
ARTICLE

The cryo-EM structure of the SNX–BAR Mvp1
tetramer
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Sorting nexins (SNX) are a family of PX domain-containing proteins with pivotal roles in

trafficking and signaling. SNX-BARs, which also have a curvature-generating Bin/Amphi-

physin/Rvs (BAR) domain, have membrane-remodeling functions, particularly at the endo-

some. The minimal PX-BAR module is a dimer mediated by BAR-BAR interactions. Many

SNX-BAR proteins, however, additionally have low-complexity N-terminal regions of

unknown function. Here, we present the cryo-EM structure of the full-length SNX-BAR Mvp1,

which is an autoinhibited tetramer. The tetramer is a dimer of dimers, wherein the

membrane-interacting BAR surfaces are sequestered and the PX lipid-binding sites are

occluded. The N-terminal low-complexity region of Mvp1 is essential for tetramerization.

Mvp1 lacking its N-terminus is dimeric and exhibits enhanced membrane association.

Membrane binding and remodeling by Mvp1 therefore requires unmasking of the PX and BAR

domain lipid-interacting surfaces. This work reveals a tetrameric configuration of a SNX-BAR

protein that provides critical insight into SNX-BAR function and regulation.
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Sorting nexins (SNX) are a large and varied family of phox-
homology (PX) domain-containing proteins with functions
in membrane trafficking and remodeling, signaling, and

organelle movement1,2. SNX–BAR proteins form a subfamily that
is characterized by the presence of a membrane-remodeling or
curvature-sensing Bin/Amphiphysin/Rvs (BAR) domain3 in
addition to the PX domain which, typically, is a lipid-binding
module4. Mammalian cells have at least 12 SNX–BAR proteins
and yeast have 75,6. SNX–BAR proteins are involved in several
cellular processes that depend upon membrane remodeling,
including protein and lipid trafficking to and from the endosome,
endocytosis, and autophagy5–7. Defects in SNX–BAR function are
associated with tumorigenesis, neurodegenerative diseases, and
cardiovascular defects8,9.

All SNX–BARs homo- or heterodimerize via extensive inter-
actions between their BAR domains. Current models for
SNX–BAR-mediated membrane remodeling propose that both
the PX and BAR domains have to be engaged with the membrane
to ensure specificity and efficient binding. While some SNX–BAR
proteins consist only of their PX–BAR modules, others, including
those involved in retromer-mediated retrograde trafficking and
autophagic processes5,10 have, in addition, a low-complexity N-
terminal region, the function of which is unclear. In the case of
the endocytic SNX–BAR SNX9, this low-complexity region
is involved in allosteric regulation of SNX9 membrane binding
and remodeling activites11.

Mvp1 is a poorly characterized yeast SNX–BAR protein that
shares conservation with the mammalian SNX–BAR SNX8. Mvp1
was initially identified as a genetic interaction partner for the
fungal dynamin superfamily protein Vps112 and is required for
retrograde trafficking from the endosome13–15. Here, we use
cryoelectron microscopy with single-particle averaging to deter-
mine the structure of the fungal SNX–BAR Mvp1. Full-length
Mvp1 is a tetramer consisting of two Mvp1 dimers that self-
interact in such a manner that the concave lipid-engaging sur-
faces of the BAR dimers are buried. Tetramerization depends on
the presence of the Mvp1 N-terminal region, which is also
required for Mvp1 sorting function in vivo. Mvp1 lacking the N-
terminal region retains membrane-remodeling activity and
exhibits enhanced membrane binding in vivo and in vitro.
Together, this work reveals a mechanism of regulation of Mvp1
function by self-assembly.

Results
Mvp1 functions in retrograde trafficking from the endosome.
In cells, Mvp1 localized to the endosomal compartment in a
PI3P-dependent manner (Supplementary Fig. 1a)14. Loss of
Mvp1 results in several trafficking defects in the cell13. Previous
findings and data mining from whole-genome synthetic genetic
array screens16,17 provide strong evidence for Mvp1 function in
retromer-dependent retrograde trafficking from the endosome to
the TGN (Supplementary Table 1). Cells lacking Mvp1 exhibited
defects in retrograde transport, as assessed by a change in the
steady-state subcellular distribution of the CPY receptor Vps10
(Supplementary Fig. 1b, c)14. In budding yeast, Vps10 is recycled
from the endosome to the TGN prior to fusion of the maturing
endosomal compartment with the vacuole. In Δmvp1 cells, we
observed a significant increase in vacuolar membrane localization
of EGFP-tagged Vps10 expressed from a plasmid, indicative of
defective endosomal recycling (Supplementary Fig. 1b). Con-
sistently, Δmvp1 cells therefore secreted CPY whereas wild-type
(W303A) cells did not (Supplementary Fig. 1d), as assessed by
colony immunoblotting, using an anti-CPY antibody.

