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Visible-light promoted regioselective amination
and alkylation of remote C(sp3)-H bonds
Quanping Guo1, Qiang Peng1, Hongli Chai1, Yumei Huo1, Shan Wang1 & Zhaoqing Xu 1✉

The C-N cross coupling reaction has always been a fundamental task in organic synthesis.

However, the direct use of N-H group of aryl amines to generate N-centered radicals which

would couple with alkyl radicals to construct C-N bonds is still rare. Here we report a visible

light-promoted C-N radical cross coupling for regioselective amination of remote C(sp3)-H

bonds. Under visible light irradiation, the N-H groups of aryl amines are converted to N-

centered radicals, and are then trapped by alkyl radicals, which are generated from Hofmann-

Löffler-Freytag (HLF) type 1,5-hydrogen atom transfer (1,5-HAT). With the same strategy,

the regioselective C(sp3)-C(sp3) cross coupling is also realized by using alkyl Hantzsch

esters (or nitrile) as radical alkylation reagents. Notably, the α-C(sp3)-H of tertiary amines

can be directly alkylated to form the C(sp3)-C(sp3) bonds via C(sp3)-H− C(sp3)-H cross

coupling through the same photoredox pathway.
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Amines are quintessential moieties in pharmaceuticals,
nature products, and organic materials1,2. In the past few
decades, transition-metal-catalyzed sp2 C–N couplings of

aryl halides (and pseudo halides) with amine nucleophiles have
been well developed, such as Buchwald–Hartwig reaction3, Ull-
mann coupling4, and Chan–Lam amination5. However, the
alkylation of amines using alkyl electrophiles is largely under-
developed due to the β-hydrogen elimination from the metal-
alkyl intermediate6–8. Recently, significant progress has been
made in transition-metal-catalyzed radical sp3 C–N bond for-
mations. Fu and coworkers recently disclosed the photoinduced,
Cu-catalyzed intermolecular and intramolecular alkylation of
amides9,10. Very recently, Macmillan11 and Hu12 reported a series
of Cu-catalyzed, photoinduced decarboxylative sp3 C–N coupling
reactions, respectively. In these approaches, the trapping of alkyl
radicals by Cu-amine species and the reductive eliminations of Cu
intermediates were key steps for the cross-couplings (Fig. 1a).

In the past few years, the addition reactions of N-center radical
to alkenes (or enamine intermediates) have been developed
(Fig. 1b)13–20. However, the direct cross-coupling between alkyl-
and N-based radicals in the absence of stabilization by transition-
metal complex has been rarely explored. Moreover, in the reac-
tions, the amine (or amide) compounds need to be converted to
the corresponding N-radical precursors (e.g., N-halogens and N-
nitrosoamides) by separated steps. The direct use of the N–H
group of aryl amines to generate Naryl-center radicals and couple
with alkyl radicals is still rare17.

The regioselective C–H functionalization is one of the most
fundamental reactions in organic synthetic chemistry. In recent
years, the functionalization of C(sp3)–H bonds has become an
important and intensive task to the organic synthetic community.
In the past decade, great progress has been achieved in C(sp3)–H
functionalization at unactivated sites, which allows streamlined
synthesis of target compounds and late-stage modification
of complex structures. Recently, the application of Hofmann–
Löffler–Freytag (HLF)-type 1,5-hydrogen atom transfer (1,5-HAT)
in C(sp3)–H functionalization reactions received much attention
due to their unique regioselectivities21,22. Although the amidyl
radical formation and its subsequent 1,5-HAT process have been
well established, the followed transformations of the C-center
radical are still limited, and the reactions mainly focused on
cyclization23–29, atom transfer (halogenation)30–33, Giese reac-
tion34–37, azidation38,39, cyanation40,41, trifluoromethylation42, and

arylation)43,44. So far, using the HLF-type C-center radical for sp3

C–N or C(sp3)–C(sp3) couplings is still very rare45, and the direct
cross-coupling between C(sp3)–H and N–H is not realized. We
here report an example of sp3 C–N cross-coupling reaction
between N-center- and alkyl radicals. Notably, the aryl amines are
directly converted to N-center radicals under visible-light irradia-
tion (Fig. 1c). By using the same photoredox catalytic 1,5-HAT
strategy, the regioselective C(sp3)–H alkylation can also be realized
when Hantzsch esters are used as alkylation reagents. The primary,
secondary, and tertiary alkylation are all compatible under stan-
dard conditions. It is worth noting that the α-C(sp3)–H of tertiary
amines can be directly alkylated to form C(sp3)–C(sp3) bonds
without pre-functionalization.

