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Histone variant H3.3 residue S31 is essential for
Xenopus gastrulation regardless of the deposition
pathway
David Sitbon 1,3, Ekaterina Boyarchuk 1,3, Florent Dingli 2, Damarys Loew 2 & Geneviève Almouzni 1✉

Vertebrates exhibit specific requirements for replicative H3 and non-replicative H3.3 variants

during development. To disentangle whether this involves distinct modes of deposition or

unique functions once incorporated into chromatin, we combined studies in Xenopus early

development with chromatin assays. Here we investigate the extent to which H3.3 mutated

at residues that differ from H3.2 rescue developmental defects caused by H3.3 depletion.

Regardless of the deposition pathway, only variants at residue 31—a serine that can become

phosphorylated—failed to rescue endogenous H3.3 depletion. Although an alanine sub-

stitution fails to rescue H3.3 depletion, a phospho-mimic aspartate residue at position 31

rescues H3.3 function. To explore mechanisms involving H3.3 S31 phosphorylation, we

identified factors attracted or repulsed by the presence of aspartate at position 31, along with

modifications on neighboring residues. We propose that serine 31-phosphorylated H3.3 acts

as a signaling module that stimulates the acetylation of K27, providing a chromatin state

permissive to the embryonic development program.
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The organization of DNA into chromatin provides not only
a means for compaction but also a versatile landscape
contributing to cell fate and plasticity1,2. The basic unit of

chromatin, the nucleosome core particle, is composed of a histone
tetramer (H3-H4)2 flanked by two histone dimers H2A–H2B,
around which 147 bp of DNA is wrapped3. Functional modula-
tion of the nucleosome occurs though the choice of histone
variants and reversible posttranslational modifications (PTMs)
such as acetylation, methylation, and phosphorylation4. Three out
of the four core histone families possess histone variants5–7.
Within the H3 family of histones, the centromere-specific CENP-
A is distinct, whereas the other well-characterized H3 variants are
closely related and are thought to function similarly8. Those H3
variants exhibit similar structural features at the core particle
level9; however, they display important differences in their cell
cycle regulation and modes of incorporation into chromatin10.

To date, two distinct modes of incorporation have been
described: DNA-synthesis independent (DSI) and DNA-synthesis
coupled (DSC); the latter being used during both DNA replica-
tion and repair11. In humans, the two replicative variants H3.1
and H3.2 are incorporated into chromatin in a DSC manner via
the histone chaperone complex CAF-112–18. The non-replicative
form H3.3, which differs from H3.1 and H3.2 by five and four
residues, respectively, is incorporated in a DSI manner17,19–21.
DSI incorporation depends on the HIRA histone chaperone
complex in euchromatin regions17,19,21,22, whereas the presence
of H3.3 at telomeres and pericentric heterochromatin relies on
the DAXX/ATRX histone chaperone complex22–24. Thus, the
dynamics of the different histone variants in regards to their
deposition is linked to dedicated histone chaperones25,26.

Inspired by the quote “nothing in biology makes sense except
in the light of evolution27,” we considered H3 variants in light of
their conservation in different organisms. In Saccharomyces cer-
evisiae, there is only one non-centromeric histone H3 (which is
most related to human H3.3) that provides both essential repli-
cative and non-replicative variant functions28–30. Paradoxically,
however, in humanized S. cerevisiae strains where all histones are
exchanged for human orthologs, replacement with hH3.1 more
readily produced colonies than with the hH3.3 variant31. In
metazoans such as Drosophila melanogaster, the replicative var-
iant can compensate for the loss of H3.3 during development in
somatic tissues, although the adults are sterile32–36. As sterility
could simply reflect a shortage of maternal H3.3 to replace pro-
tamine from sperm chromatin after fertilization, the most parsi-
monious hypothesis suggests that the nature of the variant itself
might not be critical. Similarly, H3.3 is not essential in Cae-
norhabditis elegans, where its removal is not lethal but reduces
fertility and viability in response to stress37. However, in Arabi-
dopsis thaliana, replicative and non-replicative H3 variants are
essential. The absence of H3.3 leads to embryonic lethality and
also partial sterility due to defective male gametogenesis38.

In mouse, the deletion of one of the two copies of the H3.3
gene results in developmental defects at E12.5 and sterility39–41.
In human, dominant effects of substitutions in H3.3, such as H3.3
K27M and H3.3 G34R/V, along with mutations affecting their
chaperones such as DAXX/ATRX, have been implicated in dif-
ferent types of cancer42–49. Thus, the developmental defects
observed mouse models and mutations associated with particular
cancers underline the importance of individual histone H3 var-
iant and their chaperones in vertebrates.

Given the high degree of sequence identity between H3 var-
iants, whether the need for a particular histone variant could
reflect either (i) a unique mode of incorporation and provision or
(ii) a distinct identity once incorporated into chromatin to drive
their functions remains puzzling. Although the first hypothesis
has largely been favored based on previous work, including our

own, the issue has not been formally addressed. To disentangle
these two possibilities, we decided to use the Xenopus laevis
model, as it represents an ideal system to tackle such issue.
Indeed, extensively characterized both in developmental biology
and chromatin studies50–52, its external development permits
direct access to embryos for observation and manipulation53.
With retention of H3 variants in sperm54 and only one replicative
histone (H3.2), it provides an ideal situation while retaining
amino acid sequence conservation with human variants for both
H3.2 and H3.3. Following fertilization, X. laevis development
starts with 12 rapid embryonic cell divisions, which include only S
and M phases55–57. At the midblastula transition (MBT), zygotic
activation occurs concomitantly with a progressive lengthening of
the cell cycle, to reach a typical cell cycle with two gap phases at
gastrulation. In addition, cells begin to differentiate with the
acquisition of migration properties. Importantly, previous work
in our laboratory revealed a specific requirement for H3.3 during
X. laevis early development at the time of gastrulation58. That
work demonstrated that depletion of endogenous H3.3 leads to
severe gastrulation defects that cannot be rescued by providing
the replicative counterpart H3.2. Interestingly, there are only four
residues that differ between H3.2 and H3.3. A first region of
divergence within the AIG motif—in the globular domain of H3.3
—is involved in histone variant recognition by dedicated histone
chaperones59–62. The other distinct residue, a serine only present
in H3.3, is located on the histone N-terminal tail at position 31
and can be phosphorylated63–65.

