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Spatially resolved analyses link genomic and
immune diversity and reveal unfavorable
neutrophil activation in melanoma
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Complex tumor microenvironmental (TME) features influence the outcome of cancer

immunotherapy (IO). Here we perform immunogenomic analyses on 67 intratumor sub-

regions of a PD-1 inhibitor-resistant melanoma tumor and 2 additional metastases arising

over 8 years, to characterize TME interactions. We identify spatially distinct evolution of copy

number alterations influencing local immune composition. Sub-regions with chromosome 7

gain display a relative lack of leukocyte infiltrate but evidence of neutrophil activation,

recapitulated in The Cancer Genome Atlas (TCGA) samples, and associated with lack of

response to IO across three clinical cohorts. Whether neutrophil activation represents cause

or consequence of local tumor necrosis requires further study. Analyses of T-cell clonotypes

reveal the presence of recurrent priming events manifesting in a dominant T-cell clonotype

over many years. Our findings highlight the links between marked levels of genomic and

immune heterogeneity within the physical space of a tumor, with implications for biomarker

evaluation and immunotherapy response.
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Modern treatment paradigms increasingly expose patients
with metastatic melanoma to multiple treatment mod-
alities through the course of their disease1. Immune

checkpoint blockade in particular has revolutionized the ther-
apeutic landscape, yet durable clinical benefit remains limited to a
subset of patients2,3. Numerous biomarker studies aiming to
elucidate why the majority of patients fail to respond have
revealed both immune and genomic contributors to therapeutic
activity3–6, but incorporation of such factors into clinical practice
is not yet routine.

Intra- and inter-tumoral heterogeneity can influence lesion-
specific and overall patient response to therapy2,7, and may con-
tribute significantly to tumor-immune evasion2,8. Studying the
influence of intratumoral heterogeneity (ITH) using standard
approaches such as bulk tumor sequencing or single-cell sequen-
cing generally loses spatial information. Thus, here we perform
spatially detailed immune and genomic analysis of three meta-
static lesions, including 67 sub-regions of one tumor sampled
throughout its entire mass, from a heavily treated but long-term
surviving melanoma patient. Through molecular analyses coupled
with strict retention of spatial detail, we reconstruct the striking
relationship between genomic and immune heterogeneity. We
identify a remarkable link between copy number gain of chro-
mosome 7 and an unfavorable immune composition driven by
neutrophil activation recapitulated within TCGA melanoma
samples and dominating non-responders to checkpoint blockade
immunotherapy across multiple published cohorts. We also
identify a long-term persistent T-cell clonotype having potential
relevance to vaccine exploration and cellular immunotherapy.

Results
Longitudinal tumor sampling. Tumor and blood biospecimens
were obtained from a Caucasian female diagnosed with de novo
stage IV M1b melanoma of unknown primary metastatic to the
left lung at the age of 77 years. Following initial curative intent
wedge resection of the solitary NRASQ61R mutated lung metas-
tasis (Fig. 1a, lesion 1), her clinical course was remarkable for
long-term survival despite multiple lines of therapy for widely
distributed soft tissue metastases with limited to no objective
response over the following 8 years (Fig. 1a). To explore the
relevance of ITH to the setting of long-term survival with
metastatic disease, we studied a ventral abdominal wall metastasis
resected due to isolated progression during therapy with the PD-1
inhibitor pembrolizumab. This mass (Fig. 1a, lesion 2) was sub-
jected to extensive multidimensional spatial and immunogenomic
profiling by serial sectioning and the use of alternate tumor
sections for region-matched immunohistochemistry (IHC) ana-
lyses (odd-numbered slices) and genomic and proteomic analyses
(even-numbered slices; Fig. 1b). Individual sections were further
sub-divided into 20 regions (Fig. 1b and Supplementary Fig. 1),
producing a total of 67 regions assessed by at least one analytical
platform (Supplementary Data 1).

Mutational ITH is highly prevalent and spatially restricted. To
characterize genomic ITH within the tumor specimen progressing
during PD-1 inhibitor treatment (“on-PD-1 inhibitor” tumor), we
performed deep targeted DNA sequencing for a panel of 265
cancer-related genes (Supplementary Data 2) of DNA from 41
tumor sub-regions. Of 53 identified somatic mutations, 28% (15
of 53) were shared in all 41 regions whereas 30% (16 of 53) were
restricted to a single region (Supplementary Data 3), consistent
with a degree of mutational ITH not previously described
at this resolution. Somatic mutations in putative melanoma
driver genes including NRASQ61R, BRAFG421R and MAP2K1P124S,
all key components of the mitogen-activated protein kinase

(MAPK) pathway, were ubiquitously detected in all 41 regions,
supporting the notion that somatic mutational heterogeneity is
predominantly attributable to passenger mutations. A JAK1P1044S

mutation affecting the activation loop of JAK1 that was detected
in all 41 regions and conferred signaling hypomorphism by Ba/F3
mutant transformation assay (Fig. 1c) potentially contributed to
the immunotherapy resistance displayed by this tumor clinically9.

Genomic ITH is dominated by copy number alterations.
Analysis of copy number alterations (CNAs) detected across all 41
deeply sequenced samples identified gains of chromosome 6p and
20q, and losses of chromosome 6q and 9p, each of which has
previously been identified in melanoma clinical samples (Fig. 1d)8.
Subclonal alterations were also seen, including chromosome 7 gain
in four samples, whole-chromosome 10 loss in five samples, 10p
loss in one sample, and chromosome 13 gain in four samples.
Samples with subclonal loss of chromosome 10 were localized in
adjacent tumor slices, but subclonal gains of chromosome 7 and
13 were found at non-contiguous sites (Fig. 1d). Although pre-
vious studies have shown metastatic potential being associated
with the loss of chromosome 1010, we found evidence of regional
losses of chromosome 10, most extensively along the tumor
margin, suggesting this may be selected for in the context of
stromal interactions at advancing tumor margins. Nearly half (17/
39, 44%) of the differentially expressed genes associated with
chromosome 10 copy number losses were located on chromosome
10 itself, characterized by relatively high expression but low fold
change. Additional, more pronounced changes (at fold-change
level) were observed in differentially expressed genes located on
other chromosomes, such as MT1B (chr16), TNNT3 (chr11),
MUC12 (chr7), and RPS6KA6 (chrX) (Supplementary Data 4). In
addition, unique chromosomal CNAs were found in nearly all (12
of 14) regions, demonstrating that CNAs may develop along
spatially distinct trajectories even within a single metastasis.
Comparing CNAs across longitudinal metastases of this patient,
we also identified progressive stepwise regional loss of chromo-
some 10 in relation to therapy (pre-, on-, and post-PD-1 inhibitor
therapy), thus implicating this CNA in both tumor margin
dynamics and overall disease progression (Supplementary Fig. 2).

Immune cell content is highly and spatially diverse. We next
characterized the ITH of gene expression patterns in the tumor, to
gain insight into the nature of local tumor-immune micro-
environments. Unexpectedly, unsupervised hierarchical clustering
based on transcriptomic profiling revealed limited association
between regional gene expression and histologic features such as
intratumoral site (e.g., “core” surrounded only by tumor mass vs.
“margin” spanning the tumor edge and including surrounding
tissue) (Fig. 2a and Supplementary Fig. 3A). We then used several
immune deconvolution tools to enumerate separate immune,
stromal, and tumor cell populations, as well as melanoma-, AXL-,
and MITF-related gene expression programs11–16. Sub-regions
with high content of one immune cell subset generally displayed an
enrichment for multiple cell subsets, indicative of a broadly diverse
infiltrating immune population, and consistent with the observed
high correlations between immune cell marker stains by IHC
(Fig. 2b, c and Supplementary Fig. 3B-C). Samples with higher
immune activity were over-represented at tumor margin sites (p <
0.001, Fisher’s exact test), reflecting the spatially excluded (i.e.,
peri-tumoral) leukocytic accumulation observed on IHC (Fig. 2a
and Supplementary Fig. 1). A notable exception was particularly
high T- and B-cell signatures in multiple samples of section 8 (8A6,
8A7, 8A8, and 8A13), which was highly necrotic and displayed
heavy neutrophil infiltration on matched formalin-fixed paraffin-
embedded (FFPE) slices (CD15 stain; Supplementary Fig. 3D),
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Fig. 1 Genomic inter- and intratumoral heterogeneity in a heavily treated melanoma patient are driven by copy number alterations. a Timeline of
treatments and surgical sampling of three distinct melanoma tumors from a long-term surviving patient with largely treatment unresponsive metastatic
melanoma. Treatment modality is indicated by color (red, chemotherapy; blue, targeted therapy; purple, immunotherapy). Molecularly profiled lesions are
indicated: index left lower lobe (LLL) lung metastasis (lesion 1), progressing ventral abdominal wall mass (lesion 2), and slowly progressing right gluteal
mass (lesion 3). b Sectioning and use of the on-PD-1 inhibitor abdominal wall lesion. The tumor was oriented by lateral inking (red, left; blue, right), sliced,
and laid on a grid. The odd-numbered slices were processed for FFPE and used for immunohistochemistry, whereas the even-numbered slices were fresh-
frozen and used for genomic and proteomic analyses (whole exome sequencing (WES), RNA sequencing, TCR sequencing, reverse-phase protein array
(RPPA)). c Functional hypomorphism of the identified JAK1 mutation (JAK1P1044S) was identified by Ba/F3 transformation assay. Also shown are known
oncogenic JAK1 variants (JAK1R879H, JAK1S1043I, JAK1A634D), wild-type JAK1, a truncating JAK1 hypomorph (JAK1W1047*), and oncogenic PIK3CA variants.
d Copy number alterations in each region of the tumor are shown in the chromosome coordinate as log2-transformed copy number probe intensities R
(observed intensity/reference intensity); copy number gains are shown as red and copy number losses as blue.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-15538-9 ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:1839 | https://doi.org/10.1038/s41467-020-15538-9 | www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


although this could not be determined as the cause or consequence
of necrosis. In many cases, high immune cell signatures were
accompanied by high expression of interferon-stimulated genes.
Relatively low levels of variability were observed in expression of
genes linked to melanoma cell phenotype (i.e., melanocytic, MITF-
related, and AXL-related gene sets); however, the same samples
that displayed prominent and uniform immune signature upre-
gulation also displayed a non-melanocytic phenotype that is
known to be associated with mesenchymal-like and pro-invasive
cellular behaviors, evidenced by high expression of the AXL-related
gene set, and correspondingly low expression of the melanocytic
and MITF-related gene sets (Supplementary Fig. 3A)17,18.