Results
Investigation of the sp3 C–N coupling reaction conditions. The
investigation was initiated by using N-(tert-butyl)-N-fluoro-2-
methylbenzamide (1a) and aniline (2a) as model substrates. A
series of photocatalysts (Ir and Ru complexes, or organic photo-
catalysts), light sources, solvents, additives, and the substrate ratios
were tested (see the Supplementary Information for details). The
results indicated the optimal reaction conditions (condition A):
under 24-W violet LED (390–410 nm) irradiation, 1a and 2a
(3 equiv) were dissolved in DMF (0.1M), Ir(ppy)2(dtbpy)PF6
(1 mol %) was used as the photocatalyst, K2CO3 (3.0 equiv) was
used as basic additive, and the reaction was stirred at room
temperature for 12 h. Under these reaction conditions, the desired
sp3 C–N coupling product (3a) was isolated in 73% yield. Notably,
to achieve this transformation, a suitable photocatalyst with well-
balanced redox potential was required. The organic photocatalysts
A–D have relatively strong oxidative properties, whereas the
reductive activities were moderate. In contrast, the Ir- and Ru-
based photocatalysts have good redox abilities, which were com-
patible for the reaction (Table 1).

Scope of sp3 C–N coupling reactions. With the optimal reaction
conditions in hand, the substrate scope of carboxylamides
and anilines was examined, and the results are summarized in
Fig. 2. To our delight, the carboxamides and anilines bearing
electron-donating and electron-withdrawing groups at o-, m-, or
p-position of the aryl ring were compatible with moderate-to-good
yields (Fig. 2, 3a–3x). A range of functional groups, such as –CH3,
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–OCH3, –CF3, and halides (–F, –Cl, and –Br) were all tolerated.
The bulkier amines, such as EtNHPh and i-PrNHPh, were suc-
cessfully converted to the corresponding products 3w and 3x with
satisfactory yields, respectively. Notably, the amination of alkyl
amide was also achieved under standard conditions (3y). How-
ever, the alkyl-substituted amines, such as CyNH2 and n-Bu2NH,
failed to give the corresponding amination products.

Alkylation of tertiary amine α-C(sp3)–H bonds. Tertiary amine
motifs are widely represented in many pharmaceuticals and
advanced materials1,2. Direct functionalization of tertiary amine
provides an efficient pathway to synthesize structurally diversified
tertiary amines. In 2006, Li and coworkers reported a cross-
dehydrogenative-coupling reaction, which could directly couple
the α-C(sp)3–H of tertiary amines with nucleophiles under oxi-
dative conditions46–49. Very recently, the photoredox-induced α-C
(sp)3–H functionalization of tertiary amines was achieved, which
could functionalize the α-C(sp)3–H under mild and external
oxidant-free conditions50,51. Despite these achievements, the direct
C(sp3)–C(sp3) cross-coupling reactions between tertiary amines α-
C(sp3)–H and unactivated C(sp3)–H were still not realized.

Encouraged by the success of photoredox sp3 C–N coupling, we
decided to explore an alternate route to realize regioselective C
(sp3)–C(sp3) coupling between tertiary amines α-C(sp3)–H and
unactivated C(sp3)–H using the photoredox 1,5-HAT strategy. In

our initial hypothesis, upon irradiation, the high valent photo-
catalyst could accept an electron from amine and simultaneously
generate an amino radical cation A through single-electron transfer
(SET) process (Fig. 3). The amino radical cation would then form
α-amino alkyl radical B by deprotonation. The intermediate B
could be captured by C-center radical D that was generated
through 1,5-HAT, and furnished the C(sp3)–C(sp3) coupling.

Scope of alkylation of tertiary amine α-C(sp3)–H bonds. With
the above hypothesis in mind, we began our study by using 1a and
N,N-dimethylaniline (2a’) as model substrates to optimize the
reaction conditions (see the Supplementary Information for details).
Under the optimal conditions (condition A), the desired C(sp3)–C
(sp3) cross-coupling product (4a) was obtained in 75% yield. The
generality of the reaction was examined by using a variety of tertiary
amines and carboxamides (Fig. 4, 4a–4o). To our delight, uniformly
good results were obtained with various substrates bearing sensitive
functional groups. The C–H functionalization of alkyl amide was
also realized with good yield (5). Furthermore, the late-stage
modification of androsterone-derived amine was achieved in 56%
yield with the ester group untouched 6.

