main limitations includ-
ing hypoxia, depletable amount of H2O2 and GSH elimination
effect on ROS for synergistic PDT/CDT, and this open source and
reduce expenditure ROS-produced way obtain excellent tumor
inhibition effect both in vitro and in vivo, provide a universal idea
of therapeutic nanoagents design for synergistic PDT/CDT.

Results
Preparation and characterization of (MSNs@CaO2-ICG)@LA.
The MSNs with an average diameter of 120 nm were synthesized
by a hydrothermal method (Supplementary Figure 1a). The CaO2

NPs with an average diameter of 20 nm were prepared through a
hydrolysis-precipitation process (Supplementary Figure 1b)33,34.
Then, the CaO2 NPs were assembled onto the surface of MSNs
to form MSNs@CaO2 NPs in methanol through electrostatic
adsorption, confirmed by the transmission electron microscope
(TEM) images (Fig. 2a) and X-ray diffraction (XRD) pattern with
the characteristic peaks belong to MSNs and CaO2, respectively
(Fig. 2b). The successful assembly of MSNs@CaO2 was also
validated by the X-ray photo-electron spectroscopy (XPS) ana-
lysis (Supplementary Figure 2a), and the high resolution XPS
revealed that the O 2 s existed primarily in the form of silicate
and peroxo groups (Supplementary Figure 2b), and the Mn
2p3/2 mainly consisted of 34.65% Mn2+ (641 eV), 55.74% Mn3+

(642 eV), and 9.61% Mn4+ (644 eV) (Fig. 2c)11,16. The high
content of Mn3+ in MSNs made it possible to react with endo-
genous GSH for further biodegradation16,35, and the TEM ana-
lysis confirmed the gradual biodegradation of MSNs in the
presence of GSH (Supplementary Figure 3). Thus, MSNs could
degrade to release Mn2+ for CDT by depleting ROS scavenger
GSH, which was beneficial to amplify the therapeutic effect36.

ICG is a NIR tricarbocyanine dye approved by the US Food and
Drug Administration for clinical use and show great potential both
in PDT and PTT37,38. We further incorporated ICG into the

nanosystem to utilize its photothermal property and 1O2 generation
capacity. The strong absorption peak centered at 800 nm in UV–vis
spectra of MSNs@CaO2-ICG validated the integration of ICG
molecules into the nanosystem, and the loading content of ICG was
estimated to be 7.87 wt % (Fig. 2d). The phase-change material LA
with good biocompatibility and biodegradability39,40 was added as
coating to obtain (MSNs@CaO2-ICG)@LA with thermo-responsive
property. The TEM image of (MSNs@CaO2-ICG)@LA showed the
uniform size (Fig. 2e) and the change of surface zeta potential
(Supplementary Figure 4) confirmed the preparation process. The
differential scanning calorimetry (DSC) curves of (MSNs@CaO2-
ICG)@LA exhibited a similar melting point to pure LA, validating
the successful coating of LA on MSNs@CaO2-ICG (Fig. 2f). The
resulting (MSNs@CaO2-ICG)@LA also showed good stability in
water, PBS (10mM, pH 7.4) and Dulbecco's modified eagle medium
(DMEM) solution demonstrated by the hydrodynamic particle size
and surface zeta potential analysis after 24 h (Supplementary
Figure 5).

In vitro H2O2 and O2 generation and thermo-responsive
property. Cumulative amount of H2O2 released from CaO2 was
measured by Cu(II)-neocuproine spectrophotometric method41.
Pure CaO2 immediately reacted with water to generate H2O2 up
to 75 μM at 25 °C, whereas the cumulative H2O2 amount of
CaO2@LA remained at the same level lower than 30 μM within 7 h
at 25 °C (Fig. 3a), suggesting the LA coating can protect CaO2

from reacting with water beforehand. In addition, the H2O2

releasing was increased when the pH descended, suggesting the
acidic environment in tumors was good for the H2O2 generation
(Supplementary Figure 6). When the temperature increase to
46 °C, the CaO2@LA recovered the rapid H2O2 generation ability
similar to pure CaO2 owing to the melting of LA coating. The
CaO2@LA solution at 25 °C displayed no significant change in
dissolved O2 level within 15 min monitored by a portable
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dissolved oxygen meter in real time (Fig. 3b). However, when
heated to 46 °C, the O2 concentration showed a rapid increase in
the first 3 min faster than pure CaO2 at 25 °C, then fell slowly.
These results fully demonstrated the H2O2 and O2 simultaneous
generation capacities of CaO2 NPs in the reaction with water, and
preliminarily verified the thermalresponsive property of LA.