Here we systematically mutate the H3.3 histone variant at each
of its distinct residues, to assess their ability to rescue the gas-
trulation defects and examine their mode of chromatin incor-
poration. We find that mutations affecting the incorporation
pathway are neutral in setting specific H3.3 functions at the time
of gastrulation. In contrast, serine 31 is critical to rescue
defects following endogenous H3.3 depletion. In Xenopus, Ser31
—which is conserved in multicellular organisms including
humans—is phosphorylated with a peak in mitosis by a network
of mitotic kinases, including CHK1 and Aurora B. Remarkably, a
phospho-mimic form of H3.3, S31D (which cannot be dynami-
cally modified) still fully rescues gastrulation. Interestingly, ana-
lysis of protein interactions and repulsions on the phospho-
mimic peptide, as shown by mass spectrometry, reveals attraction
of transcription cofactors as those involved in the β-catenin
pathway in interphase, but repulsion of factors involved in
chromosome condensation and splicing in mitosis. We also find
that H3.3 S31D exhibits an increase in H3.3K27ac and a loss of
H3.3K27me3 in-cis. We discuss how this evolutionarily conserved
residue conveys, in both interphase and mitosis, unique proper-
ties for the H3.3 variant in vertebrates during cell cycle and cell-
fate commitment.

Results
H3.3 dosage is critical for X. laevis gastrulation. Although
Homo sapiens have two replicative H3 variants H3.1 and H3.2, X.
laevis only possesses one replicative variant H3.2. Both H3.2 and
H3.3 are conserved with their human orthologs (Fig. 1a). Inter-
estingly, the two H3 variants are almost identical and conserved
through evolution66. Two regions show differences in H3.2 and
H3.3. The first one encompasses positions 87, 89, and 90 with a
serine, a valine, and a methionine, known as the SVM motif in
H3.2. Instead, these positions correspond to an alanine, an iso-
leucine, and a glycine, known as the AIG motif in H3.3. The
second difference lies at position 31 where H3.2 shows an alanine
and H3.3 a serine. Considering the sequences for H3.2 and H3.3
histone variants from five different model organisms, in which
the functions along with deposition pathways of H3 variants have
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been studied, the replicative variant H3.2 exhibit ~3% dissim-
ilarity (four variable residues out of 136; Supplementary Fig. 1a).
In the case of the non-replicative variant H3.3, it varies by 4%,
with six variable residues. Remarkably, the region responsible for
histone chaperone recognition shows the highest variation, in line
with possible coevolution with their respective histone chaper-
ones that are not as closely conserved (Supplementary Fig. 1b).
To examine how deposition pathways and the role for histone
variants are related, targeting these regions could thus be con-
sidered. Using X. laevis embryos, we had previously used a
morpholino specifically designed to target endogenous H3.358

(see Methods). We found that this morpholino against H3.3 leads
to defects during late gastrulation (Fig. 1b and Supplementary
Movie 1). Although the blastopore forms and invaginates during
gastrulation, depletion of endogenous H3.3 leads to an arrest of
the blastopore closure. When co-injected with the morpholino,
exogenous hemagglutinin (HA)-tagged H3.3 mRNAs (hereafter
referred to eH3s), but not HA-tagged H3.2, can rescue the phe-
notype58. To better define the relationship between endogenous
H3.3 and its functional importance during development, we

decided to titrate the concentration of morpholino (Supplemen-
tary Fig. 1c). The lower concentration enabled the blastopore to
start to invaginate without complete closure and led to late gas-
trulation defects, consistent with our previous findings58. By
increasing by two- to fourfold morpholino concentration, gas-
trulation defects coincided with an even earlier phenotype, where
the blastopore closure did not occur at all. These data are in line
with a titration effect, whereby gastrulation time allows to readily
reveal requirements for H3.3. We could thus use it as a readout to
assess the need for a distinct mode of incorporation for H3
variants or for the histone variant itself once incorporated.

Swapping deposition mode retains H3.3 roles at gastrulation.
To investigate the importance of the deposition pathway, we first
considered the H3.3 histone chaperone recognition motif
(Fig. 2a). Incorporation into chromatin of the non-replicative
variant H3.3 occurs throughout cell cycle (DSI) and involves the
HIRA complex in gene-rich regions17,19–21 and the DAXX/ATRX
complex in heterochromatin regions22–24,67,68. In contrast,
incorporation of the replicative variants is coupled to DNA
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synthesis (DSC) and is mediated by the CAF-1 complex12–18.
Importantly, structural studies enabled the identification of how
histone chaperones discriminate the distinct histone variants
through a motif located in the globular domain of histones59–61.
Both DAXX and HIRA complexes bind to the AIG motif of H3.3,
with a particular affinity for the glycine at position 90. Therefore,
we tested the ability of mutated H3.3 in the histone chaperone
recognition motif to rescue the loss of H3.3 (Fig. 2b). Single
mutants for each residue of the AIG motif, i.e., eH3.3 A87S, eH3.3
I89V, and eH3.3 G90M, could rescue loss of endogenous H3.3
and embryo development occurred with the same efficiency as
eH3.3 WT (wild type), whereas eH3.2 WT could not. As the
individual substitution in the H3.3 motif did not affect the

developmental rescue in vivo, we assessed whether mutation of all
three residues of the motif would then affect H3.3 functions. To
our surprise, in this context, eH3.3 SVM hybrid form proved still
able to rescue the loss of endogenous H3.3. In addition, such
mutant forms were expressed and incorporated into chromatin at
similar levels in the embryo (Supplementary Fig. 2a, b). Thus, by
substituting the H3.3 recognition motif for its histone chaperone
with the one from H3.2, we could ensure the rescue in vivo. As
early development may allow looser interactions with the dedi-
cated chaperones compared with a somatic context, we decided to
assess both interaction and incorporation means with mutated
H3.3 for histone chaperone recognition motif. eH3.3 carrying the
H3.2 recognition motif is able to rescue the depletion of H3.3,
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suggesting that this hybrid form can still ensure H3.3 functions
during early development. In this context, whether the histone
chaperone recognition motif actually determined the respective
deposition pathways for each histone variant remained unknown.
First, we analyzed the chaperone interactions with the eH3.3
SVM hybrid form by immunoprecipitations (Fig. 3a). Both H3.3
dedicated chaperone complexes HIRA and DAXX recognized
best eH3.3 WT, carrying the H3.3 AIG motif. However, p60 and
p150, two subunits of the CAF-1 complex dedicated to H3.2,
could recognize eH3.2 WT and eH3.3 SVM equally, but not
eH3.3 WT. This shows that eH3.3 SVM can be recognized by
CAF-1, arguing for a possible swap in the means for incorpora-
tion. We confirmed this finding in vivo by immunoprecipitating
the various mutants of eH3 directly from embryos at the gas-
trulation stage (Supplementary Fig. 3a, b). Interestingly, H3.3
dedicated chaperones did recognize H3.3 variants with a single
mutation of the AIG motif in vivo. Therefore, the whole recog-
nition motif is key to alter chaperone interactions. We then
explored the potential impact of eH3 mutants on the mode of
histone variant incorporation. To test this, we performed chro-
matin assembly assays using extracts derived from X. laevis