Mirroring transcriptional ITH, a high degree of ITH was observed
between samples at the protein level, measured by a 296-target
reverse-phase protein array (Supplementary Fig. 3E). Within the
most spatially variable proteins, two notable modules of co-
expressed proteins emerged; one including AIM1, ARID1A, MTOR,
STAT5A, DUSP4, and SOX2, resembling a melanocytic cellular
origin and an anti-correlated set comprising AXL, PDGFR, JAK2,
STAT, PDCD1 (PD-1), and PREX1, suggesting a mesenchymal-
shifted and/or immune-infiltrated set (Fig. 2d). Several proteins were
significantly associated with either locally low (VIM, SOX2) or high
(MYH11, LCK, PTK2) immune infiltrate (false discovery rate
(FDR) < 0.10, Spearman’s ρ rank correlation, Fig. 2d).
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Sites of similar immune composition may be spatially remote.
Using sample-wide Euclidean distance metrics to connect sam-
ples with highly similar immune composition based on immune
deconvolution rather than reductive immune scores or overall
immune cell densities, we found that similar immunophenotypes
were unrestricted by location at core or margin sites (e.g., core
4A7 vs. margin 6A3), or by spatial proximity (Fig. 2e). Three-
dimensional mapping across all sampled regions of the tumor
revealed clear but disconnected pockets of immune activation and
suppression as typified by signatures derived for cytolytic activity,
type-I intereron (IFN) activity and an anti-inflammatory sig-
nature (Fig. 2f)13, indicative of a degree of immunophenotype
convergence. To address the implications of regional immune
phenotype variation for clinical biomarker assessment, we per-
formed consensus clustering of samples based on gene expression
data and identified an optimal four cluster solution, being the
minimum number of distinct regional “phenotypes” that would
need to be sampled, to approximately represent the transcrip-
tional heterogeneity present across the entire tumor mass (Sup-
plementary Fig. 3F). Importantly, we found that each of these
clusters contained non-contiguous samples, indicating a low
chance of serendipitously sampling all microenvironmental types
with any single biopsy of the lesion (Supplementary Fig. 3F).

ITH implicates simultaneous methods of immune exclusion.
Given progression of this tumor through anti-PD-1 immu-
notherapy and previous findings suggesting a predictive sig-
nificance of the immune status at the invasive tumor margin19,
we next compared tumor regions having either a high or low
immune cell content as measured by a pan-leukocyte stain
(CD45-LCA) on IHC (Supplementary Fig. 1). The most differ-
entially expressed genes enriched in heavily infiltrated sub-
regions included FCRL1, CADM3, CR2, and PAX5 (Fig. 3a,
Table 1, and Supplementary Data 5), as well as genes involved in
T-cell function including CD3D, CD28, ZAP70, and CD40LG, in
agreement with extensive CD8 and CD4 staining of mononuclear
cells within these highly immune-infiltrated regions by IHC
(Fig. 3b–d and Supplementary Data 5). At the Gene Ontology
(GO) pathway level, these differentially expressed genes con-
tributed to mixed T- and B-cell enrichments, and a substantial
degree of functional gene connectivity (Fig. 3c, d), which was
maintained even when specifically comparing samples located at
the tumor margin (Supplementary Fig. 4A-B). We also identified
a clear B-cell gene enrichment in highly immune-infiltrated
samples, driven by PAX5, BLK, CD19, CLECL1, CD180, CD22,
and CD79A (Fig. 3c, d, Table 2, and Supplementary Data 5).

Parallel PAX5 immunostaining of tumor sections confirmed B-
cell lineage presence within these immune-infiltrated samples
localized to intra- and peri-tumoral leukocytic infiltrates, or
within dense para-tumoral clusters associated with blood vessels
and other immune cell types, suggestive of tertiary lymphoid
structures (Fig. 3e). In addition, a pro-tumorigenic M2 macro-
phage signature was evident throughout most regions of the
tumor (Supplementary Data 6)16,20. Tumor-associated macro-
phages at the tumor periphery are known to be associated with
tumor progression21; thus, these data implicate active participa-
tion of immunosuppressive macrophages in the observed clinical
progression of this tumor despite anti-PD-1 therapy.

Reasoning that grouped analyses may obscure the true extent
of variability in gene expression between individual samples, we
performed single-sample gene set enrichment analysis (ssGSEA)
to gain a finer resolution of the functional transcriptomic
activity22. Strikingly, unsupervised hierarchical clustering of the
samples based on ssGSEA of Hallmark gene sets again revealed
little similarity in terms of physical location within the tumor or
the extent of peri-/intratumoral immune infiltrate (Fig. 3f).
Samples with prominent enrichment of WNT/β-catenin signaling
(2A10, 2A13, 2A16, 4A11, and 8A4), which is a known tumor
cell-intrinsic mechanism of immune cell exclusion23, were
typically located at the tumor margin but did not show consistent
association with immune cell content, although when immune
cells were present, they were largely peri- or extra-tumoral in
distribution. These data suggest that WNT/β-catenin signaling
may contribute to exclusion of an immune infiltrate when one is
present, but additional factors are necessary to explain the
complete absence of an immune infiltrate from some regions.
Intriguingly, despite known presence of activating NRAS and
MAP2K1 mutations, phospho-ERK1/2 (pERK) expression (by
IHC) was largely absent from tumor cells, except when located at
or immediately beneath the tumor margin (Fig. 3g), suggesting
MAPK activation in response to factors originating near the
tumor surface. Areas of strong tumor cell pERK staining were
frequently observed in association with overlaid peri-tumoral
immune infiltrates; thus, tumor cell ERK activation may be
actively involved in the maintenance of immune cell exclusion,
and at a scale that is significantly more spatially localized than
previously thought based on pre-clinical models and broad
assessments of patient samples24,25.

Integrative analyses of multimodal molecular phenotypic data.
Having identified clear links between immune and genomic
heterogeneity throughout sub-regions of this tumor, we sought to

Fig. 2 Immune-driven transcriptional heterogeneity implicates diverse immune cell populations and highly localized immune activation or suppression.
a Unsupervised hierarchical clustering based on the top 1000 most variant (mean absolute deviation) genes across all samples of the on-PD-1 inhibitor
tumor, demonstrating limited associations between clustering of samples and tumor location based on the general transcriptome, but apparent association
between high immune infiltrate and location at the tumor margin. b Heatmap of immune signature gene sets (from Rooney et al.13) across tumor sub-
regions demonstrate dispersed pockets of immune activation or suppression throughout the tumor, wherein immune-high samples (e.g., 4A1/4A2, 6A5,
and 8A6) are physically distant from each other within the tumor mass. IHC-based immune infiltrate and ESTIMATE immune scores (top) and IHC-based
tumor sample location (bottom) are indicated. c Immunohistochemical marker inter-correlations demonstrating generally diverse representation of
immune cell types when infiltrates are present. Data are Spearman’s correlation values (with Benjamini–Hochberg correction; only p < 0.05 are shown)
indicated according to the color scale shown. d Correlation of most variably abundant proteins measured by reverse-phase protein array, revealing two
main modules of highly correlated molecules. Proteins displaying statistically significant (FDR p < 0.10) correlation with immune infiltrate are indicated by
* and color (blue= anti-correlated with immune infiltrate, red= directly correlated with immune infiltrate). Data are Spearman’s correlation values (with
Benjamini–Hochberg correction; only p < 0.05 are shown) indicated according to the color scale shown. e Sample-wide similarity of immune activity was
estimated by calculation of the distance matrix between samples using the immune activation signature expression data; lines connect samples in the top
quartile of similarity scores, demonstrating global immune signature similarities that are not restricted by intratumoral location. f Three-dimensional spatial
mapping of subregion Cytolytic activity signature, Type-I IFN response signature and Co-inhibition, T-cell signature scores derived from transcriptomic
data, in the manner of Rooney et al.13. Data map the geometric mean of genes included in each gene set onto three-dimensional space representing the
tumor slices, with color and height indicating expression value (higher expression= red peaks, lower expression= blue troughs).
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identify genomic features underlying this through an integrative
analysis of CNA and mRNA data, with the addition of methy-
lation as a potential modulator of transcriptional activity.
Examining the 560 most variably expressed genes for which all
genomic data were available, unlike CNA, underlying methylation
patterns appeared more variable between samples rather than
between genes, implying that a genome-wide methylation state
interacts with more localized genomic and posttranscriptional
influences to affect gene expression in this context (Fig. 4a).