Enhanced ROS generation measurements of (MSNs@CaO2-
ICG)@LA. The (MSNs@CaO2-ICG)@LA exhibited an ICG
concentration-dependent photothermal effect under an 808 nm
irradiation (Supplementary Figure 7). Upon irradiation, the tem-
perature increase induced melting of LA (Supplementary Figure 8),
and the ICG was gradually released from (MSNs@CaO2-ICG)@LA
(Supplementary Figure 9), demonstrating the successful design
of this thermoresponsive nanosystem. The 1O2 generation of
(MSNs@CaO2-ICG)@LA in vitro was monitored using 1,3-diphe-
nylisobenzofuran (DPBF) as chemical probe. The DPBF content of
ICG, MSNs or CaO2 group displayed slight decline compared with
the control group under the irradiation of 808 nm laser (Fig. 3c and
Supplementary Figure 10a). The temperature rise and NIR laser
irradiation alone showed negligible effect on the degradation of DPBF
(Supplementary Figure 10b). In contrast, the DPBF treated with
MSNs@CaO2-ICG and (MSNs@CaO2-ICG)@LA showed a sharp
decrease within 10min owing to O2 self-supplying PDT effect of
ICG. The •OH generation ability was evaluated by methylene blue
(MB) degradation. The redox reaction between MSNs and GSH
induced Mn2+ release and GSH depletion, and the Mn2+ reacted
with H2O2 to produce active •OH through Fenton-like reaction
(Supplementary Figure 11a). It was worthy to mention that the MB
degradation increased with the increase of GSH concentration from 0
to 1.0mM, but decreased when further increased GSH concentration
as excessive GSH would scavenge •OH conversely (Supplementary
Figure 11b). The H2O2 concentration-dependent Fenton-like effect
provided the great possibility of enhanced •OH generation by H2O2

self-supply from CaO2 (Supplementary Figure 11c). Similar results to
the MB degradation experiments were also obtained by electron
paramagnetic resonance (EPR) analysis of •OH production of
(MSNs@CaO2-ICG)@LA as shown in Fig. 3d.

The released Mn2+ from MSNs could also be utilized as MRI
contrast agent. As shown in Fig. 3e, the T1 signal intensity of
MSNs (group I) had negligible change and the released Mn2+

were at very low concentration, whereas MSNs treated with
10 mM GSH (group II) exhibited enhanced brightness derived
from paramagnetic Mn2+ centers because MSN was reduced by
GSH and the increasing free Mn ions (Supplementary Table 1)
were easier to proceed chemical exchange with protons than
isolated Mn centers in MSNs for enhanced T1 signal42. Thus, it
was rational that (MSNs@CaO2-ICG)@LA displayed enhanced
brightness only when co-treated with GSH and NIR laser
irradiation (group IV). Remarkably, the longitudinal relaxivity
coefficient (r1) of group IV and correspongding released Mn
concentration were larger than that of group II (Fig. 3f). This was
attributed to the enhanced release of Mn2+ from MSNs
accelerated by photothermal effect of ICG (Supplementary
Table 1).

Intracellular uptake of (MSNs@CaO2-ICG)@LA. Before evalu-
ating the feasibility of (MSNs@CaO2-ICG)@LA for in vivo anti-
tumor therapy, the cytotoxicity and cell uptake of (MSNs@
CaO2-ICG)@LA were first investigated. As shown in Fig. 4a, the
(MSNs@CaO2-ICG)@LA showed little cytotoxicity toward MCF-
7, A549, and NHDF cells when the concentration was from 0 to
50 μg mL−1 after incubation for 12 h, indicating good bio-
compatibility. The flow cytometry was conducted to measure
the fluorescence intensity of ICG in MCF-7 cells treated with
(MSNs@CaO2-ICG)@LA at different incubation time point
(Fig. 4b), and the corresponding analysis of mean fluorescence
intensity was shown in Fig. 4c. Comparing with the blank control
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group, the cells treated with (MSNs@CaO2-ICG)@LA demonstrated
high uptake rate as the incubation time extended, and incubation for
4 h was sufficient. Figure 4d demonstrated that the location of
(MSNs@CaO2-ICG)@LA in MCF-7 cells overlapped with lysosome
after incubation for 4 h, suggesting the endolysosomal pathway.

