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Directed self-assembly of viologen-based 2D
semiconductors with intrinsic UV–SWIR
photoresponse after photo/thermo activation
Xiao-Qing Yu1,2, Cai Sun1, Bin-Wen Liu1, Ming-Sheng Wang 1✉ & Guo-Cong Guo1

Extending photoresponse ranges of semiconductors to the entire ultraviolet–visible

(UV)–shortwave near-infrared (SWIR) region (ca. 200–3000 nm) is highly desirable to

reduce complexity and cost of photodetectors or to promote power conversion efficiency of

solar cells. The observed up limit of photoresponse for organic-based semiconductors is

about 1800 nm, far from covering the UV–SWIR region. Here we develop a cyanide-bridged

layer-directed intercalation approach and obtain a series of two viologen-based 2D semi-

conductors with multispectral photoresponse. In these compounds, infinitely π-stacked
redox-active N-methyl bipyridinium cations with near-planar structures are sandwiched by

cyanide-bridged MnII–FeIII or ZnII–FeIII layers. Radical–π interactions among the infinitely π-
stacked N-methyl bipyridinium components favor the extension of absorption range. Both

semiconductors show light/thermo-induced color change with the formation of stable radi-

cals. They have intrinsic photocurrent response in the range of at least 355–2400 nm, which

exceeds all reported values for known single-component organic-based semiconductors.
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Photoresponse range is a metric that significantly affects the
potentials of semiconductors for photodetection, solar
energy conversion and other applications1–4. As for pho-

todetection, detection ranges of commercial Si-based photo-
detectors and InGaAs photodetectors are mostly in the 200–1100 nm
and 900–3000 nm regions, respectively1,5. To realize photo-
detection in the ultraviolet (UV)–shortwave infrared (SWIR)
region (ca. 200–3000 nm), either military or civil photodetecting
devices usually have to combine the above two photodetectors.
This will increase cost and complexity of the desirable device.
As for solar energy conversion, photoresponse band of the
widely used commercial photovoltaic material silicon is about
300–1200 nm6,7. This range far from covers the whole solar
spectrum (∼295–2500 nm), resulting in limited energy conver-
sion fields of Si-based solar cells2, 8. Constructing multiple blend
systems or multi-junction device structures was demonstrated to
be effect methods to fully utilize the solar radiation, but com-
plexity, manufacture cost, and sometimes stability of the device
should be concerned before stepping into the market9–11. The
above issues for both photodetection and solar energy conver-
sion devices are promisingly avoided, if a single semiconductor
material with a photoresponsive range covering the entire
UV–SWIR region is applied10,12. As reported, some single-
component inorganic photoelectronic semiconductors showed
strikingly wide detection ranges, for example, the photoresponse
range of SnTe covers 254–4650 nm13. However, practical
application of them is still greatly limited by material rigidity, as
well as complex and expensive manufacturing processes14,15.
Organic-based photoelectronic semiconductors are character-
istic of flexibility and facile preparation, but the observed up
limit for photoresponse is about 1800 nm10,12,15–18. It is still of
importance to develop effective and general design methods for
single-component organic-based semiconductors with intrinsic
photoresponse in the entire UV–SWIR range.

Viologen (N,N′-disubstituted bipyridinium) compounds are
good candidates for single-component organic-based semi-
conductors with broadband photoresponse. Firstly, strong
cation···π interactions between viologen components favor the
construction of organic semiconductors, and conductance and
photoconductance of viologen-based semiconductors may dra-
matically increase after photoinduced electron transfer (PET) and
generation of free radical products19–21. Secondly, single viologen
cation usually has a red-shifted absorption band after forming a
radical species. When viologen radicals are further closely π-
stacked, radical–π interactions that are stronger than cation–π,
and π–π interactions will make energy gap narrower and corre-
spondingly absorption band much broader22–24. Even so,
improving the following two properties is still needed for viologen
compounds. Firstly. photoconversion rate in bulk media is usually
low, owing to low penetrability of UV–Visible light25,26. Thermal
treatment may avoid this problem, because heat easily conducts
to the whole media. Many examples have indicated viologen

compounds are probable to undergo heat-induced electron
transfer (HET) when they tend to be planar27,28. Therefore,
thermo-active viologen semiconductors are prospectively con-
structed with near-planar/planar viologen cations. Secondly, the
radical products are highly active and easily faded in an oxygen
atmosphere with the presence of heat or not29,30. Several exam-
ples have demonstrated that, the stability of viologen radicals can
be clearly improved when the radicals are loaded in a porous
framework31,32 or sandwiched by inorganic layers33 to avoid
contact with oxygen.