In vitro, purified Mvp1, like SNX8 and several other
SNX–BARs18, bound to liposomes containing PI3P (Supplementary

Fig. 2a, b). Liposome-binding properties were the same using Mvp1
obtained from two different purification strategies (Supplementary
Fig. 2a, b). Mvp1 also deformed liposomes into tubules with mean
and median diameters of 49.8 (±13.4) nm and 48 nm (Fig. 1a and
Supplementary Fig. 2h). Mvp1 is therefore involved in membrane
remodeling and cargo sorting at the endosome.

Full-length Mvp1 is a tetramer. Full-length Mvp1 was tetra-
meric at 150 mM NaCl, as determined by multiangle light scat-
tering coupled with size-exclusion chromatography (SEC-MALS)
(Fig. 1b). Mvp1 remained tetrameric under both low (50 mM)
and high (250 mM) salt conditions, at pH 7.4 (Supplementary
Fig. 2c and Fig. 1b). At 50 mM NaCl, there was a slight leading
shoulder, perhaps indicating some formation of larger oligomers.
At 250 mM NaCl, the observed molecular weight was slightly
lower than the predicted theoretical weight for the tetramer. As
the column elution profiles at both 150 and 250 mM NaCl were
indistinguishable (Fig. 1b and Supplementary Fig. 2c), we inter-
pret this as the tetramer being in fast exchange, compared with
the column separation time, with a small population of dimers at
250 mM NaCl. This will tend to decrease the observed molecular
weight. This result also indicates that the tetramerization is based,
at least in part, on ionic interactions. Indeed, at 250 mM NaCl
and pH 6.5, Mvp1 was fully tetrameric (Supplementary Fig. 2d).
The method of purification of Mvp1 had no effect on its tetra-
meric state (Supplementary Fig. 2e).

Mvp1 tetramerization depends on its N-terminal region.
Existing structures of SNX–BAR proteins reported to date are
invariably dimeric, with dimerization occurring via an extensive
BAR–BAR interface that is conserved in all BAR domain-
containing proteins18–21. However, the constructs used for the
structural analyses consisted of a minimal PX–BAR module,
removing any low-complexity sequence that some SNX–BAR
proteins have at their N-termini. We therefore generated an Mvp1
construct similar to those used for the structural analyses,
encompassing only the PX–BAR module and omitting the N-
terminal low-complexity sequence (Mvp1 Δ2-78 and Mvp1 Δ2-
100). Both Mvp1 Δ2-78 (Supplementary Fig. 2f) and Mvp1
Δ2-100 (Fig. 1c) were fully dimeric in solution, as assessed by
SEC-MALS. To confirm this, we engineered an Mvp1 construct
containing a PreScission protease site after residue 99. Prior to
digestion, the protein behaved similarly to the wild type at
250mM NaCl. After removal of the N-terminal sequence by
digestion, the cleaved protein was dimeric (Supplementary
Fig. 2g). Compared with full-length Mvp1, Mvp1 Δ2-100 dis-
played increased lipid binding in vitro (Fig. 1d, e). Moreover,
Mvp1 Δ2-100 retained an ability to tubulate liposomes in vitro
(Fig. 1f), generating tubules with mean and median diameters of
72.9 (±9.9) nm and 73.5 nm, respectively (Supplementary Fig. 2h).
Morphologically, tubules formed by Mvp1 Δ2-100 appeared to be
more regular than those formed by Mvp1 but occasionally we
observed liposomes that had been deformed into apparent
helices (Fig. 1f inset). It is unclear why tubules generated by Mvp1
Δ2-100 are wider than those generated by Mvp1 (P < 0.0001,
Mann–Whitney test) but it may reflect different modes, extents or
regularity of assembly on the lipid surface.

When expressed in cells, Mvp1 Δ2-100 was localized to puncta
(the endosomal compartment), similar to Mvp1, but also
displayed an enhanced localization to the vacuolar membrane
(Supplementary Fig. 3a, b). We interpret this result as an
impairment in Mvp1 disassembly from endosomal membrane
prior to fusion with the vacuole. However, Mvp1 Δ2-100 did not
rescue the CPY trafficking defect in Δmvp1 cells as assessed by
CPY secretion (Supplementary Fig. 3c). Taken together, these
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observations indicate that, while Mvp1 Δ2-100 retained mem-
brane interaction and remodeling activity, it lost its function in
endosomal trafficking and sorting in vivo.