Intracellular enhanced ROS production. To investigate the
enhanced ROS production of (MSNs@CaO2-ICG)@LA in living
cells, we first explored the intracellular O2 self-supplying property of
CaO2. As shown in Supplementary Figure 12, after hypoxia treat-
ment, the red fluorescence intensity related to hypoxia of cells nearly
remained unchanged when incubated with CaO2@LA, while that of
CaO2-treated group was significantly weaken, confirming the
intracellular hypoxia relief by CaO2. The CaO2-mediated O2 self-
supply provided the possibility to enhance the ROS production and
PDT efficiency. As expected, the intracellular fluorescence imaging
by ROS probe (DCFH-DA, green) and hypoxia probe demonstrated

that the (MSNs@CaO2-ICG)@LA-treated cells with irradiation dis-
played the strongest green fluorescence and slight enhanced red
fluorescence compared with other groups both under normoxia or
hypoxia conditions (Fig. 4e and Supplementary Figure 13), indi-
cating tremendous ROS generation enhanced by O2 and H2O2 self-
supply from CaO2. In order to further investigate the enhanced
CDT/PDT therapeutic effect, we used MCF-7 cancer cells as model
cell to examined the anticancer effect of (MSNs@CaO2-ICG)@LA in
normoxia as well as hypoxia environment as contrast. Upon a 808
nm laser irradiation, the (MSNs@CaO2-ICG)@LA treatment
showed greatly enhanced cytotoxicity than both MSNs and (MSNs-
ICG)@LA in normoxia environment (Fig. 4f), in consistent with the
calcein-AM and propidium iodide (PI) co-staining results that most
of cancer cells were killed when treated with (MSNs@CaO2-ICG)
@LA plus irradiation (Fig. 4g). Notably, the hypoxia condition had
obvious influence on the cell killing ability of (MSNs-ICG)@LA-
treated group, whereas that of (MSNs@CaO2-ICG)@LA-treated
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group almost the same both in normoxia and in hypoxia conditions
owing to the O2 self-supplying property of CaO2 (Fig. 4f).

In vivo tumor treatment efficiency of (MSNs@CaO2-ICG)@LA.
The antitumor efficacy of (MSNs@CaO2-ICG)@LA-mediated
CDT/PDT synergistic therapy in vivo was further conducted in
MCF-7 tumor-bearing mice. Figure 5a exhibited the blood cir-
culation curve of (MSNs@CaO2-ICG)@LA in mice by measuring
the concentrations of Mn2+ in the blood at different time points
after tail vein injection, and the fairly long circulation time was
favorable for effective tumor accumulation of (MSNs@CaO2-
ICG)@LA in tumor site due to the EPR effect which was observed
in Fig. 5b. After irradiation by 808 nm laser for 10 min, the
tumor-site temperature of (MSNs@CaO2-ICG)@LA-treated
mice gradually increased to 46.8 °C, which exceeded the melting
point temperature of LA, whereas the control group treated
with 808 nm laser-irradiation only did not display obvious

temperature change in tumor site (Supplementary Figure 14). We
also investigated the MRI property of (MSNs@CaO2-ICG)@LA
in vivo. As shown in Fig. 5c, the brightness in tumor site of mice
treated with MSNs was obviously enhanced than the control
group, indicating the MSNs could degrade to Mn2+ by GSH
in vivo. As for (MSNs@CaO2-ICG)@LA-treated mice, the T1
signal intensity became very strong after irradiation of an 808 nm
laser, confirming the thermo-responsive property of the nano-
system again. The in vivo MRI property of (MSNs@CaO2-ICG)
@LA provided a powerful tool for guiding and monitoring
therapy. Then, we divided the MCF-7 tumor-bearing nude mice
into six group (n= 5) to investigate the antitumor efficacy of
different treatments. The tumor volumes of all groups were
recorded every 2 days and the tumors were collected at 14 days.
As show in Fig. 5d and Supplementary Figure 15, relatively stable
body weight and histopathological normal hematoxylin and eosin
(H&E) staining of main organs in all groups suggested the neg-
ligible side effects of these treatments on mice. The 808 nm laser
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irradiation alone displayed little inhibition effect on tumor
growth similar to the control group (Fig. 5e, f). The MSNs and
showed some tumor repression effects owing to the CDT ther-
apeutic efficacy. The tumors were significantly suppressed in the
group of (MSNs-ICG)@LA and an 808 nm laser due to the
therapeutic effect of CDT/PDT, and the tumors in the group
treated with (MSNs@CaO2-ICG)@LA and an 808 nm laser irra-
diation were completely eliminated owing to the strongest ROS
generation in H2O2/O2 self-supplying CDT/PDT (Fig. 5g and
Supplementary Figure 16). The corresponding H&E and TUNEL
staining of tumor slides also displayed the maximum tumor
necrosis and apoptosis (Fig. 5h). These results indicated that
(MSNs@CaO2-ICG)@LA have excellent antitumor effects due to
combined PDT/CDT with H2O2 and O2 self-supply.