From an immune standpoint, transcriptome-derived ESTIMATE
immune scores trended lower in regions with chromosome 10
losses (p= 0.088, two-sided t-test) and were significantly lower in
regions with subclonal gain of chromosome 7 (p= 0.018, two-
sided t-test)12. Similarly, differentially expressed genes were
enriched within CNA-affected regions of chromosome 6 and 7
(p= 3.53e− 7 and 1.22e− 5, respectively, Benjamini–Hochberg
corrected p-value). As expected, the clear majority of genes
on chromosome 7 showed positive correlations between copy
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number and transcript abundance, consistent with CNA repre-
senting a dominant method of regulation of these genes (Fig. 4b,
upper panel). However, copy number vs. transcript correlations
were negligible for four genes (CALD1, CCT6A, CHCHD2, and
ESYT2) and negative for six genes (ACTB, AEBP1, COL1A2,
GIMAP4, GIMAP7, and SFRP4), suggesting that additional
mechanisms regulate transcript abundance of these genes, such as
methylation. Gene methylation was inversely correlated with
transcript abundance and thus consistent with negative regulation
of transcription for most chromosome 7 genes (Fig. 4b, lower
panel), including all but three of the copy number discordant
genes (GIMAP4, GIMAP7, and SFRP4). Notably, SFRP4 is a
soluble modulator of Wnt signaling that may antagonize Wnt-
driven immune exclusion when highly expressed. GIMAP4 is
known to be involved in the regulation of Th1 vs. Th2 T-cell
phenotypes. Using the unique genome–phenotype associations of
chromosome 7 to model overall regulatory complexity and ITH,
we found strikingly little similarity in the unsupervised clustering
patterns of sub-regions based on copy number, methylation, or
transcript abundances, evidenced by a high degree of cross-cluster
entanglement, indicating the action of additional (unmeasured)
factors in regulation of these genes (Fig. 4c). Furthermore, sub-
regions of similar immune cell content (measured by IHC) were
generally dispersed throughout the clusters, thus demonstrating
unequivocally the presence of profound ITH underlying broadly
similar appearing immune microenvironments at the cellular
level.

Tumor-specific and agnostic T-cell recruitment occurs on a
regional basis. T-cell function is central to current immunotherapy
efficacy; hence, we performed sequencing of the variable region of
the T-cell receptor (TCR) β-chain using both DNA and RNA
approaches to study T-cell ITH. T-cell repertoire clonality was
substantially variable between samples (Fig. 4d), suggesting highly
localized patterns of clonal expansion and contraction that result in
variable repertoire composition throughout the volume of an
individual tumor. Only 0.02% of all TCR rearrangements were
detectable in all regions of the tumor and the vast majority (74.6%)
were restricted to a single region. We identified the top five highly
transcriptionally active T-cell clones per sample by plotting com-
plementary productive frequencies generated from DNA- and
RNA-based approaches (Supplementary Fig. 5): three dominant
clonotypes were present at high abundances across multiple regions
of the metastasis (Fig. 4e). One dominant clonotype, at the amino
acid level, present as a top five clone in all samples
(CSVPTSGSRDNEQFF), was most prevalent in the upper sections
(2 and 4) and least prevalent in the lowest section 8, which also had
the lowest proportion of viable tumor. The next two most prevalent
clones present in 72% (CASSSLQGARREETQYF) and 69%
(CASSLHGDQPQHF) of all samples were particularly enriched in
sections 6 and 8.

We examined repertoire overlap between samples to infer
intratumor trajectories of T-cell clones and found a high level of
T-cell clonal overlap between samples within section 8 (Fig. 4f).
Conversely, there was greater sharing of clonotypes between
sections 4 and 6, and more sparsely with section 2, paralleled by
evidence of greater immune activation in key regions of these
sections. The greater restriction of T-cell clones within section 8
may reflect a functionally distinct T-cell repertoire reacting to the
prevailing necrotic conditions seen histologically throughout
much of this section. Overall, this spatial variation suggests
underlying differences in regional immunogenicity and anti-
genicity driving local accumulation of different T-cell clones.

The observation of a marked T-cell repertoire ITH (Fig. 4d)
and apparently distinct T-cell repertoires between distinct regions
of the tumor was surprising given the comparatively similar
mutational landscape between tumor sub-regions. To explore the
relationship between T-cell clonal composition and tumor
mutations, we compared the truncal set of 15 mutations found
in every subsample of the metastasis with the most highly
expanded TCR-Vβ sequences found simultaneously in high
proportions across all regions. In general, the productive
frequencies of these expanded T-cell clones correlated positively
with the mutation variant allele frequencies (VAFs), suggesting a
surrogate relationship between VAF, tumor content, and T-cell
clones reactive to tumor (but not necessarily these exact
mutations). However, some expanded T-cell clones showed
inverse or mixed patterns of correlation with this set of truncal
mutations, (Supplementary Fig. 6), including several clones
negatively correlated with all the shared mutations, such as one
(CASSLHGDQPQHF) that was predominantly found expanded
in the necrotic slices. Together, these data indicate that although
certain expanded T-cell clones correlate positively with a set of
truncal tumor mutations and are likely tumor specific, a distinct
population of expanded T-cell clones generally anti-correlate with
truncal tumor mutations and, although present within some
regions of the tumor, are likely not specific for tumor antigens
and may be nonspecifically recruited into regions of inflamed/
necrotic TME.

T-cell clone persistence reveals recurrent priming and func-
tional diversity. Leveraging the availability of peripheral blood
samples and tumor samples obtained from distinct metastatic
deposits spanning treatment-naive progression on-PD-1 inhibitor
and progression post-PD-1 inhibitor time points (Fig. 1a), the
temporal dynamics of the T-cell repertoire were evaluated.
Strikingly, the dominant clone present within the progressing
abdominal wall tumor during PD-1 inhibitor therapy was not
only present over time but was the most hyperexpanded clone
within the treatment-naive lung tumor sampled 7 years earlier
(Fig. 4e). Evaluation of predicted neoantigens revealed one
(ZDHHC17 p.H507Y; IC50= 77.17 nM) that was shared among

Fig. 3 Transcriptomic analysis demonstrates considerable ITH underlying convergent immune phenotypes. a Volcano plot of differentially expressed
genes comparing high vs. low immune infiltrate regions across the tumor core and margins. Vertical red lines indicate a minimum twofold change in
expression value; horizontal red line indicates the adjusted p-value threshold of <1e-8. b Representative IHC sections demonstrating matched tumor
content (SOX10 stain, above) and immune infiltration (CD8 stain, below) illustrating substantial variation of local CD8 T-cell content ranging from low
(arrows) to high (arrowheads). c Gene connection network of genes upregulated in immune-infiltrated samples that contribute to highly enriched GO
terms/pathways, showing substantial connectivity. d Functional enrichment network showing diverse representation of immune cell pathways and
functions in the immune infiltrate-derived differentially expressed genes, dominated by highly inter-connected T and B-lymphocyte-related terms.
e Representative IHC images of a para-tumoral lymphoid structure present in section 1B, demonstrating absence of tumor cells (SOX10) but mixed
populations of CD4+, CD8+, and PAX5+ lymphocytes. Magnification ×10. f Single-sample gene-set enrichment analysis demonstrating spatially
discontiguous enrichment of functionally relevant gene sets throughout the tumor. IHC-based estimate of immune infiltrate (top) and sample location
(bottom) are indicated. g Immunostained tumor tissue revealing restriction of tumor cell phospho-ERK1/2 expression (brown staining) to cells located at or
immediately subjacent to the tumor cell surface. Arrowheads: tumor-surrounding tissue interface. Magnification ×10.
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all tumor specimens. These data are at least consistent with a
common neoepitope driving a persistent T-cell response over
time. To validate the potential in vitro immunogenicity of the
ZDHHC17 p.H507Y neoantigen, we synthesized 12 overlapping
candidate 9-mer peptides spanning the point mutation and used
these peptides to elicit CD8 T-cell responses from HLA-A*0301
donor peripheral blood mononuclear cells (PBMCs) in peptide
stimulation assays in vitro (see Methods). Compared with donor
PBMC co-cultured with non-peptide-pulsed A3-K562 cells, we
observed elevated IFN-γ production by CD8 T cells of two HLA-
A*0301 donors with several peptides (4, 6, 7, 9, 11, and 12) but
most particularly from peptides 4 and 12, which induced the most

robust responses at an average of three- to fivefold greater than
background levels (i.e., unpulsed cells), thus representing
immunogenic epitope candidates (Supplementary Fig. 7A-B).

To evaluate the functional characteristics of this remarkably
persistent T-cell clonotype, we harnessed matched single cell
TCRα, TCRβ, and transcriptome sequencing of sorted CD45+
CD3+ T cells within the post-PD-1 inhibitor tumor. The T cells
clustered broadly into a population of activated cytolytic
T lymphocytes (49%, CTL) expressing CD8A, GZMA, and PRF1
and checkpoint-regulated T cells (20%) expressing multiple
immune checkpoints including ICOS, CTLA-4, and TNFRSF18
but which were also dominantly CD4 expressing (Fig. 4g, h and

Table 1 Differentially expressed genes confirm the activity of multiple immune subsets in regions of heavy immune infiltration.