The cryo-EM structure of the Mvp1 tetramer. We determined
the structure of the Mvp1 tetramer using single-particle cryo-EM
(Fig. 2a and Supplementary Figs. 4 and 5). Cryo-EM 2d classifi-
cation of Mvp1 particles resulted in tetramer and some dimer
classes (Supplementary Fig. 4a). The local resolution of the final
map varied from ~4.2 Å (within the cores of the BAR domain
dimers) to ~7.2 Å (the tips of the BAR domains) (Supplementary
Fig. 5b). An atomic model for the Mvp1 tetramer (Fig. 2b) was
generated using the SNX–BAR structures of Homo sapiens SNX9

(PDB 3DYT)20 and Chaetomium thermophilum Vps5 (PDB
6H7W)21 as a starting point (Supplementary Fig. 5c, d). These
share 16 and 13% sequence identity with Mvp1 across the
PX–BAR module. The tetramer consists of a tight embrace of the
two SNX–BAR dimers, with the two concave faces of the BAR
homodimers facing each other, slightly rotated with respect to one
another, around a central axis through the middle of the BAR
dimer, such that the distal tips of the homodimers pack adjacent
to one another (Fig. 2c and Supplementary Fig. 6a). This packing
serves to occlude and sequester the positively charged, concave,
lipid-binding surface of each BAR dimer (Fig. 2d). In this con-
figuration, the PX domain is unable to accommodate PI3P due
to steric clashes with the trans BAR dimer in the tetramer (Sup-
plementary Fig. 6b), as shown by superposition of the PI3P-bound

M
ol

ec
ul

ar
 w

ei
gh

t, 
kD

a

Control Mvp1a b

10 15 20
0.0

0.5

1.0

0

100

200

300

400

Vol, ml

150 mM NaCl

250 mM NaCl

Tetramer

Dimer

N
or

m
al

iz
ed

 d
R

I
Mvp1 Δ2–100 

10 15 20

0.0

0.1

0.2

0.3

0

100

200

300

400

Vol, ml

M
ol

ec
ul

ar
 w

ei
gh

t, 
kD

a

Mvp1

Mvp1 Δ2–100 

Mvp1

P P PS S S

None PS Lips PS/PI3P Lips

Tetramer

Dimer

**

**

Mvp1 Δ2–100

Mvp1 Δ2–100
+ PS/PI3P liposomes

c d

e f

N
or

m
al

iz
ed

 d
R

I
%

 p
ro

te
in

 in
 p

el
le

t

None PS PS/PI3P

0

20

40

60

80

100

70 kDa

35 kDa

55 kDa P P PS S S

None PS Lips PS/PI3P Lips

Fig. 1 Mvp1 tetramerization is dependent on its N-terminus. a Mvp1 deforms PS liposomes containing 5% PI3P into irregular tubes. Representative
micrographs of negative-stained liposomes incubated either with buffer (control) or with Mvp1. Scale bar—200 nm. b Mvp1 is a tetramer. The absolute
molecular weight of Mvp1 was determined using SEC-MALS. The molecular weight, shown in magenta or teal across the elution peaks, are plotted on the
right-hand axis. Theoretical molecular weights of Mvp1 dimers and tetramers, calculated according to the Mvp1 sequence, are shown as dotted gray lines.
The differential refractive index of the elutions are plotted on the left-hand axis. Mvp1 was eluted in buffer containing either 150mM (magenta) or 250mM
(teal) NaCl. c As in b, Mvp1 Δ2-100 was eluted in buffer containing 250mM NaCl. d Comparison of liposome binding by Mvp1 and Mvp1 Δ2-100. Protein
(1.2 μM) was incubated without or with DOPS (PS) or DOPS+ 5% PI3P (PS/PI3P) liposomes for 30min at 21 °C prior to sedimentation. Shown is a
representative result. P pellet, S supernatant. Positions of molecular weight markers are shown to the left of the gels. e Quantification of the results
presented in d. Individual data points and mean ± s.d. are shown. n= 3 for Mvp1 and 4 for Mvp1 Δ2-100. A 3 × 2 factorial ANOVA was conducted to
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significant interaction term (P < 0.0001) and each main effect was also significant (P < 0.0001). Selected pairs of values significant (Tukey HSD) at the 1%
level are shown (**). For d and e, source data are provided as a Source Data file. f As in a but with Mvp1 Δ2-100. The inset shows an example of a rare
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NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-15110-5 ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:1506 | https://doi.org/10.1038/s41467-020-15110-5 |www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


PX domain from p40phox22 onto the Mvp1 SNX–BAR PX domain.
Tetramerization occurs via three main regions. First, residues from
the C-terminal end of helix α1 and the loop downstream of helix
α5 in the PX domain (part of the Yoke in the SNX9 SNX–BAR
structure) contact the distal end of BAR helix α2 from the trans
Mvp1 dimer (Fig. 2e, f). Second, the C-termini and N-termini of
BAR helices α2 and α3 interact around the twofold long axis of
the tetramer (Fig. 2e, f). Third, there are close contacts between
the top of the PX PPII loop and helix α1 from a BAR domain in
the trans BAR dimer (Fig. 2e, f). Together, these regions generate a
tetramerization interface of 1278 Å2 at each end of the tetramer,
forming a combined interface area of 2556 Å2. For comparison,
the constitutive BAR–BAR interface is 6083 Å2.