C(sp3)–C(sp3) coupling reaction using alkyl Hantzsch ester. In
the past few years, the HLF-type radical cross-coupling reactions

Table 1 Optimization of reaction conditionsa.

“Condition A”

Entry Change to “condition A” Yield (%)b

1 Condition A 73
2 No light 0
3 No photocatalyst 0
4 Without K2CO3 0
5 A,B,C,D instead of G 0
6 E, F, H instead of G 20–64
7 Other bases instead of K2CO3 0–49
8 Other solvents instead of DMF 0–55

aUnless noted, the reactions were carried out using 1a (0.1 mmol), 2a (3 equiv), photocatalyst (1 mol %), base (3.0 equiv), and DMF (1 ml), under Ar, and stirred at rt for 12 h under 24-W violet LED
irradiation.
bIsolated yields.
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were intensively studied21–44. However, its application in the
construction of C(sp3)–C(sp3) was still rare45. Hantzsch esters
were first synthesized by A. R. Hantzsch in 1881, and widely used
in pharmaceutical chemistry. With the rapid development of
radical chemistry, various alkylation reactions using 4-substituted
Hantzsch esters as alkylation reagent have been developed52–55.
However, the cross-coupling between alkyl Hantzsch esters and C
(sp3)–H was still not realized.

In the above successful C(sp3)–H alkylation reactions
(Fig. 4), the alkyl radicals were generated through 1,2-SET of
N-center radical, which restricted the scope of alkyl substrates.
Alkyl Hantzsch ester has the ability to serve both as a single-
electron reductant and alkyl radical precursor. We envisioned
that alkyl Hantzsch esters could be used instead of tertiary
amine as the alkylation reagents for the direct C(sp3)–C(sp3)
cross-coupling.
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Scope of C(sp3)–C(sp3) coupling. Initially, cyclohexyl Hantzsch
ester (7a) was used as model substrate to optimize the reaction
conditions. After the screening of reaction parameters, the desired
C(sp3)–C(sp3) cross-coupling product (8a) could be obtained in
71% yield (condition B, see the Supplementary Information for
details). Then, the substrate scope of carboxylamides was exam-
ined (Fig. 5). To our delight, the carboxamides bearing electron-
donating and electron-withdrawing groups at o-, m-, or p-posi-
tion of the aryl ring were compatible with moderate-to-good
yields (8a–8l). A range of functional groups, such as –CH3,
–OCH3, and halides (–F, –Cl, and –Br), were all tolerated (8a–
8k). The thiophene-derived substrate delivered the desired pro-
duct with 72% yield (8l). The regioisomers were found in the case
of 8m, which might be attributed to the competing 1,6-HAT
pathway32,56.

To further explore the substrate scope, a variety of alkyl
Hantzsch esters were examined (Fig. 6). To our delight, the
primary and the secondary alkyl Hantzsch esters, as well as the

tertiary alkyl Hantzsch nitrile, all proceeded smoothly in
satisfactory results (9a–11b) with the sensitive functional groups
(halogens and alkenes) untouched. The results indicated the
general ability of our strategy for the construction of C(sp3)–C
(sp3) bonds in the synthetic chemistry. Notably, the aryl Hantzsch
esters failed to give any desired products under our standard
conditions. It should be noted that our method was suitable not
only for o-methylbenzamide, but also alkyl amide. As shown in
Fig. 6, under the standard reaction conditions, 1o and 1p were
smoothly coupled with alkyl Hantzsch esters in satisfactory yields
(12a–12d).

Synthetic applications. To demonstrate the synthetic application
of our method, the amination and alkylation products were
readily converted to the corresponding lactam (3f’) and acid (4s’
and 10b’) through simple operations with excellent yields,
respectively (Fig. 7).
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Mechanistic investigations. In order to gain some mechanistic
insight of this sp3 C–N coupling reaction, several control experi-
ments were carried out (Fig. 8). The reaction was completely shut
down by 2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO, Equation
(1)). Furthermore, when the radical scavenger ethane-1,1-diyldi-
benzene was added to the reaction, the corresponding three-
component-type product 13 was obtained in 45% yield (Equation
(2)). When 1a and aniline (2a) were used as substrates, the desired
product 3a was isolated in 73% yield. Notably, the homo-coupling
product 14 was also obtained in the reaction system with 5% yield
(Equation (3)). These results suggested that a) the radical pathway
might be involved in the reaction; b) the HLF-type 1,5-HAT
proceeded in the system and formed the C-center radical; c) aryl
amine possibly converted to the corresponding N-center radical
under standard conditions; d) the radical–radical coupling route
might be responsible for this sp3 C–N bond formation reaction.
We also tried this reaction under oxidative conditions. In
the presence of N-fluorobenzenesulfonimide (NFSI, 3 equiv)43,44