eggs52,69. We supplemented Xenopus egg extracts with eH3.2 WT,
eH3.3 WT, or eH3.3 SVM, and monitored their incorporation
into chromatin using sperm nuclei under conditions allowing or
preventing DNA synthesis (Fig. 3b). In interphase extracts, sperm
DNA forms nuclei and can replicate and reassemble chromatin,
whereas mitotic extracts lack DNA replication capacity. We iso-
lated and analyzed sperm chromatin nuclei from interphase
extracts in the presence or absence of the DNA synthesis inhibitor
aphidicolin. Incorporation of eH3.3 WT using sperm nuclei
occurred with a similar efficiency in the presence or absence of
DNA synthesis. By contrast, eH3.2 WT incorporation was
severely diminished by the presence of aphidicolin. Importantly,
eH3.3 SVM incorporation showed the same dependency on DNA
replication, arguing that its incorporation mode switched toward
a DSC mechanism. Consistently, p60 recruitment to chromatin is,
as expected, highly reduced when DNA synthesis is inhibited. We
further confirmed in mitotic extracts that only the variant with
the AIG motif could get incorporated independently of DNA
synthesis (Supplementary Fig. 3c). Based on these data, we con-
clude that the H3.3 histone variant was efficiently provided
regardless of the incorporation pathway. Thus, defects at the time
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of gastrulation do not arise from a need for a distinct incor-
poration pathway outside S phase independently of DNA
synthesis. It rather reflects an inherent feature of the variant when
incorporated into chromatin. We thus examined more closely if
the only the remaining specific residue of H3.3, the amino acid
31, could account for this unique feature.

H3.3 S31 is critical and phosphorylated by CHK1 and Aurora
B. To address the role of the H3.3 residue at position 31, we first
constructed a new H3.3 mutant—H3.3 S31A—containing an
alanine instead of a serine at position 31, while maintaining its

original AIG motif (Fig. 4a and Supplementary Fig. 4a). eH3.3
S31A did not rescue endogenous H3.3 depletion during Xenopus
early development. Therefore, H3.3 serine at position 31 cannot
be substituted by an alanine (which is the corresponding residue
in H3.2) to fulfill H3.3 dedicated functions in this time window
during development. Interestingly, this particular residue has
been found phosphorylated in human cells during mitosis63.
Furthermore, a threonine substitutes for this serine in Arabi-
dopsis, a residue that might possibly also undergo phosphoryla-
tion, something that has however not yet been documented. A
key question is thus whether the actual need for H3.3 is linked to
the capacity of H3.3 S31 to become phosphorylated. To this end,
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we first examined H3.3 S31 phosphorylation in the Xenopus
system using a Xenopus A6 cell line derived from the kidney
(Fig. 4b). By immunofluorescence, we detected a strong enrich-
ment of H3.3 S31ph during mitosis. Interestingly, when com-
pared with another mitotic modification common to both H3
variant forms, H3 S10ph, its pattern was different, indicating
possibly a distinct function. Although H3 S10ph covers the edges
of mitotic chromosomes, H3.3 S31ph is enriched at a centric and
pericentric heterochromatin. This pattern, similar to previous
observations in HeLa B cells (Supplementary Fig. 4b) as in ref. 63,
is consistent with observations in mouse and monkey cell
lines64,65. We further characterized the acquisition of this mark in
interphase extract or in extract pushed into mitosis (Supple-
mentary Fig. 4c). We did not detect any significant signal for H3.3
S31ph in the soluble pool of H3.3 in either mitotic or interphase
extracts, indicating that the modification is likely acquired once
the variant is incorporated into chromatin. In addition, we could
not detect a signal for this mark on non-remodeled sperm
chromatin or chromatin assembled in interphase extracts. This
mark was mostly enriched in the fraction corresponding to iso-
lated mitotic chromatin, in a profile resembling the H3 S10ph
mark. We therefore conclude that H3.3 S31ph is predominantly a
mitotic chromatin mark in both somatic cells and reconstituted
chromatin in early embryonic extracts, a mark imposed within
chromatin and not prior to deposition. Then, using Xenopus egg
extracts and sperm chromatin, we further explored the kinetics of
appearance of the modification. We detected a peak of H3.3
S31ph 30 min after metaphase entrance, similar to H3 T3ph but
later in mitosis compared with H3 S10ph and H3 S28ph (Fig. 4c).
Interestingly, disappearance of all phosphorylation marks showed
similar kinetics after anaphase induction. In mammals, according
to the current literature, kinase candidates could either be
CHK170 or Aurora B71. Here, using Xenopus sperm chromatin in
mitotic egg extracts added with various kinase and phosphatase
inhibitors, we tested which kinases were critical for H3.3 S31ph in
this system (Fig. 4d). Both CHK1 and Aurora B inhibitors led to a
decrease of all H3 phosphorylation, including H3.3 S31ph. This
suggests that both kinases are important for phosphorylation of
H3.3 S31ph, possibly by impacting on each other considering the
network of mitotic kinases72,73. In addition, we also confirmed
these findings in human cells (Supplementary Fig. 4d). In con-
trast, inhibiting PP1/PP2 phosphatases with two different inhi-
bitors increased all H3 phosphorylation but not H3.3 S31ph
(Fig. 4d). This suggests that distinct means remove these marks.
We next asked whether H3.3 S31ph was also critical at the time of
gastrulation in our rescue experiments.