Discussion
In summary, we rationally designed a thermo-responsive nano-
system through simple assembly method for overcoming the
insufficient supply of O2 and H2O2 in antitumor PDT and CDT.
The (MSNs@CaO2-ICG)@LA nanosystem was constructed by
decorating CaO2 and ICG on the MSN-support with further
surface modification of phase-change material LA. We demon-
strated that phase-change material LA could be melted owing to
the photothermal effect of excited ICG under irradiation, and then
CaO2 could be exposed to react with water to release O2 and H2O2

to enhance the ROS generation in ICG-mediated PDT and Mn2+

-involved CDT, respectively, acting as an open source strategy for
ROS production. The Fenton-like agent Mn2+ released out from
MSNs depleted ROS scavenger GSH, which further reduced ROS
wastage termed reduce expenditure. Our results showed excellent
tumor eradication effect of (MSNs@CaO2-ICG)@LA owing to the
combined PDT/CDT with O2/H2O2 self-supply and GSH deple-
tion. This work demonstrated a promising open source and reduce
expenditure strategy for ROS generation enhancement in ROS-
involved cancer therapies.

Methods
Instruments. The morphologies of samples were characterized by TEM (HT7700,
Hitachi, Japan). XRD was conducted by a Bruker D8 ADVANCE X. DSC mea-
surements were conducted by DSC Q2000 (TA Instruments, USA) under nitrogen
atmosphere. Dissolved oxygen measurement was conducted by JPBJ-608 (Rex,
INESA Scientific Instrument). The cell fluorescence imaging was obtained by
confocal laser scanning fluorescence microscope (CLSM, FV1200, Olympus,
Japan). In vitro and in vivo MRI was performed by an animal MRI scanner
(BioSpec70/20USR, Bruker, Germany) at 7.0 T with a gradient echo sequence
(TR= 299 ms and TE= 6.01 ms).

Synthesis of manganese silicate nanoparticles (MSNs). The previously repor-
ted dendritic mesoporous silica nanoparticles33 were used as self-killing templates
to synthesize MSNs. First, dendritic mesoporous silica nanoparticles (50 mg),
MnCl2·4H2O (158.34 mg) and NH4Cl (534.9 mg) were dispersed in 40 mL of water.
Then NH3·H2O (28% wt., 1 mL) was added dropwise into the mixture under
continuously stirring. After stirring for 30 min, the mixture was transferred into a
Teflon-lined autoclave and maintained at 180 °C for 24 h. The precipitates were
washed with water and finally dried at 60 °C.

PEGylation of MSNs. In brief, MSNs (1 mg) were mixed with methoxy PEG silane
(Mw= 2000, 5 mg) in 10 mL of ethanol under magnetic stirring at 60 °C for 24 h.
Then, the MSNs-PEG were washed with ethanol and ultrapure water several times.

Synthesis of (MSNs@CaO2-ICG)@LA. The CaO2 nanoparticles were synthesized
according to previous literature34. In brief, ultrapure water (3 mL), calcium
chloride (2.7 mmol), ammonia solution (1.5 mL, 1 M) and PEG400 (12 mL) were
successively added in the round bottom flask under stirring. Then H2O2 (35 wt. %,
1.5 mL) was dropwise added to the mixture within 50 min. After further stirring for
2 h at 900 rpm at room temperature, the pH of mixture was adjusted to 11.5 using
NaOH solution (0.1 M). The precipitate was washed three times with NaOH (0.1 M)
and with distilled water until the pH of supernatant reached to 8.4. The precipitate
was dried in vacuo at 80 °C for 2 h, then resuspended in ethanol and filtered using a

Millex Filter Unit (0.45 μm). The resulting filtrate was concentrated and dried to
achieve CaO2 nanoparticles. MSNs (1 mg) and CaO2 (1 mg) were mixed in
methanol (5 mL) and stirred for 12 h. Then, ICG (1 mg) was added to the mixture
under stirring. After 2 h, lauric acid (0.1 g) was added and the mixture was stirred
for another 5 h. The precipitates were washed with methanol for three times. The
as-obtained composites were denoted as (MSNs@CaO2-ICG)@LA. The loading
capacity of ICG was determined by dissolving the (MSNs@CaO2-ICG)@LA in
methanol, and the characteristic absorption at 788 nm was measured by UV-1800
spectrophotometer (Shimadzu, Japan).