In this work, we present a cyanide-bridged layer-directed
intercalation approach to realize all above points and obtain
single-component viologen-based semiconductors with intrinsic
UV–SWIR photoresponse ability, photo/thermo activeness, and
very long lifetime of radical products. Each cyanide-bridged layer
in Prussian blue or its analogs with perovskite-like structures has
periodically arranged hexacoordinated metal sites and limited
metal-to-metal distances (Fig. 1)34. The periodic arrangement of
metal coordination sites facilitates the orderly and infinite accu-
mulation of axial ligands. The closest and non-contact metal-to-
metal distances are usually 7.6 Å34, which are suitable to support
two π stacking interactions35. As shown in Fig. 1, a sandwiched
inorganic–organic hybrid structure with infinitely stacked organic
supramolecular layers will be formed, when metals with these
distances are all coordinated by one viologen ligand or its analogs
and then the layers are intercalated. Coexistence of π···π and
cation···π interactions in the organic supramolecular layer is
predicable since viologen and its analogs are aromatic cations. As
mentioned above, this case favors the construction of a semi-
conductor. In addition, the viologen ligand or its analogs will
become planarization owing to the close stacking of adjacent
ligands, which may bring thermo activeness as stated above.
Based on these considerations, we integrated the redox photo-
active N-methyl bipyridinium (MQ+) cation into cyanide-
bridged MII–FeIII (MII=MnII or ZnII) layers as axial ligands,
and obtained a series of two viologen-based 2D semiconductors,
[{MII(MQ)2}{FeIII(CN)6}]Cl·3H2O (1, M=Mn; 2, M=Zn). These
semiconductors are both thermo and light active in the crystalline
state. After PET or HET, they generate long-lived radical pro-
ducts, and show intrinsic photoresponsive bands covering the
UV–SWIR region (at least 355–2400 nm, monitored using our
lasers).

Results
Directed synthesis and structural characterization. Single
crystals of 1 and 2 were all obtained from the diffuse reaction of
MnCl2·5H2O, MQCl·H2O, and K3[FeIII(CN)6] in a molar ratio of
1:2:1 in water. Powder X-ray diffraction (PXRD; Supplementary
Fig. 1) and elemental analysis demonstrated phase purity of the
obtained crystalline samples. Only the crystal structure of 1 is
described here since 1 and 2 are isostructural. As can be seen
from Fig. 2a, cyanide-bridged layers of 1 are intercalated through

Intercalation

Photo & thermo-active semiconductorPerovskite-like cyanide-bridged layer 

Coordination

~7.6 Å Viologen analogs

Planarization
δ → 0°

π–π/cation–π interaction
~ 2dπ–π=

δ

Fig. 1 Design strategy in this work. δ and dπ–π denote the interannular angle and common separation for π–π interactions, respectively.
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π···π and cation···π interactions between two adjacent MQ+