A negative charge at position 31 is key during gastrulation. To
explore a potential need for the phosphorylation of H3.3 S31, we
designed another H3.3 mutant carrying an aspartic acid, eH3.3
S31D. This mutant form acts as a phospho-mimic version for this
residue and carries a constitutive negative charge at that cannot
be dynamically regulated by kinases or phosphatases (Fig. 5a).
This mutant form rescued the depletion of endogenous H3.3 to a
similar extent to eH3.3 WT. Notably, all mutants were expressed
and incorporated into chromatin in the same proportion (Sup-
plementary Fig. 5a, b) and we verified that these mutations on the
H3.3 tail did not indirectly alter their abilities to interact with
specific histone chaperones (Fig. 5b and Supplementary Fig. 3b).
In particular, neither H3.3 S31A nor S31D mutations affected the
mode of incorporation of H3.3 in the Xenopus egg extracts–base
chromatin assembly assays (Fig. 5c and Supplementary Fig. 5c).
This enabled us to discard any defects that could be related to
inefficient incorporation. We thus conclude that the residue at
position 31 in H3.3, either as a serine or as a negatively charged

residue (phospho-mimic), is specifically needed for the function
of the H3.3 variant once incorporated into chromatin as revealed
at the time of gastrulation during early development in the
Xenopus. This led us to investigate how H3.3 S31 phosphorylation
impacts its binding partners and neighboring PTMs.

H3.3 S31D can attract or repulse distinct factors. To explore the
specific roles H3.3 S31ph, we searched for specific interactors. To
this end, we used biotinylated peptides corresponding to the N-
terminal tail of H3.3 histones, carrying various mutations on the
residue at position 31. We incubated each peptide with either
interphase or mitotic Xenopus egg extracts for pull-down
experiments and performed proteomics mass spectrometry ana-
lysis (Fig. 6a). We first ensured that all peptides were present in
comparable amounts, using an antibody recognizing the N-
terminal part of H3 (Supplementary Fig. 6a). In addition, in the
mitotic extract, H3.3 S31 peptides showed no detectable H3.3
S31ph, as revealed with the H3.3 S31ph antibody, whereas the
H3.3 S31D peptide form was readily detected, thus representing a
good phospho-mimic. We identified binding partners obtained
for each condition in the interphase and mitotic extracts by mass
spectrometry. We compared their distribution with Venn dia-
grams to highlight common vs. distinct protein partners (Fig. 6b).
For each specific condition, we selected the Top 5 categories
according to Gene Ontology, based on p-values, to assess
potential associated functions for factors unique to these condi-
tions (Supplementary Fig. 6b). Furthermore, we also looked into
the Gene Ontology of proteins found in common for H3.3 S31
and H3.3 S31A peptides but not retrieved in H3.3 S31D (Sup-
plementary Fig. 6c). We focused on the H3.3 S31D peptide and
displayed the Gene Ontologies of interest relative to the other
peptides (Fig. 6c). Remarkably, in interphase, H3.3 S31D attracted
factors involved in the β-cat-TCF pathways, namely TLE and
BCL, involved in the transcriptional activation of a number of
genes key for developmental programs74. In mitotic extracts, H3.3
S31D repulsed factors implicated in chromosome condensation,
including NCAP proteins, or splicing such as SNRNP and LSM,
which were enriched with both H3.3 S31 and H3.3 S31A peptides.
This is particularly interesting given that previous studies found
that H3.3 S31ph inhibited the binding of ZMYND11, a factor
involved in intron retention that recognizes H3K36me375,76.
Moreover, transcription and splicing are associated with distinct
PTMs, for instance, H3K27ac and H3K27me3, and H3K36me3,
respectively. Thus, considering the particular attraction and
repulsion properties of H3.3 S31D, it was critical to examine how
this mutation could influence neighboring PTMs.

H3.3 S31D-negative charge promotes in-cis H3.3K27ac in vivo.
We therefore investigated how H3.3 S31D impacted neighboring
PTMs and chromatin states (Fig. 7a). For this, we first con-
structed new stable human cell lines expressing HA-tagged H3.3
constructs from the same genomic locus, carrying mutations at
position S31 (Supplementary Fig. 7a). We verified that their cell
cycle, histone chaperones, and endogenous PTMs were compar-
able (Supplementary Fig. 7b, c). Given the relatively low level of
expression of the different exogenous H3 constructs, we enriched
them by an HA pulldown, to examine the impact of H3.3 S31-
negative charge on other PTMs either in-cis or in-trans (Fig. 7b).
Although H3.3K27me3 was present on endogenous histones, it
was undetectable on the exogenous H3.3 S31D. Moreover,
H3.3K27ac was enriched on H3.3 S31D, in agreement with data
obtained in mouse embryonic stem cells (mESC), although this
crosstalk was observed in-trans77. We did not detect any sig-
nificant changes for H3K36me3, although another phospho-
mimic mutation led to a specific increase of this mark during
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macrophage activation78. This may relate to the different cellular
systems and developmental status. It was thus critical to examine
which modifications could be affected in the developing Xenopus
embryo, the system in which we established the importance of
S31. We thus used embryos injected with the various HA-tagged
H3.3 mutant mRNAs and carried out pulldowns at gastrulation
(Fig. 7c). Remarkably, we observed a dramatic effect by pulling
down eH3.3 S31D, which showed a strong signal for H3.3K27ac.
Taken together, these data show a clear crosstalk between the
negative charge on H3.3 S31 and neighboring PTMs, potentially

impacting transcription (Supplementary Fig. 7d). The effect on
H3.3K27ac stands out as a key change in the developing embryo.