Mutations within the PX domain disrupt Mvp1 tetrameriza-
tion. We next sought to disrupt tetramerization by targeting an
assembly interface. We therefore generated Mvp1 K198A, Mvp1
R199A, I200A, and Mvp1 198KRI→AAA (hereafter Mut1)
(Supplementary Fig. 6c). These residues lie within the PPII loop
and form part of Region 3 of the tetramerization interface
(Fig. 2f). In addition, K198 is predicted to line the back of the
PI3P-binding pocket20,22. By SEC-MALS, Mut1 is entirely
dimeric (Fig. 3a). Mvp1 K198A and Mvp1 R199A, I200A
exhibited an apparent intermediate molecular weight (Fig. 3b). As
before, we interpret this as being due to a mixed population of
rapidly interconverting dimers and tetramers, perhaps as these
intermediate mutations partially destabilize the tetramer, rather
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than fully, as in the case of Mut1. When expressed in cells, while
Mvp1 K198A and Mvp1 R199A, I200A maintained some mem-
brane association (punctate), Mvp1 Mut1 was cytosolic (Fig. 3c).
Consistently, Mvp1 K198A and Mvp1 R199A, I200A partially
retained CPY sorting function. Mvp1 Mut1, on the other hand,
was completely defective, and as defective as cells lacking Mvp1
altogether (Fig. 3d).

Single-particle cryo-EM analysis of Mvp1 Mut1. Mvp1 Mut1
did not interact with, or tubulate, lipid templates as assessed using
sedimentation assays and negative-stain electron microscopy
(Fig. 4a–c). To verify that Mvp1 Mut1 retained its expected
dimeric architecture, we used 2d and 3d classification of single
particles by cryo-EM to analyze its structure (Fig. 4d, Supple-
mentary Fig. 6d). It is clear from both the 2d class averages and
the 3d alignments, although of intermediate resolution (~7.7–8.2
Å), that Mvp1 Mut1 is dimeric. Furthermore, the relative orien-
tation of the PX domains with respect to its neighboring BAR

domains are also unaltered. We therefore conclude that Mut1
does not impair function by gross structural changes but rather
by specifically disrupting membrane binding. As Mvp1 Mut1 is
defective in both lipid binding and tetramerization, the question
arises as to whether tetramerization is a prerequisite for lipid
binding. Mvp1 Δ2-100 is dimeric and readily binds and remodels
lipid templates. Hence, Mvp1 Mut1 has a compound defect in
tetramerization and, independently, in lipid binding. The struc-
ture of the tetramer suggests that the concave BAR lipid-binding
surface is sequestered and the PX lipid-binding pocket is inac-
cessible. Hence, we propose that tetramerization is likely to
inhibit, rather than being a prerequisite for lipid binding.

Discussion
Here, we present the structure for a tetrameric configuration of
the SNX–BAR Mvp1, in which the lipid-binding interfaces
are occluded by dimerization of SNX–BAR dimers. The low-
complexity Mvp1 N-terminus plays an essential role in
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tetramerization. While the N-terminus is unstructured and
therefore not visible in our model, we do observe some unas-
signed density between the PX domains, crossing the divide
between the opposed BAR dimers. We speculate that this density
is contributed by the N-terminus. We term this bridge density
(Fig. 4e). This assignment is consistent with a recent detailed
characterization of SNX911. SNX9 has an N-terminus that

consists of an SH3 domain followed by a low-complexity linker of
~193 residues. The linker harbors a short acidic stretch that
directly interacts with the SNX9 BAR dimer11, at a site that is
equivalent to the region on the Mvp1 BAR domains that abut the
bridge density, as assessed by hydrogen–deuterium exchange
(Supplementary Fig. 6e). In addition, the Mvp1 N-terminus has a
pI of 3.68 (residues 1–100) and contains several highly acidic
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patches. Mvp1 lacking residues 1–100 has a calculated pI of 8.51
and the region where the bridge density docks is very positively
charged. The bridge density may contribute to stabilization or
formation of the tetramer. The Mut1 mutations that compromise
tetramerization lie within the PX PPII loop. We note that the top
of the PPII loop and the bridge density lie in close proximity. An
attractive possibility is that the PPII loop plays a role in posi-
tioning of the N-terminus in such a way that tetramerization is
promoted. In support of this, we note that several of the Mvp1
Mut1 2d classes appear to have a free, or unleashed, density
adjacent to the PX–BAR dimer which may be contributed by the
N-terminus. In any case, any additional stabilization from the N-
terminus would enhance the total tetramerization interface. The
bridge density may be contributed by an ordered binding motif
within the Mvp1 N-terminus. The Mvp1 N-terminus is also
essential for in vivo function. While Mvp1 lacking the N-
terminus can remodel membrane in vitro, it cannot rescue CPY
receptor sorting. It is therefore likely that the N-terminus binds to
a factor essential for sorting, which may assist in opening of the
tetramer, revealing the lipid-binding interfaces for membrane
engagement and subsequent remodeling events (Fig. 4f).