ligands. Each FeIII atom coordinates to six cyano groups (four,
bridged, two, mono-coordinated), while each MnII atom is ligated
by two MQ+ ligands and four bridged cyano groups from four
[Fe(CN)6]3− units. The interannular angle of each MQ+ cation is
0.44°, close to be planar (Fig. 2b). Centroid (pyridyl)···centroid
(pyridyl) and N···centroid (pyridyl) distances between two adja-
cent π-stacked MQ+ cations are 3.88 and 3.71 Å, respectively
(Fig. 2b). Every π-stacked MQ+ layer is sandwiched by two
cyanide-bridged layers, which offers a chance to shield the air
(Fig. 2c). After standing in the dark under the 100% relative
humidity for 12 h, the samples still kept the same PXRD patterns
to the as-prepared crystalline samples (Supplementary Fig. 1),
illustrating high wet stability for both compounds. Thermo-
gravimetric (TG) analyses indicated that both compounds con-
tain water molecules (Supplementary Fig. 2). In the electron
absorption spectrum (Fig. 3), a series of infrared (IR) overtone
peaks for H2O can be observed, such as at 1412, 1916, and
2158 cm−1. Crystal structures of both compounds can be retained
after thermal annealing at 180 °C and removing all the water
molecules, as evidenced by the similar PXRD patterns between
as-prepared and thermally annealed samples (Supplementary
Fig. 1). Therefore, the following mentioned thermal annealing
processes were all operated at 180 °C.

Photo/thermo-induced coloration. Both 1 (Fig. 3) and 2 (Sup-
plementary Fig. 3) may undergo photo/thermo-induced colora-
tion. Also, only compound 1 is described in detail. The as-
prepared crystalline sample (1A) of 1 changed its color from
brown to black upon irradiation by a Xe lamp (∼200 mW cm−2)
at room temperature (Fig. 3a). The photoinduced black sample
(1B-P) appeared a broad electron absorption band around
620 nm and a much broader band in the range of ∼900–2500 nm
(Fig. 3a). There was no further clear variation of the electron
absorption spectrum when the sample was irradiated beyond
100 min. Upon thermal annealing under 180 °C in air, the 1A
sample also turned black (Fig. 3b). The yielded black sample
(1B-T) generated similar but stronger electron absorption bands
(Fig. 3b) and electron spin resonance (ESR) signals (Fig. 4b) to
those of 1B-P. If UV/Visible/NIR spectra and IR spectra are
combined, we can see that the absorption band of 1B-T extends

to 3000 nm (Fig. 4a and Supplementary Fig. 4), that is to say, the
absorption spectrum of 1B-T covers the whole UV–SWIR region.
The absorption spectrum did not change again after annealing for
about 150 min (Fig. 3b). 1B-T was considerably stable because its
absorption spectrum almost retained after standing in the dark in
air at room temperature for six months (Fig. 4a). Similar to 1B-T,
2B-T also shows broad absorption in the UV–SWIR region and
high stability in air (Supplementary Fig. 5a).

Electrical studies. Electron absorption (Fig. 3 and Supplementary
Fig. 3) and ESR (Fig. 4b, Supplementary Fig. 5b, Supplementary
Note 1, and Supplementary Table 2) data of 1 and 2 revealed that
thermal annealing triggered higher conversion rate than the
irradiation method. So, both thermo-induced samples 1B-T and
2B-T were selected to perform electric tests. A well-known two-
probe method using silver paste for a pellet sample was adop-
ted36. The current–voltage (I–V) characteristic curves before and
after coloration for 1B-T showed a symmetrical nearly linear
relationship at room temperature, which indicated that the
sample formed an Ohmic contact and the carriers derived from
intrinsic thermal excitation. After HET, the conductivity
increased ∼4-folds (Supplementary Fig. 6), which is accordance
with the decrease of activation energy (Supplementary Fig. 7).
This phenomenon is consistent with the well-established con-
clusion that receiving electrons and forming a radical species is
beneficial to improve the conductivity of one π aggregate18,20. As
mentioned above, the 1B-T sample had an intrinsic absorption
spectrum covering the whole UV–SWIR region (Supplementary
Fig. 4). Owing to limited testing equipment, we selected one 355
nm diode pumped solid-state laser and the other OPO laser with
tunable wavelength ranging from 410 to 2400 nm to monitor the
photocurrent response in the UV and visible–SWIR regions,
respectively. Photocurrent gain can be expressed by the relative
magnitude of the current change, (Iirr− Idark)/Idark. Figure 5
illustrates that the 1B-T sample had photocurrent response in the
range of 355–2400 nm. The other two samples showed the similar
photocurrent curves and photocurrent gains, indicating that the
photoresponsive behavior of 1B-T is repeatable (Supplementary
Fig. 8). Meanwhile, the greater the illumination power, the greater
the photocurrent gain under laser irradiation (Supplementary
Fig. 9). Bulk electric tests of 2B-T indicated that 2B-T was also an
intrinsic semiconductor and showed photocurrent response in
the range of 355–2400 nm (Supplementary Figs. 10 and 11).
The photoresponse ranges for both 1B-T and 2B-T exceed all
known reported values for single-component organic-based
semiconductors5,10,12,37,38.