Discussion
By exploiting depletion of endogenous H3.3 and complementa-
tion assays in X. laevis, and monitoring the capacity to undergo
gastrulation, we disentangled the critical role of H3.3 within
chromatin through amino acid 31, independently of its mode of
incorporation.
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Replicative and non-replicative H3 variants show distinct
genome-wide distributions79, with enrichment of H3.3 at
enhancers, or proximal to telomeres and centromeres as observed
in several models in somatic cells and embryonic cells80. How
these distinct patterns arise and evolve dynamically during
development and are then maintained in given lineages remain to
be established, particularly at the gastrulation stage when the
different embryonic layers emerge. Moreover, how the unique
properties of H3.3 influence cell cycle-related functions and/or
cell-fate programming is still an open question. We first exam-
ined whether the mutations of the residues assigned to a key role
in the choice of the deposition pathway59–62 affect the capacity to
rescue the depletion of endogenous H3.3. Surprisingly, an eH3.3
form containing the H3.2 recognition motif still complements
H3.3 functions in our developmental assay, even though this
swap between motifs effectively alters the chaperone interactions
and the incorporation pathway. These data underline the fact that

neither the chaperone interaction nor the mode of incorporation
of the variant is critical to enable H3.3-specific roles at this time
of development in the context of endogenous H3.3 depletion. Of
note, this set of data, which rely on an artificial bypass, does not
undermine the importance of the loading mechanism but rather
enables us to tease apart different aspects. Furthermore, the
importance of distinct pathways may add to the need for distinct
residues at later developmental stages beyond gastrulation. The
special situation at gastrulation may relate to unique emerging
functions of distinct cell fates at this time, including the pro-
gressive acquisition of chromatin properties with the addition of
somatic linker histone variants81.

Considering the transient nature of the morpholino depletion,
other approaches would be necessary to access later stages. Most
importantly, for Xenopus early development, and in sharp con-
trast with what one would have anticipated, it is the presence
per se of H3.3 into chromatin that proves most important in vivo,
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regardless of the means of incorporation (Fig. 8). This discovery
shed light on unique roles performed by the single amino acid
S31 on H3.3, highlighting the idea that every amino acid matters8!

By replacing the serine at position 31 in the N-terminal tail of
H3.3 with the alanine found in H3.2, we showed that the eH3.3
S31A mutant could not replace H3.3. This demonstrates that
H3.3 S31 is essential in our complementation assay after endo-
genous H3.3 depletion. This serine on H3.3 can undergo

phosphorylation, whereas the alanine on H3.2 cannot. This spe-
cific phosphorylation of H3.3 shows enrichment during meta-
phase in human cell line63. In our system, we revealed a similar
dynamics in a Xenopus cell line. Although only phosphorylated
within chromatin, H3.3 S31ph peaks in mitosis later than H3
S10ph and H3 S28ph. Although other studies have looked for
additional kinases involved in H3.3 S31ph during interphase,
including IKKα82, either CHK170 or Aurora B71 has been pre-
viously identified for mitosis. Here we found that both CHK1 and
Aurora B contribute in mitosis to H3S10 and H3.3 S31 phos-
phorylation, and we identify this modification as a late event for
H3.3 S31. Here we show that the dynamics of this mark is not
required for proper gastrulation. Indeed, a phospho-mimic form
with a constitutive negative charge on the serine at position 31,
H3.3 S31D, could readily rescue the depletion of H3.3. We can
foresee several possible explanations. On the one hand, the
negative charge at position 31 could be an absolute requirement
for H3.3 functions regardless of any dynamics. On the other
hand, the negative charge on this residue could be associated with
mechanisms that occur solely in mitosis and the dynamics may
simply be ensured by removal of the variant without invoking a
particular phosphatase. Interestingly, although inhibition of PP1/
PP2 phosphatases increased H3 T3ph, H3 S10ph, and H3 S28ph
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levels, it does not affect H3.3 S31ph. This is consistent with our
hypothesis of H3.3 S31ph removal by eviction but also brings an
intriguing possibility for the mark to be maintained through
mitosis at certain loci, where it could act as a bookmarking.
Future work should explore these possibilities.

The exact role of H3.3 S31 remains enigmatic. Although we
and others63–65 detect strong H3.3 S31ph signals primarily in
mitosis, we cannot exclude that discrete genomic sites are marked
in interphase but were not detected in our assays. Indeed, this
mark has been associated with particular transcribed regions in
activated macrophages78,82 and mESC enhancers77. Our assays
demonstrate the importance of H3.3 S31 at gastrulation, a critical
time for lineage commitment accompanied by dramatic cell cycle
changes and modifications in gene expression patterns. Taking
into account the specific importance of H3.3 that ranges from
transcription to reprogramming20,83,84, the observed develop-
mental defects could arise from a role for H3.3 S31 and its
phosphorylation in transcription initiation or maintenance.
Indeed, we could detect an increase in-cis of H3.3K27ac with the
H3.3 S31D construct, along with a decrease of H3.3K27me3.
These marks are well-characterized for their involvement in
transcription and this is in line with previous observations
showing that H3.3 depletion leads to transcriptional defects58. It
will be critical to investigate in more details the nature of the
transcripts affected when rescuing with the phospho-mimic ver-
sion. Furthermore, and similar to the strategy used for BAP1
depletion85, we envisage the use of histone deacetylases inhibitors
during development when endogenous H3.3 is depleted to
potentially overcome gastrulation defects by restoring H3K27ac
levels. Importantly, MBT in Xenopus also leads to changes in cell
cycle progression, including establishment of longer cell cycles
(somatic type) with gap phases and acquisition of
checkpoints55,56. Histones play a key role in regulating the start of
the MBT, possibly through titration mechanisms86,87. It would
therefore be of interest to explore the role of specific variants in
this context, specially in the case of acetylation and histone var-
iant crosstalk88. In addition, previous studies have suggested that
the presence of H3.3 could affect chromosome segregation.
Indeed, in double H3.3 knockout mESCs, an increase in anaphase
bridges and lagging chromosomes has been observed89. Fur-
thermore, H3.3 S31ph can coat lagging chromosomes, which is
associated with p53 activation and the prevention of aneu-
ploidy65. Considering H3.3 S31ph accumulation at centromeres
in mitosis63, it is tempting to speculate that H3.3 S31ph has a
crosstalk with CENP-A incorporation at late mitosis and the
beginning of G1. Interestingly, CENP-A incorporation at the
centromere has been shown to be dependent on both the presence
of H3.3 as a placeholder90 and on transcription91,92. To reconcile
both aspects, we envision that H3.3 S31ph could act as a
phospho-switch in mitosis to regulate transcription at critical
chromosomal landmarks and in interphase to control and
maintain a transcription program. Alternatively, one could also
consider that the alanine present on H3.2 could prevent particular
interactions specific to H3.3 S31 or H3.3 S31ph, and permitted by
an aspartic acid. Notably, in Arabidopsis, the replicative form
cannot be rescued by H3.3, or more specifically the A31T
mutation93. Indeed, ATXR5, a plant-specific H3K27 methyl-
transferase, specifically recognizes H3.1 and not H3.394. There-
fore, the alanine at position 31 on replicative histone H3.1
prevents the heterochromatinization of H3.3-rich regions during
replication. Thus, in plants, the replicative histone H3 variant
avoids the presence of a negative charge at position 31. It also
suggests that the specific residue at position 31 of the replicative
and non-replicative H3 variants may exhibit different functions
by promoting or excluding specific binding partners. Therefore,
the mass spectrometry data we have generated in our Xenopus