Mvp1 shares homology with several mammalian SNX–BAR
proteins. The highest conservation is with SNX8 and SNX7 (at
~22% identity across the PX–BAR module). SNX8 function is
unclear but is involved in endosomal sorting23. Its inactivation is
linked to the congenital cardiac defect Tetralogy of Fallot24. SNX7
has an unknown protein-sorting function but has been associated
with Aβ processing25. Mvp1 also shares homology with SNX1
(17% identity). SNX1 heterodimerizes with either SNX5 or SNX6
to generate one of the membrane remodeling and cargo selecting
modules that function with mammalian retromer26, which has
been linked to neurodegeneration, diabetes, pathogen invasion,
and various cancers1,8,27. Unlike the conservation with SNX7 and
SNX8, which is restricted to the PX and BAR domains, Mvp1 is
conserved with SNX1 throughout its sequence, including the low-
complexity N-terminus. Interestingly, it has been reported that a
portion of the SNX1 pool in the cytosol of HeLa cells elutes
from a size-exclusion column at a volume consistent with
tetramers28,29. In addition, the F-BAR protein PACSIN/syndapin
has been reported to form tetrameric barrel-like structures, as
assessed by size-exclusion chromatography, cross-linking and
negative-stain electron microscopy30. These observations suggest
that tetramerization may be a conserved mechanism of
SNX–BAR and some other BAR protein regulation.

Based on our data that the Mvp1 N-terminus is functionally
important, we speculate that it will be a target for regulation,
either by interaction with other proteins or by posttranslational
modifications. Indeed, the NetPhos 3.1 server predicts several
phosphorylation sites within the N-terminus31 and it was
reported that a lysine within the N-terminus is ubiquitylated32. In
the case of SNX1 and SNX2, both of which have similar low-
complexity N-termini, multiple phosphorylation sites have been
identified in different phosphoproteome analyses33–37. In the
absence of the Mvp1 N-terminus, we observe increased lipid
binding suggesting that the N-terminus may have an auto-
inhibitory function. Autoinhibition in BAR domain-containing
proteins has been reported3. For example, SNX9 is autoinhibited
in solution and this has been shown to be due to the linker
preceding the PX–BAR module11. Other examples include the
PACSIN/syndapin F-BAR, the I-BAR IRSp53, and the Drosophila
F-BAR protein Nervous Wreck38–40. In all these cases, inhibition
is mediated by auxiliary regions or domains adjacent to the BAR.
Here, we propose the N-terminus promotes tetramerization as a
mechanism of autoinhibition.

Our sedimentation assays show that full-length Mvp1 interacts
with liposomes, but only in the presence of PI3P. The structure of

the tetramer suggests that the PX domains could not accom-
modate PI3P without steric clashes of the acyl chains with the
trans BAR dimers, at least with the PX domains in the same
positions as observed in the structure. Incubation of Mvp1 tet-
ramers with the PI3P headgroup or DiC8 PI3P did not affect the
tetramer, as assessed by SEC-MALS (data not shown). A mem-
brane containing PI3P might therefore be required for productive
disruption of the Mvp1 tetramer.

How could tetrameric Mvp1 interact with membrane con-
taining PI3P at all? The structure we describe was obtained in the
absence of lipid or lipid headgroups. In the presence of mem-
branes, we observe PI3P-dependent lipid binding so the con-
formation of the PX domain relative to the trans BAR dimer has
to change to accommodate the PI3P. This may lead to further
opening of the tetramer. It has recently been reported that the
SNX3 PX domain inserts its β1–β2 loop, as well as its membrane-
inserting loop, into the bilayer when bound to membranes con-
taining PI3P41. Mvp1 has a stretch of hydrophobic residues in its
long β1–β2 loop. The equivalent of the membrane-inserting loop
in Mvp1 is the top of the PPII loop, adjacent to Mut1, which we
observe is critical for membrane binding. We therefore speculate
that the initiating event in changing the conformation of the PX
domain relative to the trans BAR dimer is insertion of the β1–β2
loop into the bilayer. This may be followed by PI3P binding and
disruption of the tetramer. This would necessitate the presence of
PI3P in a membrane context. The N-terminus may be displaced
by sequential binding of the PX domain to PI3P followed by BAR
interaction with the membrane’s negative charge. In the cell,
tetramer opening may be further enhanced by cargo binding or
posttranslational modifications of the N-terminus.

SNX–BAR tetramerization adds a layer of complexity to the
regulation of SNX–BAR function in membrane remodeling and
in cargo sorting. As SNX–BAR proteins are vital in well-
characterized machineries such as retromer, and as deficiencies in
SNX–BARs are associated with a range of health challenges, these
findings provide a precedent and foundation for future studies on
the functional regulation of SNX–BAR proteins via self-assembly.