Gene Base mean log2 fold change lfc SE stat p-Value p-Adj

RP11.280H21.1 2.22 −4.34 1.65 −2.63 8.54E− 03 4.95E− 02
RP11.376M2.2 3.45 −3.93 1.12 −3.50 4.63E− 04 5.46E− 03
AL109763.2 1.75 −3.61 1.13 −3.18 1.47E− 03 1.36E− 02
AC093850.1 3.34 −3.51 1.18 −2.97 2.96E− 03 2.29E− 02
RP11.114H23.3 2.91 −3.43 0.97 −3.52 4.34E− 04 5.16E− 03
CTD.2651C21.3 1.51 −3.41 1.03 −3.31 9.34E− 04 9.59E− 03
RP11.307L14.2 1.88 −3.34 1.08 −3.10 1.91E− 03 1.65E− 02
ICAM5 1.66 −3.19 1.10 −2.89 3.86E− 03 2.80E− 02
RP11.29P20.1 12.71 −3.06 0.68 −4.51 6.46E− 06 1.58E− 04
RNF208 1.39 −2.89 1.07 −2.70 6.99E− 03 4.30E− 02
IL1RAPL2 12.62 −2.80 0.65 −4.32 1.54E− 05 3.28E− 04
EFNA3 1.98 −2.74 0.91 −3.00 2.71E− 03 2.14E− 02
GPR115 6.36 −2.59 0.69 −3.76 1.67E− 04 2.42E− 03
MAST1 9.13 −2.58 0.60 −4.33 1.50E− 05 3.22E− 04
RNU6.850 P 2.17 −2.57 0.91 −2.82 4.79E− 03 3.27E− 02
RP11.191L17.1 5.79 −2.53 0.91 −2.79 5.31E− 03 3.53E− 02
AC007091.1 3.29 −2.40 0.88 −2.71 6.68E− 03 4.17E− 02
RP11.67M1.1 6.98 −2.39 0.58 −4.15 3.39E− 05 6.41E− 04
LINC00919 3.72 −2.33 0.84 −2.77 5.60E− 03 3.67E− 02
AC018742.1 16.53 −2.33 0.80 −2.91 3.59E− 03 2.66E− 02
SMYD1 4.20 −2.29 0.68 −3.35 8.14E− 04 8.65E− 03
RN7SL151P 4.88 −2.23 0.77 −2.88 3.99E− 03 2.86E− 02
RLBP1 27.57 −2.09 0.43 −4.82 1.46E− 06 4.65E− 05
CTD.3064H18.4 8.82 −2.01 0.70 −2.86 4.20E− 03 2.97E− 02
NDUFAF4P3 9.37 −2.00 0.46 −4.40 1.11E− 05 2.49E− 04
RP1.153P14.5 3.39 5.48 1.20 4.58 4.74E− 06 1.22E− 04
LTF 351.40 5.52 0.73 7.60 2.89E− 14 4.03E− 11
LINC00086 6.09 5.52 1.26 4.39 1.11E− 05 2.50E− 04
IGLV3.21 18.88 5.62 0.91 6.20 5.73E− 10 8.57E− 08
ADH1B 128.01 5.67 1.05 5.38 7.39E− 08 4.12E− 06
EPPK1 9.80 5.68 0.89 6.40 1.55E− 10 3.18E− 08
hsa.mir.5195 4.71 5.70 1.05 5.45 5.12E− 08 3.03E− 06
SLC16A9 6.97 5.73 1.16 4.92 8.62E− 07 3.03E− 05
ADIPOQ 300.86 5.73 0.73 7.86 3.72E− 15 9.45E− 12
RP11.89M16.1 4.91 5.75 1.00 5.76 8.42E− 09 6.92E− 07
KLHL14 19.27 5.83 0.82 7.10 1.23E− 12 5.96E− 10
PGBD4P1 5.38 5.90 1.05 5.62 1.96E− 08 1.37E− 06
MDS2 4.65 5.93 1.10 5.39 7.06E− 08 3.99E− 06
SAA2 11.85 5.99 0.97 6.17 6.69E− 10 9.56E− 08
DSC3 5.00 6.06 1.25 4.85 1.25E− 06 4.11E− 05
PCK1 26.46 6.19 1.08 5.75 9.17E− 09 7.40E− 07
RP11.693J15.5 42.65 6.21 0.76 8.16 3.42E− 16 1.52E− 12
TNNT3 9.87 6.22 1.22 5.10 3.31E− 07 1.40E− 05
FCRL1 50.74 6.33 0.55 11.53 9.37E− 31 2.50E− 26
MAL2 7.46 6.64 1.05 6.30 2.91E− 10 5.03E− 08
CAPN6 7.91 6.72 1.10 6.11 9.98E− 10 1.33E− 07
RBP4 9.54 6.72 1.18 5.72 1.07E− 08 8.49E− 07
CR2 574.56 7.01 0.97 7.23 4.99E− 13 3.24E− 10
MFSD2A 17.06 7.02 1.10 6.38 1.82E− 10 3.49E− 08
GABRA2 39.51 7.54 1.07 7.07 1.54E− 12 6.71E− 10

Top 50 most differentially expressed genes (n= 25 upregulated, n= 25 downregulated in heavy vs. low immune infiltrate) between tumor sub-regions based on extent of immune infiltrate.
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Supplementary Fig. 7C). We recovered 11 counts of the persistent
TCR-Vβ rearrangement in a population of 6267 T cells (0.17%)
and identified multiple TCRα (TRAV35-TRAJ23 and TRAV2-
TRAJ2) and TCRβ (TRBV29-TRBJ2, TRBV7-TRBJ2, and TRBV5-
TRBJ1) partners to the TCR-Vβ sequence of interest comprising
this T-cell population, including T cells with dual TCR-Vβ
rearrangements. Based on VDJ combinatorics, a minimum of two
distinct T-cell clones contributed to this recurrent TCR
rearrangement at the amino acid level. Interestingly, when
immunoprofiling these cells using matched RNA sequencing
(RNA-seq) data, we found eight cells within the cluster expressing
multiple immune checkpoint molecules and five cells in the
cluster resembling activated CTLs. The detection of multiple
clones at nucleotide level expressing a synonymous CDR3 amino
acid sequence, their persistence over nearly a decade, and
simultaneous presence of both activated and exhausted pheno-
types suggests that this T-cell population arose from multiple
independent T-cell priming events rather than functional
divergence following a single more recent priming/activation
event.

Chromosome 7 gain is associated with an unfavorable immune
outcome. To further explore the link between genomic CNAs and
immune ITH, we focused on the observation of decreased
ESTIMATE immune scores in regions with subclonal gain of
chromosome 7 (p= 0.018, two-sided t-test). Immune deconvo-
lution revealed low counts of multiple immune cell subsets
including T cells (p= 0.00096), CD8+ T cells (p= 0.084), cyto-
toxic lymphocytes (p= 0.036), natural killer cells (p= 0.0013), B
cells (p= 0.015), monocytic lineage (p= 7.6e− 5), myeloid-
derived dendritic cells (p= 0.0039), and most significantly neu-
trophils (p= 3.4e− 5; all two-sided t-test comparison of means)
in these sub-regions (Supplementary Fig. 8A; neutrophil signature
gene sets, Supplementary Data 7)14. However, although overall
neutrophil counts (derived from transcriptome data) were low
and this was consistent with generally low neutrophil densities
identified by CD15 immunostaining of corresponding FFPE

sections, interrogation of neutrophil activation gene sets (Sup-
plementary Data 8) to assess putative neutrophil functional status
revealed a net neutrophil activation (slightly higher levels of
“positive neutrophil activation,” p= 0.51; significantly lower
levels of “negative neutrophil activation,” p= 0.00087, and
“negative regulation of neutrophil degranulation,” p= 0.0068; all
Benjamini–Hochberg corrected p-values) in the sub-regions with
gain of chromosome 7 compared with chromosome 7 stable
regions (Fig. 5a, b). We sought to validate this relationship using
TCGA melanoma (skin cutaneous melanoma; SKCM) samples
and identified samples with both copy number and mRNA
expression data (n= 470), within which 50 samples harbored
whole-chromosome gains of chromosome 7. Differential expres-
sion analysis comparing samples with chromosome 7 gain vs.
non-gain revealed a marked enrichment for neutrophil-related
genes and associated pathway level enrichment (Fig. 5c, d) despite
marginally lower neutrophil enumeration by CIBERSORT
(Supplementary Fig. 8B): the top four enriched GO terms were
neutrophil degranulation, neutrophil involved in immune
response, neutrophil activation and neutrophil-mediated immu-
nity (all p= 1e− 6, two-sided t-test comparison of means with
Benjamini–Hochberg correction). In parallel, Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathways enriched in the
chromosome 7 gain samples included response to bacterial
infections, phagosome and lysosome formation, and antigen
processing, consistent with the observed strength of gene
enrichments in neutrophil-related GO terms (Supplementary
Fig. 8C).

As immune infiltrate correlates with overall survival and has
been shown to correlate with responsiveness to anti-PD-1 and
anti-CTLA-4 immunotherapy, we then investigated the signifi-
cance of such neutrophil signatures in three publicly available
immunotherapy-treated melanoma cohorts (n= 119)5,19,26,27.
Within the anti-CTLA-4 cohort (Van Allen, n= 36) and two
anti-PD-1 cohorts (Hugo, n= 27; Riaz, n= 56), overall neutrophil
estimation was again largely similar (Supplementary Fig. 8D-F);
however, the genes significantly enriched in non-responders

Table 2 GO term enrichment reveals prominent T- and B-lymphocyte activation in immune-infiltrated tumor samples.

GO term Description Gene ratio Background ratio p-Value p-adjust

GO:0030098 Lymphocyte differentiation 36/376 344/18493 7.01E− 16 2.63E− 12
GO:0070661 Leukocyte proliferation 31/376 283/18493 2.26E− 14 4.25E− 11
GO:0002429 Immune response-activating cell surface receptor

signaling pathway
37/376 414/18493 4.14E− 14 5.18E− 11

GO:0002768 Immune response-regulating cell surface receptor
signaling pathway

38/376 445/18493 7.79E− 14 6.85E− 11

GO:0050851 Antigen receptor-mediated signaling pathway 29/376 259/18493 9.12E− 14 6.85E− 11
GO:0042113 B-cell activation 31/376 303/18493 1.46E− 13 9.14E− 11
GO:0050854 Regulation of antigen receptor-mediated signaling

pathway
15/376 57/18493 3.23E− 13 1.73E− 10

GO:0046651 Lymphocyte proliferation 28/376 264/18493 9.51E− 13 4.47E− 10
GO:0032943 Mononuclear cell proliferation 28/376 266/18493 1.14E− 12 4.78E− 10
GO:0042100 B-cell proliferation 17/376 91/18493 3.53E− 12 1.33E− 09
GO:0042110 T-cell activation 35/376 451/18493 1.22E− 11 4.16E− 09
GO:0045785 Positive regulation of cell adhesion 32/376 397/18493 3.63E− 11 1.14E− 08
GO:1903039 Positive regulation of leukocyte cell–cell adhesion 23/376 214/18493 8.22E− 11 2.38E− 08
GO:0007159 Leukocyte cell− cell adhesion 28/376 327/18493 1.59E− 10 4.13E− 08
GO:0050870 Positive regulation of T-cell activation 22/376 202/18493 1.65E− 10 4.13E− 08
GO:0050852 T-cell receptor signaling pathway 19/376 150/18493 2.23E− 10 5.24E− 08
GO:0050867 Positive regulation of cell activation 30/376 384/18493 3.25E− 10 7.18E− 08
GO:0022409 Positive regulation of cell – cell adhesion 24/376 251/18493 3.62E− 10 7.57E− 08
GO:0050855 Regulation of B-cell receptor signaling pathway 9/376 24/18493 5.39E− 10 1.07E− 07
GO:0030183 B-cell differentiation 17/376 125/18493 6.55E− 10 1.22E− 07