studies provides an important source of information to explore
further. The fact that H3.3 S31D can attract factors in interphase
involved in the β-catenin pathway or repulse proteins in meta-
phase involved in chromosome condensation and mRNA splicing
are first insights, but we believe that there will be more to dis-
cover. For instance, H3.3 S31D may impeach on specific devel-
opmental programs, as the β-catenin pathway is important in the
epithelial–mesenchymal transition that occurs following gas-
trulation and is also implicated in metastatic signaling in
cancer74,95. Also, the impact of H3.3 S31D on the mitotic con-
densing machinery will be another challenge to consider for the
future, opening new avenues on the control of mitosis and
chromosome organization.

As H3.3 S31-negative charge has been linked to intron reten-
tion and pre-mRNA processing by preventing binding of the
tumor suppressor ZMYND1175,76, further studies will be essential
to better delineate the role of H3.3 S31ph in these contexts and
the different proteins involved. The presence of H3.3 S31D also
alters neighboring residues in-cis. Conversely, other modifications
on the H3 tail could themselves impact H3.3 S31 modification
and in this respect, the effects of mutations affecting neighboring
residues will be interesting to explore. Notably, as H3.3 S31 is
close to residues often mutated in aggressive cancers such as H3
K27M and G34R in pediatric glioblastoma42–44,47,96, it will be
interesting to evaluate the impact of these onco-histone muta-
tions on H3.3-specific phosphorylation as well. Altogether, we
show that H3.3 S31 is the key residue that confers specific
functions to H3.3 within chromatin, compared with its H3.2
counterpart. It also establishes the importance of a distinct his-
tone variant residue for the proper development of a vertebrate
during gastrulation. Future work should explore whether a similar
requirement also occurs in mammals to provide a comprehensive
view of the importance of the non-replicative variant H3.3 and its
role during vertebrate development and in disease states.

Methods
X. laevis embryo manipulation. We used X. laevis adults (2 years old) from the
Centre de Ressource Biologie Xenope. We prepared embryos at 18 °C as in ref. 88

and staged them according to ref. 53. We acquired embryos during gastrulation
with a MZFLIII magnifier (Leica) and the SPOT software. Animal care and use for
this study were performed in accordance with the recommendations of the Eur-
opean Community (2010/63/UE) for the care and use of laboratory animals.
Experimental procedures were specifically approved by the ethics committee of the
Institut Curie CEEA-IC #118 (Authorization APAFIS#11226-2017091116031353-
v1 given by National Authority) in compliance with the international guidelines. D.
S., E.B., and G.A. possess the authorization for vertebrates’ experimental use.

Plasmid cloning and mRNA transcription. We cloned all H3 cDNAs in the
pβRN3P vector97. This vector stabilizes RNA and improves their translation effi-
ciency, while injected into Xenopus eggs. In addition, an HA-tag has been inserted
in the C-terminal of H3. We obtained mRNAs by in vitro transcription of PCR-
amplified fragments of the different pβRN3P vectors (forward: 5′-gtaaaacgacggcc
agt-3′ and reverse: 5′-ggaaacagctatgaccatga-3′). We transcribed mRNAs starting
with 5 ng of PCR-amplified fragment, 10 μL Buffer 5×, 5 μL of dithiothreitol (DTT)
100 mM, 0.25 μL of bovine serum albumin (BSA) 10 mg/mL (NEB), 5 μL of ATP,
CTP, UTP 10 mM, 1.65 μL of GTP 10mM (Sigma-Aldrich), 3.35 μL of Me7GTP
10 mM (NEB), 2 μL of RNasin Plus RNase Inhibitor (Promega), and 50 μL H2O
qsp. After 10 min on ice, we added 2 μL of T3 RNA Polymerase (Promega) to each
sample, incubated for 30 min at 37 °C, then added 0.5 μL of fresh T3 RNA
Polymerase and incubated for another 10 min at 37 °C. After DNA digestion with
2 μL RQ1 DNase (Promega) for 20 min at at 37 °C, we extracted mRNAs with
phenol–chloroform and purified them through Sephadex G-50 Quick Spin Column
for radiolabeled RNA purification (Sigma-Aldrich), previously equilibrated six
times with 1 mL of TE 10 mM.

Morpholino and mRNA microinjection into X. laevis embryos. We micro-
injected two-cell embryos using a Brinkmann micromanipulator and a Drumond
microinjector on two-cell stage eggs with an injection volume set to 9.2 nL, to
deliver the appropriate quantity of morpholino and mRNAs (1×= 4.6 ng).
Morpholino and mRNA concentrations have been optimized for efficient
depletion and rescue at gastrulation. More than 30 embryos are injected per

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-15084-4 ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:1256 | https://doi.org/10.1038/s41467-020-15084-4 | www.nature.com/naturecommunications 11

www.nature.com/naturecommunications
www.nature.com/naturecommunications


condition, with at least 3 biological replicates. We knocked down endogenous
H3.3 with morpholino designed to bind to the initiation region of X. laevis H3.3
mRNAs from gene b as described in ref. 58. We selected this gene given its peak of
expression specifically at gastrulation98. The morpholino only targets endogenous
H3.3, as verified in details98. H3.3 morpholino sequence 5′-GGTCTGCTTTG
TACGGGCCATTTCC-3′ targets 5′-GGAAATGGCCCGTACAAAGCAGA
CC-3′. Xenopus H3.3 sequence for the gene b is 5′-ATGGCCCGTACAAAGCAG
ACTGCCCGTAAA-3′, whereas Xenopus H3 sequence is 5′-ATGGCTCGTACTA
AGCAGACCGCTCGCAAG-3′. eH3 sequences used in the study start as
5′-ATGGCCCGAACCAAGCAGACTGCTCGTAAG-3′.

ATG corresponds to the first codon and mismatch DNA bases are in bold and
underlined.