Extracellular measurement of H2O2 generation. The H2O2 generation from
CaO2 was measured by Cu (II)-neocuproine spectrophotometric method41. In
brief, 49 μL of PBS solution (10 mM, pH= 7.4, 6.5 or 5.5) of CaO2 or CaO2@LA
([CaO2]=1 mgmL−1, 1 μL), 25 μL of 0.01 M CuSO4 and 25 μL of 0.01 M neocu-
proine solution were added to a 96-well plate sequentially. Then the 96-well plate
was shaken at room temperature or at 46 °C. At appointed time, the absorbance
at 450 nm was measured by a microplate reader. The standard curve of H2O2

was obtained by measuring the absorbance of a known concentration of H2O2

(0~1000 μM) in the same way and then the H2O2 concentration of samples could be
calculated.

Extracellular measurement of O2 concentration. Three mL of CaO2 or
CaO2@LA methanol solution (1 mgmL−1) were added to 27 mL PBS (10 mM,
pH= 7.4) under vigorous stirring at room temperature or at 46 °C. Then we
monitored the O2 concentration of solution by a portable dissolved oxygen meter
(JPBJ-608, Rex, INESA Scientific Instrument) in real time.

Extracellular measurement of 1O2 generation. DPBF solution (10 μL, 10 mM in
DMSO) was added to the sample solution (100 μg mL−1, 2 mL) under irradiation
(808 nm, 0.64W cm−2) and the absorbance of DPBF solution at 420 nm was
recorded every minute.

Extracellular measurement of photothermal property. The temperature of dif-
ferent concentration of (MSNs@CaO2-ICG)@LA (0, 25, 125 or 250 mgmL−1,
aqueous dispersion) was recorded by an OMEGA 4-channel datalogger thermo-
meter under irradiation of 808 nm laser (0.64W cm−2, 10 min).

Extracellular measurement of NIR-triggered ICG release. The aqueous solution
of (MSNs@CaO2-ICG)@LA (200 μgmL−1, 1 mL) was irradiated by laser (808 nm,
0.64W cm−2) with different time (0, 2, 4, 6, and 8min) or was not exposed to the NIR
laser. Then, the sample solution was centrifuged. The released ICG in supernatant
solution was characterized by measuring the absorption of ICG at 788 nm.

In vitro MRI imaging property. In all, 100 μL MSNs or (MSNs@CaO2-ICG)@LA
([Mn]: 5 mM) was added into 900 μL PBS solution (10 mM, pH= 7.4) containing
25 mM NaHCO3/5% CO2 without or with GSH (10 mM). After shaken at 37 °C for
1 h, MRI images and the T1 relaxation time of diluted supernatant (Mn con-
centration: 0, 0.1, 0.2, 0.4, and 0.5 mM) were measured by MRI system.

Cell cytotoxicity. The human MCF-7 breast cancer cells, human A549 adeno-
carcinoma alveolar basal epithelial cells and NHDF normal human dermal fibro-
blasts cells were purchased from Cell Bank, the Committee of Type Culture
Collection of Chinese Academy of Sciences. NHDF, MCF-7, and A549 cells were
seeded in 96-well plates (104 cells per well) respectively and incubated in DMEM
medium containing 10% FBS and 1% antibiotics (penicillin−streptomycin,
10,000 U mL−1) at 37 °C under 5% CO2 for 12 h. Then the cells were incubated
with OPTI-MEM solution containing (MSNs@CaO2-ICG)@LA at desired con-
centrations for 4 h, washed with PBS (10 mM, pH= 7.4) for three times and further
incubated with DMEM medium for another 24 h. Finally, culture medium con-
taining 10% of CCK-8 was added to each well. After incubation at 37 °C for 1 h, the
absorbance at 450 nm of each well was obtained by microplate reader.