Methods
Yeast media. YPD (1% yeast extract, 2% peptone, 2% glucose, and supplemented
with tryptophan and adenine) was used for routine growth. Synthetic complete
(SC; yeast nitrogen base, ammonium sulfate, 2% glucose, and amino acids) or SD
(synthetic defined; as SC but lacking an appropriate amino acid) were used for
growth prior to microscopy or to maintain plasmid selection. Diploids were
sporulated by overnight incubation in YPA (1% yeast extract, 2% peptone, and 2%
potassium acetate) followed by 1–2 days in SPO (1% potassium acetate, 0.1% yeast
extract, and 0.05% glucose).

Yeast genetic manipulation and molecular biology. Strains of Saccharomyces
cerevisiae used in this work are listed in Supplementary Table 2. ORF deletions
were generated in W303A/α diploids by homologous recombination. Appropriate
cassettes, flanked with sequence (30 nucleotides) proximal to the coding sequence
of the target ORF, were amplified from pFA6a-His3MX6, to allow selection of
diploids containing a modification by growth on SD-His. Diploids were then
sporulated. Tetrads were manually dissected, and candidate knockout haploids
were extensively validated.

Cloning. Plasmids used in this work are listed in Supplementary Table 3. S. cere-
visiae MVP1, with flanking upstream and downstream regions of 250 and 150
nucleotides, was amplified from genomic DNA prepared from W303A/α diploids.
All constructs were generated by splicing by overlap extension, if required, and
Gibson assembly. Primers used in this work are listed in Supplementary Table 4

Protein expression and purification. Full-length Mvp1 (codons 1–511), its
mutants and truncations were expressed from two vectors: pET-15b (Novagen), as
N-terminal His6 fusions followed by a thrombin cleavage site or from a homemade
variant of pMW (a gift from Helen Kent), as a C-terminal MBP fusion preceded by
a PreScission cleavage site. Constructs were expressed in Escherichia coli strain
BL21-Codon Plus(DE3)-RIPL (Agilent). Cells were grown in 2xTY at 37 °C until
mid-log phase, after which expression was induced by addition of IPTG (42.5 μM).
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Proteins were expressed overnight at 21 °C. Cells were harvested and resuspended
in TN150 buffer (20 mM TRIS/Cl pH 7.5, 150 mM NaCl, and 1.93 mM β-mer-
captoethanol) before lysis by homogenization (Avestin C3; Emulsiflex). Lysates
were then clarified (142,000 g at 4 °C for 45 min).

His6-Mvp1 fusions were applied, in batch, to Ni-IDA resin (Macherey-Nagel).
The resins were washed with TN150, loaded into a column and fusion proteins
were eluted using a 0–250 mM imidazole gradient in TN150. Peak fractions were
pooled and dialyzed into TN150. The dialysates were then applied to an anion
exchange column. Proteins were eluted with a 150–500 mM NaCl gradient. Peak
fractions were pooled, concentrated, and passed over a Superdex 200 size-exclusion
column, equilibrated with TN250 (TN with 250 mM NaCl). Peak fractions were
concentrated and flash frozen in liquid nitrogen for storage until use.

C-terminal MBP-tagged fusions were applied, in batch, to amylose resin (NEB).
After washing in TN150, fusion proteins were eluted with 10 mM maltose in
TN150. Peak fractions were pooled and dialyzed overnight into fresh TN150 at
4 °C, while being cleaved with PreScission protease (GE Healthcare). PreScission
protease and cleaved MBP were removed by sequential incubations with
glutathione sepharose (Macherey-Nagel) and amylose resin. Mvp1 proteins were
then further purified by anion exchange and size-exclusion chromatography, as for
the His6 fusions. A slight modification was used to purify Mvp1 Δ2-100. The
uncleaved protein was purified in TN150 supplemented with 1 mM EDTA
(TN150E) and 0.1 mM PMSF by amylose resin, elution, dialysis into TN150E,
anion exchange, and size exclusion chromatography. Then the protein was cleaved
in TN250 with PreScission, after which the PreScission was removed and the
protein was passed over a Superdex 200 in TN250, before concentration and snap
freezing.

Preparation of yeast for microscopy. Yeast were grown at 30 °C overnight in
YPD or appropriate SD to maintain plasmid selection. Yeast were then diluted in
YPD and grown to mid-log phase. Vacuolar membranes were stained with FM
4–64 (10 μM, Thermo Fisher Scientific) for 45 min, followed by washing and
incubation in SC medium without dye for 1 h. Prior to imaging, cells were plated
onto No. 1.5 glass-bottomed coverdishes (MatTek Corporation) previously treated
with 15 μl 2 mg/ml concanavalin-A (Sigma-Aldrich).