Top 20 most-enriched GO-BP terms within differentially expressed genes between samples displaying high vs. low levels of leukocytic infiltrate.
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compared with responders to therapy showed pathway level
enrichments dominated by the same neutrophil signatures
observed in chromosome 7 gain TCGA melanoma samples,
namely neutrophil degranulation (p= 6e− 5, 3e− 10, 5e− 6,
respectively), neutrophil involved in immune response (p= 6e−
5, 3e− 10, 5e− 6, respectively), neutrophil activation (p= 6e− 5,

3e− 10, 5e− 6, respectively), and neutrophil-mediated immunity
(p= 6e− 5, 3e− 10, 5e− 6 respectively; all Benjamini–Hochberg-
corrected p-values) (Fig. 5e–g). A core group of differentially
expressed genes (FTH1, FTL, HSPA8, HSP90AA1, and HSP90B1)
was recurrently identified within significantly enriched pathways
across TCGA melanoma samples and clinical cohorts (Fig. 5h).
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Together, these data suggest a recurrent immunosuppressive role
of chromosome 7 gain, potentially mediated by neutrophil
accumulation and/or activation, although it is unclear whether
neutrophil density or activation status are acting as a surrogate for
the typical co-localization of tumor necrosis observed at such sites.
However, these associations appear active both locally within
tumors and at the bulk tumor level where it has clinical
implications for immune checkpoint blockade.

Discussion
In this study, we performed matched genomic and immune
analysis of 67 distinct regions of a melanoma metastasis coupled
to longitudinal analyses in a patient treated with multiple thera-
pies, including prolonged exposure to (and progression on) anti-
PD-1 immunotherapy. Consistent with previous studies, we
observed minimal ITH in oncogenic mutations in canonical
melanoma driver genes, but reveal striking genomic ITH in
CNAs, including distinct copy number loss in chromosome 10
and gains of chromosomes 7 and 13, which may contribute to
differences in the immune landscape. The loss of chromosome 10,
and thus PTEN, has been implicated in resistance to PD-1
blockade previously, and in the context of this immunotherapy-
treated patient was observed to be lost in a stepwise manner
between tumors sampled prior to, during, and after anti-PD-1
therapy3,28.

The most immediately apparent implication of the extent of
heterogeneity observed and its diverse representation across
space even within a single metastatic deposit is how inherently
limited the prediction of clinical outcomes can be when based on
limited physical sampling of tumor material, especially if only
one metastatic deposit is sampled. Indeed, based on transcrip-
tional heterogeneity alone, a complete understanding of the
immunogenomic TME of the extensively profiled lesion in this
study would likely require a minimum of four separate passes if
subjected to needle biopsy. Although the degree of immunoge-
nomic spatial heterogeneity in any given tumor mass cannot
yet be predicted non-invasively, the spontaneous nature of
immune–tumor interactions implies that relevant spatial het-
erogeneity will be found, irrespective of prior therapeutic expo-
sures. To the extent that additional non-mutational features

begin to emerge as clinically meaningful biomarkers for treat-
ment response/resistance, these facets of multidimensional het-
erogeneity need to be considered when planning biopsy-derived,
biomarker-driven trials.

Tumor heterogeneity has been linked to the emergence of
treatment-resistant tumor cell sub-populations, which expand
under the selective pressure of therapy. Conceptually, hetero-
geneity encompasses multiple domains (e.g., spatial, temporal,
and clonal) and can be applied to any measurable feature of a
tumor; thus, it remains unclear exactly which molecular con-
stituents of heterogeneity are most consequential to clinical out-
comes. Previous studies of heterogeneity in other tumor types
(e.g., renal, prostate, and lung) have focused primarily or exclu-
sively on phylogenetic mutational analyses to characterize clonal
heterogeneity of tumor cell content29–32. When performed, multi-
region sequencing either for tumor cell mutations or TCR pro-
filing has surveyed minimal numbers of regions (e.g., three to five
per tumor), often in relatively small numbers of samples31,33–35,
whereas truly multi-platform analyses have effectively evaluated
inter-tumoral rather than ITH36. At the extreme of cellular
resolution, studies employing single cell techniques, whilst
informative of the multidimensional cellular heterogeneity within
bulk tumor cell populations, necessarily destroy spatial informa-
tion during sample processing and arguably do not comprehen-
sively survey the transcriptome within any individual cell11.
Thrane and colleagues performed a proof-of-principle high
resolution spatial transcriptomics analysis of four lymph node
metastases obtained from patients with stage III melanoma,
finding evidence of variably distinct gene expression profiles
between regions of tumor, lymphoid tissue, and an apparent
transition zone that may have represented functional interaction
between tumor, stroma and lymphoid cells37. Relative intratu-
moral transcriptomic homogeneity in one sample was associated
with long-term overall survival, however other domains of het-
erogeneity were not evaluable with this technique.

We found chromosome 7 gain to be significantly associated
with features of an unfavorable immune microenvironment,
including a paucity of effector cell populations and signatures of
neutrophil activation. This relationship was confirmed among
melanoma samples of TCGA. Furthermore, a strikingly consistent

Fig. 4 T-cell repertoire dynamics reveal high ITH, potential for long-term clonal persistence and irregular intratumoral movement. a Heatmaps of the
560 most variably expressed genes (based on median absolute deviation) across the transcriptome dataset for which matched methylation and copy
number data were available, indicating distinct sample-wise clustering patterns within each dataset and generally unidirectional methylation patterns
within samples. Data are log2-transformed counts (gene expression), β-values (methylation), and log2(probe intensity= observed intensity/reference
intensity) (copy number), z-scored within each data type. b Correlation of copy number (upper panel) and methylation (lower panel) with transcript
expression for the most variable genes on chromosome 7 showing mostly positive correlations for CNA and mostly negative correlations for methylation as
expected. Three genes (indicated in blue, lower panel) showed discordant correlations for both CNA and methylation. c Tanglegram showing relationships
between the sample clustering obtained independently from each of the copy number, methylation, and transcriptome datasets for samples represented in
all datasets. Entaglement values (range 0–1) indicate moderate lack of cluster structure concordance, indicative in this context of significant additional
(unmeasured) factors contributing to the regulation of mRNA expression. Immune status of each subregion sample is indicated in color. d T-cell receptor-
Vβ (TCR) clonality (range 0–1) varied considerably between clinically relevant time points, between tumors and the peripheral blood, and spatially within
the on-PD-1 inhibitor tumor. Samples with clonality > 0.1 are highlighted in orange. e Top ten most abundant TCR clonotype proportions (i.e., fraction of
total identified TCR clonotypes) in each sample are represented as stacked bar plots. The topmost abundant clone is colored at the top of the bar, with
each color representing a unique clonotype that may be shared between samples. Clonotypes 2–5 and 6–10 are colored in light blue and deep blue,
respectively. f Morisita overlap index (MOI, range 0–1) values of TCR repertoires comparing the pretreatment sample, peripheral blood samples, on-PD-1
inhibitor sample (each subregion), and a post-PD-1 inhibitor sample were used to compare the overlap in shared nucleotypes in the TCR repertoire
identified in each sample. Higher MOI indicates a greater proportion of shared TCR sequences. Within the on-PD-1 inhibitor sample, TCR clonotypes
present in section 8 were largely restricted to this geographic location, which was notably highly necrotic. There was considerable sharing of clonotypes
between sections 4 and 6, and to a lesser degree between 2, 4, and 6, suggesting a greater degree of physical movement of T cells between these sections.
g tSNE plot of TIL populations. The majority of the cells fell into an activated cytotoxic T-cell lymphocyte, CD4 T cell, and checkpoint-inhibited T-cell
phenotype. h Marker gene expression levels across TIL clusters. Relative expression of key marker genes associated with a cytotoxic T-cell phenotype
(CD8, GZMA, and PRF1), CD4 phenotype (CD4 and IL7R), and a multiply checkpoint-inhibited phenotype (FOXP3, CTLA-4, GITR, and ICOS) are overlaid
on the tSNE clusters.
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set of neutrophil enrichments was observed in melanoma tumors
failing to respond to either anti-CTLA-4 or anti-PD-1 therapy
across three independent published cohorts. This reveals two key
messages, with the important caveat that additional studies are
required to clarify the nature of neutrophil recruitment and
activation in anti-tumor-immune responses and whether their
presence is largely as a consequence of cellular destruction by

other mechanisms. First, the insights from regional immunoge-
nomic differences within a single tumor metastasis can directly
translate to the bulk tumor level and, second, chromosome 7 gain
may drive an immunologically adverse phenotype associated
directly or indirectly with neutrophil activation. Several promi-
nent oncogenes (BRAF, EGFR, and MET) are located on chro-
mosome 7 and may thus be subject to amplification in the setting
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of copy number gains. In our patient’s spatially profiled tumor,
BRAF amplification compounded by an activating BRAFG421R

mutation may have contributed to immunosuppressive MAPK
signaling, potentially in conjunction with other chromosome 7
oncogenes24,38. We also observed recurrent dysregulation of
ferritin and HSP90-related genes, suggestive of an enhanced
acute-phase protein reaction, iron loading and molecular stress in
the context of chromosome 7 gain and immunotherapy failure.
Iron availability is known to influence tumor cell survival and the
function of numerous immune cell types including T cells;
however, these competing outcomes have been poorly studied in
solid tumors such as melanoma39,40. Nevertheless, a potential role
for immunosuppressive neutrophil phenotypes and iron traf-
ficking within the TME warrants further evaluation.