X. laevis embryo protein extract and western blotting. We prepared total
protein extracts from X. laevis embryos using the CelLytic Express reagent (Sigma-
Aldrich) and centrifuging at 20,000 × g for 20 min at 4 °C the extracts after 30 min
incubation on ice. We analyzed protein samples by electrophoresis on 4–12%
NuPAGE SDS-polyacrylamide electrophoresis gels with MES SDS Running buffer
(Life Technologies) and corresponding LDS buffer NuPage (Invitrogen) with DTT.
Primary antibodies were detected using horseradish peroxidase-conjugated sec-
ondary antibodies (Jackson Immunoresearch Laboratories) and SuperSignal West
Dura Extended Duration Substrate (ThermoFisher). The signal was acquired using
ChemiDoc Imager (Biorad).

X. laevis embryo fractionation. We collected 30 embryos at stage 12 and per-
formed fractionation as in ref. 58. We lysed the embryos in 200 µL of Lysis Buffer 1
(15 mM Tris-HCl pH 7.5, 300 mM NaCl, 5 mM MgCl2, 10 mM β-glyceropho-
sphate, and protease inhibitors) and centrifuged them at 1000 × g for 4 min at 4 °C.
We collected supernatant (soluble fraction) and cleared it with ultracentrifugation
at 210,000 × g for 30 min at 4 °C. We washed the chromatin fraction three times
with Lysis buffer and once with Buffer A (15 mM Tris-HCl pH 7.5, 15 mM NaCl,
60 mM KCl, 0.34M sucrose, 1 mM DTT, 10 mM β-glycerophosphate, and protease
inhibitors). We performed MNase (Sigma) digestion during 12 min with 2.5 U/mL
final concentration, after addition of CaCl2 (1 mM final). We stopped the reaction
by EDTA (4 mM final) and recovered solubilized chromatin fraction after a
ultracentrifugation at 210,000 × g for 30 min at 4 °C.

X. laevis embryo immunoprecipitation. We collected embryos at stage 12 and
prepared either total embryo extracts or soluble fractions as above. We ultra-
centrifuged total extracts at 210,000 × g for 30 min at 4 °C. We used 100 µg of
protein for each condition for immunoprecipitation with anti-HA magnetic beads
(Thermo Scientific) overnight at 4 °C in 400 µL of IP buffer (20 mM Tris-HCl pH
7.5, 15 mM KCl, 150 mM NaCl, 10% glycerol, 0.1 mM EDTA, 10 mM β-glycer-
ophosphate, 0.01% NP-40, 1 mM DTT, and protease inhibitors). After three
washes, we eluted proteins with LDS buffer NuPage (Invitrogen) with the reducing
agent and analyzed samples by electrophoresis as described above.

X. laevis egg extract preparation. We prepared X. laevis sperm nuclei and low-
speed extracts arrested by cytostatic factor (CSF) of X. laevis eggs as previously
described99. Briefly, we collected eggs freshly and centrifuged them at low speed
(16,000 × g) to conserve the mitotic phase, below lipids. We induced interphase by
the addition of CaCl2 at the final concentration 0.06 mM to CSF-arrested egg
extracts. We added sperm chromatin at a concentration 1000–4000 nuclei/μl. After
DNA replication, a 2/3 volume of the CSF-arrested extract was added to induce
mitosis. For experiments in Fig. 4c, a second addition of CaCl2 at a final con-
centration of 0.06 mM induced transition to the second interphase. For the
experiments of chromatin assembly in the presence of kinase or phosphatase
inhibitors, we supplemented CSF-arrested extracts with the indicated concentra-
tion of Hesperadin hydrochloride (#3988, Tocris), ZM 447439 (#2458, Tocris), SB
218078 (#2560, Tocris), PF 477736 (#4277, Tocris), and Calyculin A (#208851,
Calbiochem) prior to the addition of 5000 sperm nuclei/μl. Incubation lasted for
50 min at room temperature. For treatment with okadaic acid, similarly using
sperm nuclei, we first allowed chromatin assembly in CSF-arrested extracts treated
with 20 µg/ml nocodazole (Sigma) for 30 min at room temperature. Next, we
treated the reaction with either dimethyl sulfoxide or 1 µM okadaic acid (#459620,
Calbiochem) for another 20 min. We isolated the assembled chromatin and ana-
lyzed by western blotting as described above.

X. laevis egg extract immunoprecipitation. Briefly, we produced recombinant H3
mutant proteins from mRNAs using rabbit reticulocyte lysate (Promega L4600).
After 3 h of incubation at 4 °C in interphase extracts followed by another 3 h
incubation with anti-HA beads, we pulled down and washed the proteins in 0.8×
CSF-XB buffer (10 mM Hepes-KOH pH 7.7, 100 mM KCl, 2 mM MgCl2, 5 mM
EGTA) containing 5% glycerol, 0.5% Triton X-100, and protease and phosphatase
inhibitors. We eluted proteins with LDS buffer NuPage (Invitrogen) with the
reducing agent and analyzed samples by electrophoresis as described above.

Histone deposition assays. We added 100,000 sperm nuclei to each 150 µL of
corresponding extracts with or without aphidicolin (50 µg/mL). We then supplied
15 µL of the rabbit reticulocyte lysate used to produce recombinant H3 mutant
proteins from mRNAs. After 40 min of incubation at room temperature, we pur-
ified chromatin and we analyzed protein samples by electrophoresis as
described above.

X. laevis sperm chromatin purification. We diluted fivefold 100 μl aliquots of
each reaction with 0.8× CSF-XB buffer containing 20 mM β-glycerophosphate, 5%
glycerol, and 0.5% Triton X-100, which we incubated for 1 min at room tem-
perature. We then layered the samples onto a 35% glycerol-containing CSF-XB
cushion and centrifuged them at 10,000 × g for 5 min at 4 °C. We resuspended the
pellets in the same buffer and repeated the centrifugation step. For purification of
interphase chromatin, we diluted 100 μl aliquots of extract with 0.8× CSF-XB
buffer containing 20 mM β-glycerophosphate and 5% glycerol, which we incubated
for 1 min at room temperature, followed by centrifugation through the cushion at
10,000 × g for 5 min at 4 °C. We resuspended purified chromatin directly in LDS
buffer NuPage (Invitrogen) with NuPage reducing agent (Invitrogen). We analyzed
samples by electrophoresis as described above.

WebLogo sequence alignment. After performing multiple sequence alignment
using MUSCLE100, we displayed the alignments using WebLogo3101 with
probability units.