Imaging and image analysis. A Nikon (Melville) A1 confocal, equipped with a
100× Plan Apo 100× oil objective, was used to obtain confocal images and Z-stacks.
NIS Elements Imaging software was used to control acquisition. Images were
processed using Fiji.

CPY secretion assay. After overnight growth to saturation in appropriate media
at 30 °C, yeast were diluted and regrown to mid-logarithmic phase in YPD. Yeast
were then diluted to 0.5 OD600/ml and fivefold serial dilutions were made in water.
Two microliters of each dilution was spotted onto YPD or SD-Trp plates after
which they were incubated at 30 °C for 24 h. The colonies were overlaid with
nitrocellulose, followed by additional incubation at 30 °C for 16 h. The membranes
were then extensively washed with TBST (TRIS-buffered saline, supplemented with
0.1% Tween 20) and blocked for 1 h with TBST containing 5% bovine serum
albumin. The membrane was probed for secreted CPY using an anti-CPY mouse
monoclonal antibody (ab113685; Abcam) for 2 h at room temperature. The sec-
ondary antibody was IRDye 680RD-conjugated goat anti-mouse antibody (926-
68070; LI-COR). The signal was detected using a ChemiDoc MP Imaging System
(Bio-Rad).

Preparation of liposomes. Liposomes were made from 100% PS (1,2-dioleoyl-sn-
glycero-3-phospho-L-serine; Avanti) or 95% PS+ 5% PI3P (1,2-dioleoyl-sn-gly-
cero-3-phospho-(1′-myo-inositol-3′-phosphate; Avanti)). Lipid mixtures were
dried using a stream of nitrogen gas and were desiccated for at least 3 h. The lipids
were rehydrated in 20 mM TRIS/Cl pH 7.5, 250 mM NaCl to a concentration of
1 mg/ml. Liposomes were extruded through a 100 nm Nucleopore membrane
(Whatman).

Liposome sedimentation assays. Mvp1, its mutants or truncations were incu-
bated in the absence or presence of 0.1 mg/ml 100 nm PS or PS/PI3P liposomes at
21 °C for 30 min in a final volume of 100 μl in TN250 and at a concentration of
1.2 μM. The samples were then centrifuged at 40,000 g for 30 min at 4 °C in the
S55-A2 rotor (Thermo Fisher Scientific). Pellets and supernatants were separated
and equal proportions of each were analyzed by SDS–PAGE. Bands were quantified
by integration using Fiji.

SEC-MALS. Mvp1, its mutants or truncations were subjected to size-exclusion
chromatography using a Superdex 200 10/300 gl column (GE Healthcare) equili-
brated 20 mM TRIS/Cl pH 7.4, 250 mM NaCl, 1.93 mM β-mercaptoethanol, unless
explicitly stated. In general, 500 μl of 20–21.2 μM protein was injected, with the
exception of Mvp1 Δ2-78, where sample limitations permitted injection of 500 μl of
14 μM protein. The Mvp1 with an engineered PreScission protease cleavage site
after residue 99 was passed onto the column uncleaved or after cleavage with 10 U
of PreScission protease in TN buffer for 90 min before removal of the PreScission

protease by incubation with glutathione-sepharose beads. The column was coupled
to a static 18-angle light-scattering detector (DAWN HELEOS-II) and a refractive
index detector (Optilab T-rEX) (Wyatt Technology). Data were collected con-
tinuously at a flow rate of 0.3 ml/min. Data analysis was performed using the
program Astra VII. Monomeric BSA (2.0 mg/ml) (Sigma) was used for data quality
control.

Negative-stain electron microscopy. For tubulation assays, 10 μg liposomes were
incubated with 10 μM (final concentration) Mvp1 or Mvp1 Mut1 (20 μl final
volume) for 30 min at room temperature. 3 μl sample aliquots (protein with
liposomes or liposomes alone) were adsorbed to glow-discharged 300-mesh
carbon-coated copper grids and stained with 2% uranyl formate. Images were
recorded on a Tecnai T12 Spirit electron microscope, operating at 120 kV with a
LaB6 electron source, at the indicated magnification on a 4,000 × 4,000 Gatan
Ultrascan charge-coupled device camera.

Cryo-EM sample preparation and imaging. Purified Mvp1 or Mvp1 Mut1
(~5 μM protein) was applied to glow-discharged holey carbon grids (Quantifoil Cu
R2/1, 300 mesh) and plunge-frozen in liquid ethane using an FEI Vitrobot Mark
IV. Images were acquired at the University of Virginia School of Medicine
Molecular Electron Microscopy Core on a Falcon 3EC detector in counting mode
using an FEI Titan Krios at 300 kV with a nominal magnification of 75,000, cor-
responding to a final pixel size of 1.056 Å. For each image stack, a total dose of
about 58 electrons per square angstrom was equally fractioned into 49 frames
(~1.2 e−/Å2/frame). SerialEM was used for automated data collection42. Defocus
values used to collect the data set ranged from −0.5 to −3.5 μm. Further details are
given in Supplementary Table 5.