We identified a persistent, high frequency T-cell clonotype
prevalent in multiple tumor deposits over many years in this
patient, with evidence of both activated and checkpoint molecule
regulated (likely previously activated) cells present simulta-
neously. The time frame, and multiplicity of independent geno-
mic rearrangements leading to this clonotype indicates repeated
priming events, potentially in response to a highly persistent
tumor antigen robust to multiple lines of treatment. Identification
of such a persistent T-cell population, or its persistent antigen,
might be specifically useful for the development of defined anti-
gen therapies such as vaccines (definitive or adjunctive therapy)
or engineered T cell therapies based upon these targets, and
warrants wider sampling of multiple tumors in patients—
including the use of archival tissues—to identify persistent tumor
features that may be exploited for therapeutic advantage. Fur-
thermore, our integrative immunogenomic analysis strongly
suggests that high frequency T-cell clonotypes may be recruited
to the tumor microenvironment not only due to tumor cell
reactivity, but as passengers in the inflammatory milieu. Further
work will be required to determine to what extent such “pas-
senger” T-cell clonotypes contribute usefully to the anti-cancer
immune response.

Our findings of extensive immunogenomic heterogeneity at the
intratumoral level are inherently limited by detailed multi-
platform profiling of a single lesion; thus, it is difficult to deter-
mine how typical the observed extent of heterogeneity is to
broader patient populations, particularly those having differing
clinical scenarios and treatment outcomes. Nonetheless, con-
sidering that subclonal variation has now been described in
numerous tumor types, these findings serve to highlight the
potential sensitivity of the immune microenvironment to local
factors, including tumor genomic features that appear to have
functional impact on local tumor immunity. Through analyses of
several clinical datasets we found certain immunogenomic fea-
tures from our deeply profiled tumor to have meaningful corre-
lates in additional cohorts of patient samples, but additional

studies are clearly required to refine these inferences towards
therapeutically manipulable strategies. Whilst overall objective
clinical responses were not achieved in this patient over a period
approaching 10 years and 7 lines of therapy, substantial clinical
benefit was derived. Although this patient represents only a subset
of long-term survivors with metastatic melanoma, considering
the increasing availability of disease modifying therapies, it is
likely that this group will become increasingly prevalent. Further
molecular characterization will ultimately aid in understanding
long-term survivors of metastatic disease, providing therapeutic
insights transferrable to the greater majority of patients.

Methods
Biospecimen collection. Patient data, tumor samples, and matched peripheral
blood leukocyte samples were obtained and used in accordance with research
protocols approved by the local Institutional Review Board of the University of
Texas MD Anderson Cancer Center. Biospecimens were retrieved, collected, and
analyzed under UT MD Anderson Cancer Center Institutional Review Board-
approved protocols in accordance with the Declaration of Helsinki. In particular,
the patient provided informed consent to approved institutional protocols that
cover specimen collection and storage, and the use for research purposes, along
with collection and consent to publish relevant de-identified clinical metadata
pertinent to this study.

Sample processing: spatial intratumoral analysis. We developed a three-
dimensional model for processing a whole resected metastatic lesion. The lesion
measured 2.5 cm × 2.4 cm × 1.5 cm and was obtained from abdominal wall soft
tissue.

Processing consisted of the following steps:

1) Following resection, the specimen was measured and oriented according to
its largest diameter. Lateral (short axis, “left”/”right”) orientation was
preserved by differential inking of the outside surface with red or blue ink
(Fig. 1b).

2) The specimen was serially sectioned perpendicularly to its largest axis
resulting in eight slices of 2–3 mm thickness. The cut surface was then
painted prior to each cut to preserve the true orientation.

3) Alternate slices were submitted for FFPE (four slices; odd-numbered slices)
or frozen (four slices; even-numbered slices) processing. FFPE slices were
used for pathological assessment and IHC analysis. Frozen slices were
embedded in optimal cutting temperature compound and used for DNA,
RNA, and protein extraction and downstream analyses.

4) For frozen sections, hematoxylin and eosin staining was performed for
histological quality control (QC). Frozen sections were further squared into
a 0.2–0.4 cm grid as shown in Fig. 1b and Extended Data Fig. 3, generating a
total of 67 sub-regions of tumor. Due to the variation in tumor shape
throughout three-dimensional space, each tumor slice presented a distinct
cross-sectional area and thus a unique grid was applied to each frozen tumor
slice (slice n) and the immediately adjacent FFPE slices (slices n− 1 face B
and n+ 1 face A). Thus, although subregion numbering generally proceeded
bottom-to-top and right-to-left, specific slice subregion numbering is not
directly comparable between slices. Each piece was labeled and numbered.

5) Histopathological review for assessment of viable tumor, inflammatory
infiltrate, necrosis and connective tissue of each subregion piece was
performed by a pathologist.

1) Designation of sub-regions as located at the tumor core or margin was
performed by inspection of all regions annotated on SOX10-stained IHC

Fig. 5 Chromosome 7 gain is associated with an unfavorable immune environment driven by neutrophil signatures that characterize non-responders to
immune checkpoint blockade. a, b Chromosome 7 gain sub-regions of the melanoma mass progressing during anti-PD-1 therapy revealed lesser
suppressive neutrophil signatures compared with sub-regions unaffected by chromosome 7 gains. Scores shown represent geometric mean log2-
transformed counts of genes within the GO terms indicated (see also Supplementary Data 7). Plots include two-sample t-test comparison with
accompanying significance values. c Samples affected by whole-chromosome 7 gains within The Cancer Genome Atlas skin cutaneous melanoma (SKCM)
dataset revealed prominent differential upregulation of genes involved in neutrophil activation signatures revealed by Gene Ontology term enrichments.
Gene ratios indicate the ratio of representation of input genes within the indicated GO term gene set relative to all queried GO term gene sets. Top
enriched pathways are displayed after Benjamini–Hochberg correction for multiple testing. d Connected gene network of genes involved in major GO term
enrichments within chromosome 7 gain TCGA SKCM samples. e–g Differentially expressed genes contrasting responders vs. non-responders to immune
checkpoint blockade agents in publicly available datasets revealed consistent GO term enrichments for neutrophil activation signatures. Top enriched
pathways are displayed after Benjamini–Hochberg correction for multiple testing. e Van Allen et al.5, anti-CTLA-4 dataset; f Hugo et al.27, anti-PD-1
dataset; g Riaz et al.26, anti-PD-1 dataset. h Heatmap of genes found recurrently enriched across TCGA SKCM chromosome 7 gain and clinical non-
responder samples showing relative enrichment of each gene across the datasets as a scaled value.
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slides to infer a volumetric estimate of tumor content and location.
Three-dimensional variation throughout the frozen slices was accounted
for by considering the immediately adjacent FFPE slices (ie: above and
below, when both were available) in order to arrive at a consensus call to
categorize tumors as core or margin.

2) Immune infiltrates were evaluated using CD45-LCA positive cell density
measured by digital image quantification using the Aperio ImageScope
software. CD45+ density was then categorized as low, medium, or high
by binning into lower, middle, or upper tertiles considering all regions
analyzed. Several additional factors required consideration before
arriving at a final semi-quantitative categorization as having focal, low,
moderate, or high immune infiltration: between-slide variation in
staining efficiency, spatial distribution of immune cell content (focal,
broad, intra/peri-/extra-tumoral), and a consensus estimate for genomic
frozen slices by considering the adjacent FFPE sections on both sides for
which the higher immune content was assigned precedence.

6) Frozen-section squares were submitted for dual DNA and RNA extraction,
and for protein extraction.

7) DNA samples were submitted for T200 targeted sequencing (n= 38),
methylation (n= 38), whole exome sequencing (n= 6), and TCR sequen-
cing (n= 46). RNA samples were submitted for gene expression profiling by
RNA sequencing (n= 48) and TCR sequencing (n= 46).

Sample processing: longitudinal time points. Archival formalin-fixed paraffin-
embedded specimens from the lung metastasis (pretreatment) and right gluteal
mass (post-PD-1 inhibitor) were obtained from the institutional pathology
department and utilized for tumor evaluation by a pathologist, DNA/RNA
extraction, and IHC as described below.

A single-cell suspension was generated from the post-PD-1 inhibitor time point
tumor by gentle mechanical digestion of fresh tumor material, followed by
enzymatic digestion with 2 mg/mL collagenase A (Roche, catalog number 11 088
793 001) and DNase I (Roche, catalog number 11 284 932 001) in serum-free RPMI
1640 (Gibco, catalog number 11875119) for 1 h at 37 °C with agitation. The
cryopreserved single-cell suspension was thawed and purified for viable cells by
negative selection using the MACS Dead Cell Removal Kit (catalog number 130-
090-101) and an LS Column (catalog number 130-042-401) on the QuadroMACS
Separator (catalog number 130-090-976, all Miltenyi Biotec). The purified single-
cell suspension was stained with SYTOX blue dead cell stain (catalog number
S34857, Thermo fisher Scientific), anti-human CD45 PerCP-Cy5.5 (clone HI30,
catalog number 564105, BD Biosciences), anti-human CD3 FITC (clone SK7,
catalog number 340542, BD Biosciences), and anti-human melanoma (MCSP)
APC (catalog number 130-091-252, Miltenyi Biotec) prior to cell sorting on a BD
FACSAria III flow cytometer (BD Biosciences) to enrich for a live T-cell fraction
(CD45+ CD3+) and live tumor fraction (CD45− MCSP+)41.

Nucleic acid extraction. DNA and RNA isolation were performed using the
AllPrep DNA/RNA/miRNA Universal kit (catalog number 80224, Qiagen) for
fresh-frozen samples and the AllPrep DNA/RNA FFPE kit (catalog number 80234,
Qiagen) for FFPE samples according to the manufacturer’s instructions. Tumor
viability of 80% estimated from corresponding IHC samples was set as a minimum
threshold for genomic analyses. Samples with DNA integrity numbers > 7 were
used for targeted panel sequencing and EPIC array methylation profiling. RNA-seq
was performed on samples with a minimum RNA integrity number (RIN) of 5.5,
except for two cases (6A10 and 8A3) with RINs > 3. A minimum of 700 ng of RNA
were required for all samples undergoing RNA-seq.