Discussion
The cyanide-bridged inorganic layers in 1 are similar to those
of the room-temperature phase of RbMnII[FeIII(CN)6]·H2O.
The latter has a CN → FeIII charge-transfer band at ∼410 nm
(3.02 eV), a d–d transition band of FeIII at ∼520 nm (2.38 eV),
and a MMCT band at ∼680 nm (1.82 eV)39. As illustrated in
Fig. 3, the 1A sample also contains these electron-transition
bands. The photoresponsive range of 1A is in ∼280–420 nm,
wherein the optimal wavelength is around 320 nm (3.88 eV).
Calculations of band structure and partial density of states
showed that the absorption around 320 nm can be assigned to
Cl−/CN−/FeIII → MQ+ electron transitions (Supplementary
Fig. 12). The newly emerged bands around 620 nm (2.00 eV) for
1B-P and 1B-T are characteristic of single MQ• radical40, indi-
cating that the MQ+ ligand received an electron upon irradiation
or thermal annealing. ESR signal of the MQ• radical was not clear
for 1B-P, but was identifiable for 1B-T (at g= 2.005; Fig. 4b).
Low penetration of light in the crystal resulted in the generation
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π-stacked MQ+ cations; c infinitely π-stacked MQ+ cations between two
perovskite-like cyanide-bridged layers (cyano groups are drawn as vertexes
of octahedra). Dash lines depict π stacking interactions.
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of a small number of radicals, whose ESR signals were covered by
MnII signals. In comparison, the heating mode led to the gen-
eration of more radicals. As for 2, ESR signals for both photo/
thermo-induced samples were clear without the shielding of MnII

signals (Supplementary Fig. 5b).

All photo/thermo-induced samples of 1 showed PXRD pat-
terns similar to that of the as-prepared sample (Supplementary
Fig. 1). Therefore, the framework of 1 did not undergo large
isomerization or decomposition during its coloration. The lattice
water molecules in 1 can be excluded to be an electron donor for
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MQ+, because 1B-T contained no water and also displayed
electron transfer (Supplementary Fig. 2 and Fig. 3). In the crystal
structure of 1 (Supplementary Fig. 13), each free Cl− ion forms
four C(MQ+)–H···Cl hydrogen bonds (H···Cl, 2.67 Å) with adja-
cent four MQ+ ligands, and each mono-coordinated CN− group
connects to two MQ+ ligands through C(MQ+)–H···N(CN)
hydrogen bonds (H···N, 2.48 Å). According to the Marcus elec-
tron transfer theory41, the shorter the separation between an
electron donor and an electron acceptor is, the faster the
electron transfer process. It seems that the electron transfer rate
through the C(MQ+)–H···N(CN) path should be faster than the
C(MQ+)–H···Cl path. However, as evidenced by the references,
both Cl−32,42–44 and CN−45,46 ions may act as effective electron
donors for viologen cations. X-ray photoelectron spectroscopy is
a common tool to prove the direction of electron transfer, but the
paramagnetic metals in 1 are easily reduced by X-ray-induced
electrons, which brings the difficulty for analysis. Searching other
applicable methods is still underway.