or [bis(trifluoroacetoxy)iodo]benzene (PIFA, 3 equiv)57, the
un-fluoride amide substrate 15 failed to produce the amination
product under standard conditions (Equation (4)). In addition, the
N-chloroamide could also give the desired product with modest
yield (Equation (5)). These results indicated that the pre-
activation of the substrates is crucial to this coupling reaction. In
our initial hypothesis, the step that aryl amine converts to the
corresponding N-center radical was crucial for this transforma-
tion. To verify this hypothesis, emission quenching and electron
paramagnetic resonance experiments have been conducted, and
the results indicated that the radical species was generated in the
system (Equation (6)), see the Supplementary Information for
details). The Stern−Volmer plot showed strong quenching of Ir
(ppy)2(dtbpy)PF6 (E1/2*III/II=+0.66 V vs. SCE) by PhNH2 (2a)
(E1/2red=+0.94 V vs. SCE), favoring a reductive quenching cycle.
These evidences indicated that the excited-state Ir(ppy)2(dtbpy)
PF6 might undergo a SET process that furnished the formation of
Naryl-center radical.

Proposed mechanism. Based on our investigations and pre-
vious reports, a plausible mechanism is proposed in Fig. 9 (see
the Supplementary Information for details). The reaction starts
with the oxidation of 2 by the excited-state Ir(III)* in the pre-
sence of a base, yielding amine radical A and Ir(II). Then, the Ir
(II) (E1/2III/II=−1.51 V vs. SCE)58,59 species facilitated the
second SET process of substrate 1 (Ep0/–1(1a)= –0.84 V vs. SCE

in MeCN) to generate the amidyl radical B. The subsequent
1,5-HAT formed the radical intermediate C along with the
oxidation of Ir(II) to Ir(III) to close the catalytic cycle. Finally,
the radical–radical cross-coupling between N-center radical A
and C-center radical intermediate C was proposed to provide
the sp3 C–N cross-coupling product 3.

Discussion
In conclusion, we disclosed a visible-light-promoted C–N-radical
cross-coupling to realize the regioselective amination of remote C
(sp3)–H bonds. In the reactions, the N-center radicals were
directly generated from aryl amines under visible-light irradia-
tion. Using the photoinduced HLF-type 1,5-HAT strategy, the
regioselective C(sp3)–C(sp3) cross-coupling was also achieved by
using alkyl Hantzsch esters (or nitrile) as alkylation reagents.
Notably, the α-C(sp3)–H of tertiary amines was directly alkylated
to form the C(sp3)–C(sp3) bonds via C(sp3)–H–C(sp3)–H cross-
coupling. All the reactions proceeded at room temperature
without the assistance of external oxidants.

Methods
General procedure for condition A. In a dry 10-ml glass test tube, substrate N-
fluoroamides (0.2 mmol), amine (0.6 mmol, 3 equiv), Ir(ppy)2(dtbpy)PF6 (1 mol%),
and K2CO3 (0.6 mmol, 3 equiv) were dissolved in DMF (2.0 mL) under Ar
atmosphere. The glass test tube was then transferred to a 24-W violet-light pho-
toreactor, where it was irradiated for 12 h. The residue was added water (10 mL)
and extracted with ethyl acetate (5 mL × 3). The combined organic phase was dried
over Na2SO4. The resulting crude residue was purified via column chromatography
on silica gel to afford the desired products.

General procedure for condition B. In a dry 10-ml glass test tube, substrate N-
fluoroamides (0.2 mmol), Hantzsch esters or Hantzsch nitrile (0.6 mmol, 3 equiv),
Ir(ppy)2(dtbpy)PF6 (1 mol%), and MeOK (0.5 mmol, 2.5 equiv) were dissolved in
DCM (2.0 mL) under Ar atmosphere. The glass test tube was then transferred to a
18-W blue LED photoreactor, where it was irradiated for 12 h. The residue was
added water (10 mL) and extracted with DCM (5 mL × 3). The combined organic
phase was dried over Na2SO4. The resulting crude residue was purified via column
chromatography on silica gel to afford the desired products.

Data availability
The authors declare that the data supporting the findings of this study are available
within the article and its Supplementary Information. Data are also available from the
corresponding author on request.
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