Cancer gene panel DNA sequencing. Samples with cancer cell purity greater than
80% based on pathologic assessment were used for cancer gene panel DNA
sequencing. Mean sequencing coverage was 861× in tumors and 1314× in germline
samples. Paired-end reads in FASTQ format were generated by the Illumina
pipeline and aligned to the reference human genome hg19 build using the
Burrows-Wheeler Alignment Tool (BWA, v0.7.5) with default settings42. Aligned
reads were further processed using GATK with best practices for removing
duplicates, indel removal, and recalibration43.

To detect potential single-nucleotide variants, MuTect (v1.1.4)44 was used with
default parameters including a VAF of >10% in tumor DNA, variants present on
both strands, a high read count of tumor DNA and the removal of positions listed
in dbSNP 129. Pindel (v0.2.4) was used to identify small insertions and deletions45.
Copy number was called using Sequenza (v2.1.2)46. Tumor purities and ploidies
were calculated from Sequenza calls using the sequencing data with default
parameters. The content of the cancer gene panel is given in Supplementary Data 2.

Whole exome sequencing. Exome sequencing data were generated using methods
as previously described, including library preparation using the Agilent SureSelect
XT Target Enrichment protocol (#5190-8646) prior to sequencing on an Illumina
HiSeq 2000/2500 v3 system using 76 bp paired-end reads3. Raw sequencing data
were then processed using Saturn V, the next-generation sequencing data pro-
cessing and analysis pipeline developed by the Department of Genomic Medicine

at the UT MD Anderson Cancer Center. BCL files were pre-processed using
CASAVA (Consensus Assessment of Sequence and Variation, v1.8.2) for demul-
tiplexing and converting to FASTQ. The files were aligned using the BWA, v0.7.5
using the hg19 reference genome build42. Picard (v2.5.0) was used to convert SAM
files to BAM files and remove duplicates. BAM files were realigned and recalibrated
using GATK. Mean coverage was 181× for tumors and 81× for matched germline
DNA. MuTect and Pindel were used to identify somatic point mutations and small
insertions and deletions, respectively44,45. Somatic mutations in HLA genes were
called using POLYSOLVER (v1.0)47. Data were annotated by ANNOVAR
(v20180118) using the NCBI Reference Sequence Database48.

Phylogenetic tree construction. Mutations that passed our WES Mutect filtering
criteria were considered for the purpose of constructing phylogenetic trees. A
tumor power of 0.8 was used to filter mutations that reflected the power to detect a
mutation at 0.30 allelic fraction. Trees were built using binary presence/absence
matrices built from the distribution of mutations within the tumor samples. A
representative subregion sample was chosen from the four frozen slices of the on-
PD-1 inhibitor tumor (Fig. 1b), thus producing a total set of six samples being
compared (pretreatment ×1, on-PD-1 inhibitor ×4, post-PD-1 inhibitor ×1). As the
most inferior section (section 8) of the on-PD-1i tumor was largely necrotic, we
sampled two regions from the preceding frozen section (final samples: 2A2, 4A11,
6A3, 6A16). To compare the three time points at bulk tumor level, we combined
the multiple on-PD-1 inhibitor tumor sub-samples. The R Bioconductor package
phangorn (v2.5.5) was utilized to compute the hamming distance under the
neighbor-joining tree method and generated unrooted trees49. The distance was
computed after 100 bootstrap iterations with the bootstrap value reflected on the
branch. We identified somatic mutations using MuTect and both DNA copy
number changes and tumor purity using Sequenza44,46. We estimated the cancer
cell fractions identified with a particular mutation, accounting for tumor purity,
using PyClone (v0.13.0)50, which was used to infer cancer cell fractions and assign
clonal clusters50. Further clonal evolution was evaluated through ClonEvol (v0.1)51.

RNA sequencing. Paired-end transcriptome reads were aligned using TopHat2, to
the UCSC hg19 reference genome52. Gene read counts were generated using Htseq-
count53. Bioconductor R package DESeq2 (v1.24.0) was used to normalize the read
counts and for downstream analysis, vsn (v3.52.0) was used for variance
stabilization54,55. Differential gene expression analysis between the heavy and low
infiltrated samples were performed after adjusting for variation in tumor content
due to core or margin location by excluding samples with very low tumor purity
(i.e., sampling predominantly surrounding stroma). Genes with significant changes
in expression were assessed by including the top 1000 most variant genes after
performing median absolute deviation. The genes were clustered based on Eucli-
dean distance and the samples based on Pearson correlation with complete linkage.
DAVID (v6.8) online functional annotation tools, showed immune-regulated
pathways from the most variable genes with an FDR cutoff of 1%56. Pathway
analysis was performed on the most differentially expressed genes. ssGSEA was
run through GSVA (v1.32.0)57. Pathway level enrichment was run on the
output of DESeq2 for each condition through DOSE (v3.10.2) and ClusterProfler
(v3.12.0)54,58–60. Cell type-specific gene expression was evaluated using immune
and melanoma-specific markers. All heatmaps were constructed using Complex-
Heatmap (v2.0.0)61. ESTIMATE (v1.0.13) was used to detect tumor purity and the
presence of infiltrating stromal/immune cells in tumor tissues using gene expres-
sion data12. Sample distances were visualized using Circlize (v0.4.8) and Plotly
(v4.9.0)62,63. Consensus clustering was performed using the Consensus Cluster Plus
(v1.48.0)64. Hierarchical clustering was used to group the 48 transcriptomic sam-
ples with a maximum cluster count of 20. The delta area plot was used to determine
the relative increase in consensus clustering of samples within a given cluster and
to determine a value of k beyond which no appreciable increase was achieved. The
tracking plot was used to depicts which samples were allocated to which cluster,
and lack of correlation with geographic location of the sample. For validation
across public datasets, we used reads/fragments per kilobase of transcript per
million mapped reads (FPKM) values to build linear models of expression, given
the design matrix of binary responders and non-responders using response clas-
sifications based on RECIST v1.1 criteria provided with each paper. To compare
the most representative samples across all datasets, we restricted our analysis from
the Riaz dataset to include only the on-treatment time point samples. Ribosomal L
and S (RPL and RPS, respectively) genes were excluded from downstream analysis,
following which the expression values were log-transformed. Linear modeling was
performed to fit a model of expression values for each gene, given the binary
response status65. Empirical Bayes moderation was then carried out by utilizing
information across all genes to obtain precise estimates of gene-wise variability66.
The differentially expressed genes were characterized by FDR-adjusted p-values of
<0.05 and log fold change in the positive direction for the non-responders.
Downstream GO and KEGG pathway enrichment was performed using Cluster-
Profiler59 based on a logFC > 7 and an adjusted P-value of <1e− 5.

Methylation analysis. We studied methylation levels through the pipeline inte-
grated into the Bioconductor package, ChAMP (v2.14.0) using R67. The data were
imported as raw idat files and a variety of QC plots were evaluated. The data was
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imported and filtered based on detection p-value (<0.01) and probes with <3 beads
in 5% of samples per probes. Non-CPG probes and single-nucleotide poly-
morphism-related probes were then removed. Finally, multi-hit probes and probes
located on the X chromosome were filtered out.

Type II probe normalization was performed using BMIQ (v1.5)68. We also
assessed the number and nature of significant components of variation by using
singular value decomposition to look at batch effects and COMBAT (v3.32.1) for
batch correction69. For the identification of differentially methylated regions, the
BumpHunter (v1.26.0) method was used to identify extended segments of the
genome that show quantitative alteration in DNA methylation levels70.

We used the mean normalized value of beta to collapse probe level data to gene-
wise data for integrative analysis. Genes on chromosome 7 were used to compare
the correlation of expression and methylation. The gene level beta values for the
most variable genes from expression were used to compare with copy number and
expression data.

TCR sequencing. DNA-based: DNA sequencing of the variable region of the β-
chain of the TCR was performed by ImmunoSeq (Adaptive Biotechnologies,
Seattle, WA)71,72. RNA-based: RNA-seq of the variable chain of the TCR was
performed using Immunoverse TCR (ArcherDX, Boulder, CO)73. The TCR clon-
ality was used for linear regression. The top 5 clones with respect to DNA and RNA
clonal fractions were calculated for each sample, and their residuals from the line of
best fit were used as a measure of activation of TCR clones. Spearman’s rank
correlation was performed between the residuals and the clonality measured from
DNA-based TCR sequencing. The top clones were analyzed using both platforms
independently and then concurrently. Plot3D was used to map the potential tra-
jectory of the most dominant clones across all regions74. TCR statistics were
computed using the R package tcR (v2.2.4)75.

Stimulation of ZDNNC17 p.H507Y neoantigen-specific T cells. To evaluate the
potential in vitro immunogenicity of the ZDNNC17 p.H507Y neoantigen, we
synthesized 12 overlapping candidate 9-mer peptides (ELIM Biopharmaceuticals,
Inc., Hayward, CA), spanning the neoantigenic point mutation, and used these
peptides to elicit T cell responses from HLA-A*0301 donor PBMC. Peptides were
dissolved in 1× phosphate-buffered saline at a concentration of 10 mg/mL. HLA-
A*0301-transfected K562 (A3-K562) cells pulsed with 2 μg/mL of each ZDNNC17
p.H507Y peptide were used as antigen-presenting cells for stimulating CD8+
T cells from each of two HLA-A*0301 donors using methods previously estab-
lished in our lab76. For each peptide stimulation, irradiated (8000 rads) peptide-
pulsed K562 cells were co-cultured in a 48 well plate with 1 million PBMC
from each donor at a ratio of 1:20 in RPMI 1640 containing 25 mM HEPES, 2 mM
L-glutamine, 10% human AB serum (CTL medium), and β2-microglobulin
(3 μg/mL)76. Three rounds of PBMC stimulation with peptide-pulsed A3-K562
were performed at 7-day intervals. During the first stimulation, IL-21 (30 ng/mL;
Peprotech, Rocky Hill, NJ, USA) was included in the cell culture medium and
during the second and third stimulation cycle, IL-21 (30 ng/mL), IL-2 (10 ng/mL;
Bayer, Terrytown, NY, USA), and IL-7 (5 ng/mL; R&D Systems, Minneapolis, MN,
USA) were added to the growth medium as previously described76,77. Controls
included PBMC co-cultured with non-pulsed A3-K562 cells and A3-K562 pulsed
with a pool of all 12 peptides.