The multispectral photocurrent response of 1B-T and 2B-T
originates from the ultrabroad electron absorption (Supplemen-
tary Figs. 3 and 4). Time-dependent density functional theoretical
(TD-DFT) calculations (Supplementary Fig. 14)47, using simpli-
fied structural models truncated form the crystal structure,
indicates that the emerged broad bands in the range of

∼900–3000 nm for all photo/thermo-induced samples can be
assigned to the contribution of π-stacked MQ aggregates, which
in the form of [(HMQ2+)(HMQ+•)]n or [(HMQ+•)(HMQ+•)]n
(n refers to the number). In summary, aiming to achieve single-
component semiconductors with intrinsic UV–SWIR photo-
response, a cyanide-bridged layer-directed intercalation approach
has been firstly demonstrated. The obtained two viologen-based
2D semiconductors have intrinsic absorption bands covering the
whole UV–SWIR region after photo/thermo activation. They
show photocurrent response at least in the wavelength range of
355–2400 nm (monitored using our limited lasers), which makes
a record for single-component organic-based semiconductors.
The design strategy explored in this work may inspire the
synthesis of new organic-based semiconductors for broadband
photodetectors and solar cells. In the following work, we will
further improve electrical properties (conductivity, photocurrent
gain, etc.) and photoresponse bands (extending to the mid-IR
region), and explore effective methods to construct optical
devices.

Methods
Materials. MnCl2·5H2O, ZnCl2 and K3[Fe(CN)6] in AR grade were purchased
commercially. They were directly used without further purification. Water was
deionized and distilled before use. MQCl·H2O (MQ+=N-methyl-4,4′-bipyr-
idinium) was synthesized according to the same procedure reported in the
literature48.

Syntheses of [{MnII(MQ)2}{FeIII(CN)6}]Cl·3H2O (1). Typically, a 50 mL small
beaker was placed in a 300 mL big one, which was filled with distilled water to
approximately 0.5 cm above the top of the small beaker. A frozen 2 mL aqueous
solution of MQCl·H2O (899 mg, 4 mmol) and MnCl2·5H2O (432 mg, 2 mmol) was
thrown into the bottom of the small beaker, while the other frozen 2 mL aqueous
solution of K3[Fe(CN)6] (659 mg, 2 mmol) was put into the bottom of the big
beaker. The big beaker was sealed with a plastic wrap and allowed to stand in the
dark at room temperature for one week to yield dark brown cubic crystals. The
crystals were filtered, washed with water and ethanol, and finally dried in air for
1 day. Yield based on K3[Fe(CN)6]: 40% for 1. All crystal samples for tests were
carefully selected under microscope. The phase purity of all as-synthesized crys-
talline samples was checked via PXRD (Supplementary Fig. 1) and elemental
analyses. Anal. Calcd (%) for C28H28ClFeMnN10O3: C, 48.12; H, 4.04; N, 20.04; Fe,
7.99; Mn, 7.86. Found: C, 48.14; H, 3.78; N, 20.57; Fe, 7.61; Mn, 7.26.

Syntheses of [{ZnII(MQ)2}{FeIII(CN)6}]Cl·3H2O (2). Typically, a 50 mL small
beaker was placed in a 300 mL big one, which was filled with distilled water to
approximately 0.5 cm above the top of the small beaker. A frozen 2 mL aqueous
solution of MQCl·H2O (899 mg, 4 mmol) and ZnCl2 (273 mg, 2 mmol) was thrown
into the bottom of the small beaker, while the other frozen 2 mL aqueous solution
of K3[Fe(CN)6] (659 mg, 2 mmol) was put into the bottom of the big beaker. The
big beaker was sealed with a plastic wrap and allowed to stand in the dark at room
temperature for one week to yield yellow plate crystals. The crystals were filtered,
washed with water and ethanol, and finally dried in air for 1 day. Yield based on
K3[Fe(CN)6]: 25% for 2. All crystal samples for tests were carefully selected under
microscope. The phase purity of all as-synthesized crystalline samples was checked
via PXRD (Supplementary Fig. 1) and elemental analyses. Anal. Calcd (%) for
C28H28ClFeZnN10O3: C, 47.42; H, 3.98; N, 19.75; Fe, 7.87; Zn, 9.22. Found: C,
45.54; H, 3.38; N, 19.75; Fe, 7.43; Zn, 10.18.