Cryo-EM data processing. For cryo-EM data, beam-induced motion correction
was performed using MotionCor243 to generate dose-weighted averaged micro-
graphs and dose-weighting micrographs from all frames. Contrast transfer function
parameters were estimated using CTFFIND444 from averaged micrographs. Other
procedures of cryo-EM data processing were performed within RELION 3.045

using the dose-weighted micrographs.
Approximately 6500 particles of Mvp1 were manually picked from ~100

lowpass-filtered micrographs using e2boxer.py from the EMAN2 suite46 and were
subjected to reference-free 2d classification in RELION. The best representative 2d
class averages were selected as templates for automatic particle picking of 300
micrographs in RELION. After one round of 2d classification, ~20,000 particles
were selected. The RELION implementation of the Stochastic Gradient Descent
algorithm was used to generate a de novo 3d initial model from the selected
particles. The generated low-resolution initial model and the selected 20,000
particles were subsequently used for further 3d classification and 3d auto-
refinement, and finally converged to a map with resolution ~7 Å, determined using
the gold-standard Fourier Shell Correlation (FSC) 0.143 criterion.

The 7 Å map was used as reference for further particle auto-picking from the
whole data set. Approximately 1,230,000 particles were auto-picked from 1620
micrographs for further processing. The whole set of particles was cleaned to
remove contaminants or junk particles by three rounds of 2d classification. Finally,
~200,000 particles were selected for further 3d reconstruction.

We observed an apparent D2 symmetry existing in the 3d reconstruction from
the side view and the 2d classification results. In order to reduce the impact of
imposition of symmetry on the reconstruction, therefore, we performed the 3d
reconstruction procedures without and with different symmetries
(Supplementary Fig. 4b).

For C1 symmetry, after 3d classification into five classes, the most populated
class, which accounted for 39.8% of the data set (~82,000 particles), was used for
3d-masked auto-refinement. This yielded a map of ~6.1 Å resolution (gold-
standard FSC 0.143 criterion). A 5.3 Å map was generated after sharpening with a
B-factor of −190 Å2 (post processing in RELION).

C2 symmetry was imposed on three user-defined axes (Fig. S4). For each axis,
after 3d classification, the most populated class was selected for 3d-masked auto-
refinement. This yielded three maps with the following resolutions:

4.6 Å (97,000 particles, after sharpening with a B-factor of −210.7 Å2),
4.4 Å (91,000 particles, after sharpening with a B-factor of −220 Å2),
4.7 Å (115,000 particles, after sharpening with a B-factor of −234 Å2).
For the reconstruction with D2-imposed symmetry, after 3d classification (two

rounds), a final map of 4.2 Å resolution was obtained after sharpening with a B-
factor of −152.8 Å2. This was used for subsequent model building and refinement.

Maps were visualized using ChimeraX47 or Coot48 and local map resolutions
were calculated using RELION.

The same procedure was used for Mvp1 Mut1 data collection and processing.
Due to the distribution of particle orientations (Supplementary Fig. 6d), we were
unable to obtain high-resolution structures. We therefore subjected the particles to
2d and 3d classification analysis.

Data collection and processing statistics are summarized in Supplementary
Tables 5 and 6.
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Model building. The model for the Mvp1 tetramer was built with Coot48, using an
auto-sharpened map generated in Phenix49. The structures of Homo sapiens SNX9
(PDB 3DYT) and Chaetomium thermophilum Vps5 (PDB 6HZW) were used as a
starting point (Fig. S5c, d). The map quality within the core of the BAR domains
(Supplementary Fig. 5e) enabled verification of the correct sequence register. The
model was completed using the density, secondary structure predictions generated
using PSIPRED50, local distance restraints generated with ProSMART51, and
existing SNX–BAR structures as guides. Some long loops could not be assigned well
in the model including the β1–β2 loop in the PX domain, the loop connecting the
PX domain to the BAR domain and the loop connecting BAR helices α2–α3. The
model was refined against the 4.2 Å auto-sharpened map using phenix.real_spa-
ce_refine. The final model statistics are listed in Supplementary Table 7.

The electrostatic potential of the surface of the Mvp1 tetramer was calculated, at
a pH of 6.8, using APBS in the PDB2PQR server52. Sizes of tetramerization
interfaces were calculated using the PISA web server53.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Data supporting the findings of this paper are available from the corresponding authors
upon reasonable request. A reporting summary for this article is available as a
Supplementary Information file.
The cryo-EM map of Mvp1 is deposited in the Electron Microscopy Data Bank under

accession code EMD-20555. The real-space-refined atomic model of the Mvp1 tetramer
is deposited in the Protein Data Bank under accession code 6Q0X. The source data
underlying Figs. 1d, e, 3d, 4a, b and Supplementary Figs, h, 3b, c are provided as a Source
Data file.
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