After three rounds of stimulation, an aliquot of 100,000 cells from each well was
co-cultured overnight with peptide-pulsed K562 cells at a ratio of 10 : 1 to assay for
antigen specific T cells using flow cytometry-based intracellular IFN-γ production
assay78. The cells were cultured in the presence of the intracellular protein
transport inhibitor Brefeldin A (Thermo Fisher, USA). After overnight culture,
cells were washed and then stained with CD8-APC (Clone K1, BioLegend, San
Diego, CA) for 20 min. Intracellular staining for IFN-γ-PE (Clone B27, BioLegend,
San Diego, CA) was performed according to the manufacturer’s protocol. After
staining, cells were resuspended in 100 μL of fluorescence-activated cell sorting
(FACS) buffer and data were acquired using a NovoCyte Flow Cytometer (ACEA
Biosciences, San Diego, CA). Data were analyzed using FlowJo™ software (Tree
Star, Ashland, OR, USA). The percentage of background IFN-γ-positive cells was
determined by the response of PBMC co-cultured with non-pulsed K562 cells and
peptide-specific responses were registered as positive if the proportion of T cells
producing IFN-γ in response to stimulation with ZDNNC17 p.H507Y-derived
peptide was ≥2-fold higher than the background proportion of IFN-γ+ CD8
T cells79. PMA+ ionomycin treatment of PBMC served as a positive control for
the IFN-γ production assay.

Single-cell sequencing. Three technical replicates of FACS-sorted T cells (CD45+
CD3+) and one replicate of FACS-sorted tumor cells (MCSP+) were loaded to a
targeted 10,000 cells per lane on the 10× Genomics Chromium Controler with the
single cell 5’ Immune Repertoire and Gene Expression profiling kit. In total, we
loaded ~ 30,000 individual tumor-infiltrating lymphocytes and ~10,000 melanoma
cells on the 10× platform (10× Genomics, CA, USA). Reverse transcription, TCR
enrichment, and library preparations were performed according to the 10×
Genomics 5’ V(D)J protocol revision C. Transcriptome libraries were pooled and
sequenced on the Illumina NovaSeq 6000 S2 flow cell with 26 R1, 8 i7, and 91 R2
cycles, respectively. The TCR libraries were pooled and sequenced on the Illumina

MiSeq V2 150 cycles paired-end. Single-cell transcriptomic and TCR data were
processed with the 10× Genomics Cell Ranger Pipeline version 2.2.0 with the
software-provided GRCh38 reference transcriptomes80. After QC, there was RNA-
seq profile data available from 6267 immune and 4303 melanoma cells. Down-
stream processing and visualization was encompassed through Seurat and tSNE
plots81,82.

Neoantigen prediction. HLA Class I neoepitopes were predicted for each sample
and affinity was predicted for the predicted peptides using NetMHCpan (v2.8)83.
Patient HLA-A, HLA-B and HLA-C variants were identified using ATHLATES
(v2014_04_26)84. All possible 9- to 11-mer peptides flanking a nonsynonymous
exonic mutation were generated and binding affinity was predicted based on
patient HLA and compared with the wild-type (WT) normal peptide counterpart
from NetMHCpan83. MuTect calls were filtered using tumor count > 30, normal
count > 10, tumor VAF > 0.05, normal VAF < 0.01, and tumor power > 0.844. In
addition, a FPKM count > 1 and an alternate allele count > 4 was leveraged from
the RNA-seq data. Mutated peptides with predicted IC50 < 500 nM were considered
to be predicted neoantigens.

Copy number alteration analysis. Sequenza was used to obtain copy number
segments of log2 copy ratios for tumor samples46. CNTools (v1.24.0) was used to
identify copy number gain/loss events at log2 thresholds of 0.685. The burden of
copy number gain or loss was extrapolated from the total number of genes with
copy number events in each sample. ExomeCNV (v1.4) was used to calculate the
log2 copy ratios86. For the TCGA dataset, processed segmented values were used.
Whole-chromosome 7 events were characterized as log segmented mean values
>0.3 and covering >70% of the length of the chromosome.

Reverse-phase protein array. Frozen tumor subregion samples were processed
for RPPA analysis in the UT MD Anderson Cancer Center RPPA Core Facility
using previously described methods (https://www.mdanderson.org/research/
research-resources/core-facilities/functional-proteomics-rppa-core/rppa-process.
html). Briefly, tumor lysates were prepared in RPPA lysis buffer, serially diluted
and printed onto nitrocellulose-coated slides prior to being probed with ~300
validated primary antibodies and detection with biotinylated secondary antibodies
specific for the primary antibody species. Signal amplification and visualization by
a 3,3′-diaminobenzidine (DAB) colorimetric reaction was performed prior to slide
scanning and quantification using the Array-Pro Analyzer software (MediaCy-
bernetics), relative protein level estimation using SuperCurve GUI, correction for
spatial bias and QC check of each slide.

Ba/F3 transformation assay. Transforming potential of JAK1 WT and variants
were assayed in IL-3-dependent Ba/F3 cell model as described previously87. Briefly,
lentivirus vector of JAK1 WT and variants were generated with pHAGE-PURO
backbone by high-throughput mutagenesis and molecular barcoding technique as
described previously88. All clones were full-length validated by Sanger sequencing.
Virus were produced by transfecting LentiX-293T cells (Clontech) with pHAGE-
PURO backbone and two packaging plasmids (psPAX2 and pMD2.G), and were
collected by filtration through 0.45 µm polyvinylidene difluoride filter 3 days post
transfection. Six hundred thousand Ba/F3 cells were transduced by spinoculation
at 1000 g for 3 h in the presence of polybrene (EMD Millipore; final concentration:
8 µg/mL), and then incubated in the assay medium without IL-3 (Advanced RPMI
1640 with 1× GlutaMAX and 5% fetal bovine serum; Thermo Fisher Scientific) for
2 weeks. Cell viability was measured by CellTiter-Glo luminescent cell viability
assay (Promega).

Immunohistochemistry. IHC was performed on each of the four FFPE sections
using an automated stainer (Leica Bond Max, Leica Biosystems) using primary
antibodies against SOX10 (polyclonal, 1 : 50, Cell Marque, catalog number 383A-
7), CD45-LCA (clones 2B11+ PD7/26, 1:300, Dako, catalog number M0701),
CD45-RO (clone UCHL1, undiluted, Leica Biosystems, catalog number PA0146),
CD4 (clone 4B12, 1 : 80, Leica Biosystems, catalog number NCL-L-CD4-368),
CD8α (clone C8/144B, 1 : 25, ThermoScientific, catalog number MA5-13473),
Granzyme B (clone GrB-7, 1 : 25, ThermoScientific, catalog number MA1-35461),
FoxP3 (clone 206D, 1 : 50, BioLegend, catalog number 320102), LAG-3 (clone
D2G4O, 1 : 100, Cell Signaling Technology, catalog number 15372), PD-1 (clone
EPR4877(2), 1 : 250, Abcam, catalog number ab137132), PD-L1 (clone E1L3N, 1 :
100, Cell Signaling Technology, catalog number 13684), PAX5 (clone 1EW,
undiluted, Leica Biosystems, catalog number PA0552), CD68 (clone PG-M1, 1 :
450, Dako, catalog number M0876), CD57 (clone HNK1/Leu-7, 1 : 250, Abcam,
catalog number ab187274), and phospho-p44/42(Erk1/2)(Thr202/Tyr204) (clone
D13.14.4E, 1 : 300, Cell Signaling Technology, catalog number 4370). Slides were
counter-stained with hematoxylin, scanned using an Aperio slide scanner (Aperio
AT Turbo, Leica Biosystems), and digitized images analyzed using the Aperio
ImageScope software (Aperio–Leica Biosystems). Three-dimensional reconstruc-
tion re-connecting the frozen and FFPE slices in a sequential order was performed
based on the documented inter-slice relationships and histological findings. The
IHC slices were gridded into smaller pieces in the ImageScope software to match
the gridding of frozen sections, and the results were obtained for each subregion.
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IHC-derived cell subset results were quantified as the number of positive-staining
cells for each antibody per mm2, using custom-tuned algorithms based on nuclear
v9, membrane v9, or cytoplasmic v1 algorithms as appropriate for the staining
pattern of each antibody.

Data analysis and statistical considerations. Statistical analyses were performed
using R v3.5.089. Analysis packages and tools used are described in the relevant
methods sections. Statistical tests included Welch’s two-sample t-test and Spearman’s
rank correlation with the Benjamini–Hochberg correction for an adjusted p-value
threshold of 0.05. The R package plot3D and Plotly were used to map sequencing-
derived data to spatial locations63,74. Data were parsed and organized through R
packages tidyr, reshape2, and dplyr90–92. Dendograms and tanglegrams were con-
structed using dendextend93. Plotting was done through ggplot2 and ggrepel94,95.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Sequencing data (whole exome sequencing, RNA sequencing, T200 targeted gene panel
sequencing, and single-cell sequencing) have been deposited in the European Genome-
Phenome Archive under accession EGAS00001003292. Access is restricted to non-
commercial uses for cancer research purposes in accordance with the relevant patient
consent(s) and requests for access to these datasets and to TCR sequencing datasets
should be made to AFutreal@mdanderson.org. Other transcriptomic datasets analyzed in
this study can be retrieved from dbGAP under the accession dbGaP phs000452.v2.p1 for
the Van Allen dataset, and from the GEO repository under the accessions GSE78220 for
the Hugo dataset and GSE91061 for the Riaz dataset. The TCGA melanoma dataset can
be accessed on the GDC portal (portal.gdc.cancer.gov, cohort TCGA SKCM) (https://
portal.gdc.cancer.gov/projects/TCGA-SKCM). Remaining data are available in the
Article, Supplementary Information files, or available from the authors upon request.
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