Measurements. IR spectra were recorded on a PerkinElmer Spectrum One FT-IR
spectrometer using KBr pellets in the range of 4000–450 cm−1. Thermogravimetric
analysis was conducted on a Mettler TOLEDO simultaneous TGA/DSC apparatus.
Elemental analyses of C, H and N were measured on an Elementar Vario EL III
microanalyzer, while those of Fe, Zn, and Mn were measured on an ULTIMA 2
ICP Optical Emission Spectrometer. Electron spin resonance (ESR) spectra were
recorded on a Bruker ER-420 spectrometer with a 100 kHz magnetic field in the X
band at room temperature. Powder X-ray diffraction (PXRD) patterns were col-
lected on a Rigaku Desktop MiniFlexII diffractometer using Cu Kα radiation (λ=
1.54056 Å) powered at 30 kV and 15mA. Diffuse reflectance spectra were recorded
at room temperature in the wavelength range of 200–2600 nm on a PerkinElmer
Lambda 900 UV/vis/NIR spectrophotometer equipped with an integrating sphere.
A BaSO4 plate was used as the reference (100% reflection), on which the finely
ground powder of the sample was coated. Photoirradiation for coloration was
carried out with a PLS-SXE300D 50-W xenon lamp system, wherein an IR filter
was applied. I–V curves were measured in a Keithley 4200-SCS semiconductor
parameter analyzer using pellet samples by the two-probe method using silver
paste. An OPOTEK Vibrant laser (10 Hz; 10 ns pulse width; spot size, ca. 1–2 cmφ)
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and a Newport Co. Pulseo GKNQL-355-3-30 diode pumped solid state (DPSS)
laser (355 nm; 70 kHz; 39 ns pulse width; spot size, ca. 1.5 cmφ) were used for
photocurrent tests.

Single-crystal X-ray crystallographic study. Single-crystal X-ray diffraction
measurements of 1 and 2 were performed on a Rigaku SATURN70 CCD dif-
fractometer, using graphite monochromated Mo Kα radiation (λ= 0.71073 Å).
Intensity data sets were collected using scan techniques, and corrected for Lp
effects. The primitive structures were solved by the direct method using the Sie-
mens SHELXTLTM Version 5 package of crystallographic software49. Difference
Fourier maps based on these atomic positions yielded other non-hydrogen atoms.
The final structures were refined using a full-matrix least-squares refinement on F2.
All non-hydrogen atoms were refined anisotropically. H atoms on N-substituted C
atoms were not included for their symmetrical disorder, and those of lattice water
molecules were also not added for weak diffraction. Other H atoms were generated
geometrically. Supplementary Table 1 shows the crystal and structure
refinement data.

Calculations of electron absorption spectra. All calculations were performed
with the time-dependent density functional theory (TD-DFT) method at the
pbe1pbe/6-31 g* level using the Gaussian 09 software package50. Calculation
models were truncated from the crystal structure of 1 and modified with H atoms
replacing metal atoms.

Calculations of band structures and partial density of states. All calculations
were executed using the Cambridge Sequential Total Energy Package (Castep)51. A
plane-wave energy of 400 eV and a 3 × 3 × 2 Monkhorst-Pack grid of k-points were
selected. The exchange-correlation energy was described by the
Perdew–Burke–Eruzerhof (PBE) functional within the generalized gradient
approximation (GGA)52. The norm-conserving pseudopotentials were chosen to
modulate the electron–ion interaction53. Pseudo atomic calculations were per-
formed for C 2s22p2, H 1s1, N 2s22p3, O 2s22p4, Cl 3s23p5, Fe 3d64s2, and Mn
3d54s2. Other parameters used in the calculations were set by the default values of
the CASTEP code.

Data availability
The X-ray crystallographic data (1 and 2) reported in this study have been deposited at
the Cambridge Crystallographic Data Center (CCDC), under deposition number CCDC
1958300–1958301. These data can be obtained free of charge from The Cambridge
Crystallographic Data Center via http://www.ccdc.cam.ac.uk/conts/retrieving.html or
from the Cambridge Crystallographic Data Center, 12 Union Road, Cambridge CB2 1EZ,
U.K. Fax: (Internet) +44-1223/336-033. E-mail: deposit@ccdc.cam.ac.uk. We declare that
the main data supporting the findings of this study are available within the article and its
Supplementary Information files. All relevant source data are also available from the
corresponding author upon reasonable request.
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