Intracellular antitumor performance. MCF-7 cells were seeded in 96-well plates
(104 cells per well) for 12 h, the cells for hypoxia cytotoxicity evaluation were
incubated in hypoxic chamber (1% O2, 5% CO2, and 94% N2) for another 4 h. Then
the cells were incubated with OPTI-MEM containing PBS, MSNs, (MSNs-ICG)@LA
or (MSNs@CaO2-ICG)@LA ([MSNs]=25 μgmL−1) for 4 h. After replaced with
fresh DMEMmedium, the cells were irradiated with laser (808 nm, 0.64W cm−2) for
10min and then further incubated for 24 h. For CCK-8 cytotoxicity assay, cells in
each well were incubated with the culture medium containing 10% of CCK-8 for 1 h
and measured by microplate reader.

Intracellular hypoxia relief and ROS measurement. Adherent MCF-7 cells were
incubated in normoxia (5% O2, 21% CO2, and 74% N2) or hypoxia chamber (1%
O2, 5% CO2, and 94% N2) for 4 h to build normoxic or hypoxic environment.
Then the cells were incubated with OPTI-MEM solution containing PBS (10 mM,
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pH= 7.4), MSNs, (MSNs-ICG)@LA or (MSNs@CaO2-ICG)@LA for 4 h ([MSNs]=
25 μgmL−1), washed with PBS (10mM, pH= 7.4) and co-stained with 1 μL of DCFH-
DA (10mM) and 1 μL of hypoxia detection probe (1mM) (Hypoxia Detection Kit,
Enzo) for 15min. After washed with PBS (10mM, pH= 7.4) for three times, the cells
were irradiated by a 808 nm laser (0.64W cm−2) for 10min and observed by CLSM.

In vivo antitumor performance. MCF-7 cancer-bearing female Balb/c mice
(4 weeks) were purchased from Beijing Vital River Laboratory Animal Technology
Co., Ltd. and used in accordance with the guidelines of the Department of
Laboratory Animal Science of Peking University Health Science Center. All animal
experiments were conducted and agreed with the Institutional Animal Care and
Use Committee of the Beijing Institute of Basic Medical Science (Beijing, China).
The tumor-bearing mouse model was built by subcutaneous injection of MCF-7
cells (2 × 107 mL−1, 100 μL) into the right axilla of each mouse. The mice were
randomly distributed into six groups for in vivo experiments (5 mice in each
group) when the tumor volumes reached about 50 mm3 and intravenously injected
with different formulations ([MSNs]= 5 mg kg−1): (1) PBS (control group); (2)
808 nm laser; (3) (MSNs@CaO2-ICG)@LA; (4) PEG-modified MSNs; (5) (MSNs-
ICG)@LA+ 808 nm laser; (6) (MSNs@CaO2-ICG)@LA+ 808 nm laser. The
808 nm laser-irradiation was conducted after injection for 24 h (0.64W cm−2,
10 min). The tumor size (V) was calculated as follows: V=width2 × length/2 and
measured every 2 days. After 2 weeks, tumors and main organs were collected from
the killed mice for further analysis.

In vivo blood circulation and biodistribution. MCF-7 cancer-bearing female mice
were intravenously injected with (MSNs@CaO2-ICG)@LA (10 mg kg−1). At indi-
cated time points (0.1, 0.5, 1, 2, 4, 6, 11, 24 h), we collected 50 μL blood from the
tail of each mouse. After intravenous injection for 24 h, the mice were killed to
measure the Mn amount in liver, spleen, kidney, heart, lung, tumor as well as blood
samples by ICP-OES.

In vivo MRI imaging. The in vivo MRI imaging experiments were conducted
on MCF-7 tumor-bearing female mice when the tumor volume reached about
100 mm3. MSNs or (MSNs@CaO2-ICG)@LA ([MSNs]= 5 mg kg−1) were intra-
tumorally injected into the tumor sites. After 4 h, one of the (MSNs@CaO2-ICG)
@LA-injected mice were irradiated at the tumor sites by 808 nm-laser for 10 mim.
After 12 h, T1-weighted MR images were recorded with an animal MRI scanner
(BioSpec70/20USR, Bruker, Germany).

Statistical analysis. Data were calculated and processed as mean ± SD. Compar-
ison analysis between groups was conducted by student’s t test (two tailed).

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All relevant data are available from the authors. The source data underlying Figs. 3a–c, 3f,
4a, c, f, 5a, b as well as Supplementary Figs 4, 5b, c, 6, 7, 9, 10, 16, and Supplementary
Table 1 are provided as a Source Data file.
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