Antibodies. See Supplementary Data 1 and Supplementary Fig. 8.

Generation of Flp-In T-Rex-293 cell lines. We have inserted fragments corre-
sponding to HA-tagged Xenopus H3.3 WT, H3.3 S31A, and H3.3 S31D cDNAs
into pcDNA5/FRT/TO (Invitrogen) using BamHI/NotI restriction enzymes. We
co-transfected these plasmids into Flp-In T-Rex 293 cells (Invitrogen), together
with Flp-recombinase expression vector pOG44 (Invitrogen) using JetPRIME
(Polyplus). We selected stably transfected cells with 150 mg/mL Hygromycin B
(Gibco). We induced histone expression by adding 1 µg/ml doxycycline at least
120 h before analysis. For total-extract western blotting analysis, an equal number
of cells were resuspended directly in LDS buffer NuPage (Invitrogen) with NuPage
reducing agent (Invitrogen) and Universal Nuclease (Pierce).

Total cell extracts preparation and immunoprecipitation. We resuspended dry
cell pellets in an equal volume of the lysis buffer (50 mM Tri-HCl pH 7.5, 300 mM
NaCl, 0.5% NP-40, 10% glycerol, 2 mM MgCl2, 10 μM CaCl2, 5 mM EGTA-KOH
pH 8.0, 1 mM DTT, and protease inhibitors) and incubated these suspensions for
30 min at 4 °C. We then supplemented these samples with CaCl2 up to 1 mM and
treated with 2.5 U/ml MNase (Sigma) for 12 min at 37 °C. The reaction was
stopped by addition of EDTA-NaOH, pH 8.0 up to 4 mM. We ultracentrifuged the
extracts at 100,000 × g for 30 min and diluted supernatant with an equal volume of
dilution buffer (50 mM Tris-HCl pH 7.5, 10% glycerol, 100 mM KCl, 5 mM EGTA-
KOH pH 8.0, 1 mM DTT, and protease inhibitors). We used 500 µg total protein
for IP with anti-HA magnetic beads (Thermo Scientific) for an overnight incu-
bation at 4 °C in 500 µL of IP buffer (20 mM Tris-HCl pH 7.5, 15 mM KCl,
150 mM KCl, 10% glycerol, 0.1 mM EDTA, 10 mM β-glycerophosphate, 0.01%
NP-40, 1 mM DTT, and protease inhibitors). After three washes with IP buffer,
we eluted proteins with LDS buffer NuPage (Invitrogen) and reducing agent
(Invitrogen) to process samples for electrophoresis analysis as described above.

Fluorescence-activated cell sorting. Flp-In T-Rex 293 cells were washed twice in
phosphate-buffered saline (PBS) and trypsinized. They were recovered in PBS and
centrifuged at 300 × g for 5 min. Cell pellets were then resuspended in 500 µL
of PBS and dropped in 1 mL of cold ethanol, while vortexing it. Cells were fixed at
4 °C for at least 30 min. After a centrifugation at 300 × g and a wash of PBS, cell
pellets were resuspended in 500 µL of FxCycle PI/RNase Staining Solution
(ThermoFisher Scientific) and further incubated at 37 °C for 30 min. Cells were
finally filtered with Cell Strainer Snap Caps (Corning) and processed for analysis
on an Accuri C6 flow cytometer (BD). Data were analyzed using FlowJo.

Proteomics and mass spectrometry analysis. Streptavidin magnetic beads
(30 µL; Thermo Scientific) were washed with PBS and incubated with 60 pmol of
the different peptides (GeneCust) corresponding to H3 N-terminal tails (H3.3 WT,
H3.3 S31A, and H3.3 S31D) in 300 µL of PBS. After 2 h of incubation and a 30 min
block with BSA at room temperature, beads coupled to peptides were incubated 3 h
with either mitotic or interphase eggs extracts diluted 5× in 400 µL total CSF-XB
buffer, supplemented with 10% glycerol, 0.1% Triton, 0.1% Tween-20, and 1 mM
DTT. Beads coupled to peptides were finally washed three times in PBS before
digestion. Proteins on magnetic beads were washed two additional times with
100 μL of 25 mM NH4HCO3, to eliminate the remaining detergents. Beads were
resuspended and digested by adding 0.2 μg of trypsine/LysC (Promega) in 100 µL
of 25 mM NH4HCO3 for 1 h at 37 °C. Peptides were desalted and concentrated
using homemade C18 StageTips. After elution, peptides were analyzed using an
RSLCnano system (Ultimate 3000, Thermo Scientific) coupled online to an
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Orbitrap Fusion Tribrid mass spectrometer (Thermo Scientific) as in ref. 102. For
identification, the data were searched against the X. laevis Database (June 2019)
from Xenbase.org and a database containing the common contaminants using
SequestHF through proteome discoverer (version 2.2). Enzyme specificity was set to
trypsin and a maximum of two-missed cleavage site have been allowed. Oxidized
methionine, N-terminal acetylation, and carbamidomethyl cysteine were set as
variable modifications. Maximum allowed mass deviation was set to 10 p.p.m. for
monoisotopic precursor ions and 0.6 Da for tandem mass spetrometry peaks. The
resulting files were further processed using myProMS v3.6103 (Supplementary
Data 2). False discovery rate calculation used Percolator and was set to 1% at the
peptide level for the whole study. Specific proteins, selected based on at least three
peptides in the best analysis (replicates n= 3), were analyzed further.

Immunofluorescence and epifluorescence microscopy. We fixed A6 cells on
coverslips for 20 min in 4% paraformaldehyde, Flp-In T-Rex 293 and HeLa B cells
in 2% paraformaldehyde before permeabilization with 0.2% Triton X-100. We
blocked them for 45 min with 5% BSA. We then incubated coverslips with primary
and secondary antibodies, and stained them with 4′,6-diamidino-2-phenylindole.
We mounted the coverslips in Vectashield medium. We used a Confocal Zeiss
LSM780 and we acquired images using 63×/1.4 numerical aperture under Zen blue
software (Zeiss Germany) and analyzed the data using ImageJ.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The data that support this study are available from the corresponding author upon
reasonable request. The mass spectrometry proteomics data have been deposited to the
ProteomeXchange Consortium via the PRIDE partner repository104 with the dataset
identifier PXD016497. Source data are provided as a source data file.
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