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Embracing the dropouts in single-cell RNA-seq
analysis
Peng Qiu 1✉

One primary reason that makes single-cell RNA-seq analysis challenging is dropouts, where

the data only captures a small fraction of the transcriptome of each cell. Almost all com-

putational algorithms developed for single-cell RNA-seq adopted gene selection, dimension

reduction or imputation to address the dropouts. Here, an opposite view is explored. Instead

of treating dropouts as a problem to be fixed, we embrace it as a useful signal. We represent

the dropout pattern by binarizing single-cell RNA-seq count data, and present a co-

occurrence clustering algorithm to cluster cells based on the dropout pattern. We demon-

strate in multiple published datasets that the binary dropout pattern is as informative as the

quantitative expression of highly variable genes for the purpose of identifying cell types. We

expect that recognizing the utility of dropouts provides an alternative direction for developing

computational algorithms for single-cell RNA-seq analysis.
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S ingle-cell RNA sequencing (scRNA-seq) is a powerful
technology capable of unveiling cellular heterogeneity of the
transcriptome at single-cell resolution, producing insights

toward subpopulation structures and progression trajectories
which would be hidden in bulk cell population RNA sequencing
analyses1–3. Enabled by scRNA-seq advances including SMART-
seq4, CEL-seq5, Dropseq6, InDrop7, Chromium 10X8, SCI-seq9

and SPLiT-seq10, scRNA-seq is increasingly used and offers the
promise of addressing a variety of biology questions, such as intra-
population heterogeneity and subpopulation identification11,
developmental trajectories12, and regulatory mechanisms13,14.

scRNA-seq experiments often generate large amounts of data,
containing whole-genome gene expression measurements of
thousands or more individual cells, which presents challenges in
computational analysis and interpretation of the data15. There are
several reasons why computational analysis of scRNA-seq data is
challenging, such as high dimensionality, measurement noise,
detection limit, unbalanced size between rare and abundant
populations, etc. One important characteristic of scRNA-seq data
that feeds into all these challenges is a phenomenon called
“dropout”, where a gene is observed at a low or moderate
expression level in one cell but is not detected in another cell of
the same cell type16. These dropout events occur due to the low
amounts of mRNA in individual cells and inefficient mRNA
capture, as well as the stochasticity of mRNA expression. As a
result of the dropouts, the scRNA-seq data is often highly sparse.
The excessive zero counts cause the data to be zero-inflated, only
capturing a small fraction of the transcriptome of each cell.

Almost all existing computational methods developed for
scRNA-seq adopted gene selection and dimension reduction
strategies to address the dropouts17,18. A common practice for
clustering and trajectory finding methods is to preprocess the
data by selecting highly variable genes and performing dimension
reduction using principal component analysis (PCA)19 or
t-Distributed Stochastic Neighbor Embedding (tSNE)20. Exam-
ples include Seurat6,13,21, pcaReduce22, MNN batch-effect-
correction23, RaceID324, TSCAN25, STREAM26, and many oth-
ers. There are also imputation methods designed to explicitly
remove dropouts. A few recent examples include MAGIC27,
SAVER28, scImpute29, and RESCUE30. These imputation meth-
ods typically use highly variable genes and dimension reduction
to define gene–gene similarities or cell–cell similarities, which
provide the basis for imputing the dropouts with appropriate
values. The essential commonality of all these methods is to focus
the analysis on highly variable genes that are less affected by
dropouts, which has been proven effective because the cell-to-cell
heterogeneity of major phenotypes can often be captured by
genes exhibiting high variability. However, the selection of highly
variable genes can be sensitive to normalization and imputation,
which affects the results of the subsequent clustering and trajec-
tory analysis. In addition, genes that are not highly variable may
be useful for defining rare cell subpopulations.

The potential for leveraging the dropouts has been hinted in
the literature. M3Drop is a gene selection algorithm by modeling
the relationship between average detected expression and dropout
rate31, and showed that gene with higher than expected number
of dropouts were useful for mapping scRNA-seq datasets across
experiments32. In a recent algorithm termed scBFA, it was shown
that dimension reduction of the binary zero/non-zero pattern of
highly variable genes produced features that accurately classified
cell types in multiple scRNA-seq datasets33.

Here, in contrast to the majority of existing algorithms that
treat the dropouts as a problem that needs to be fixed, we decide
to embrace the dropouts as a useful signal. We hypothesize that
although the sparsity of scRNA-seq data is primarily caused by
dropouts due to noise and stochasticity at single-cell level, genes

in the same pathway tend to exhibit similar dropout pattern (i.e.,
binary zero/non-zero pattern) across various cell types, and can
serve as the basis for detecting cell types. In our analysis, we first
binarize the scRNA-seq count matrix, turning all the non-zero
observations into one. The binarized data is what we refer to as
the dropout pattern. We present an iterative co-occurrence
clustering algorithm to identify cluster cells based on the binary
dropout pattern. Although the quantitative information of
detected gene expression levels is removed after the data is
binarized, we demonstrate with multiple published datasets that
the co-occurrence clustering of the dropout pattern is able to
effectively identify cell populations, based on gene pathways
beyond the highly variable genes. This suggests the binary
dropout pattern in scRNA-seq data is as informative as the
quantitative expression of highly variable genes.

Results
The co-occurrence clustering algorithm. To identify cell popu-
lations based on the dropout pattern, we developed a co-
occurrence clustering algorithm. A flowchart of the algorithm is
shown in Fig. 1. The algorithm works in a hierarchically divisive
manner, and iteratively performs gene pathway identification and
cell type discovery. The starting point of the algorithm is a root
node at the top of a hierarchical tree, which contains all the cells
in the data. The algorithm first computes a statistical measure for
co-occurrence between each pair of genes, which quantifies
whether two genes tend to be co-detected in a common subset of
cells. The co-occurrence measures are filtered and adjusted by the
Jaccard index34, which defines a weighted gene–gene graph. The
gene–gene graph is partitioned into gene clusters using commu-
nity detection (e.g., Louvain algorithm35). The resulting gene
clusters contain genes that share high co-occurrence based on all
cells, and can serve as pathway signatures that separate major
groups of cell types in the heterogeneous population. For each
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Fig. 1 Flowchart of co-occurrence clustering. The co-occurrence clustering
algorithm is a divisive hierarchical process that iteratively identifies gene
pathways based on binary dropout patterns and cell clusters based on the
gene pathways.
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computationally-derived gene cluster/pathway, the percentage of
detected genes is computed for each cell. These percentages form
a low-dimensional representation of the cells in the pathway
activity space, where each dimension describes the activities of
one gene pathway in the cells. The algorithm then builds a
cell–cell graph using Euclidean distances based on the low-
dimensional pathway activity representation, uses the Jaccard
index to filter the cell–cell graph, and applies community detec-
tion again to partition the cell–cell graph into cell clusters. For
each pair of cell clusters, three metrics (signal-to-noise ratio,
mean difference and mean ratio) are used to evaluate whether any
of the gene pathways show differential activities. If none of the
gene pathways exhibit differential activity between the two cell
clusters, these two cell clusters are merged. After merging the cell
clusters according to pathway activities, each pair of the resulting
cell clusters have at least one gene pathway that shows large
difference between the two cell clusters. These cells clusters form
children nodes of the root node, and are expected to capture the
major groups of cell phenotypes in the data. In subsequent
iterations, each resulting cell cluster (children node of the root
node) is further divided using the same process, which identifies
smaller subtypes in each major group of cell phenotypes. These
subtypes form lower-level children nodes further down the
hierarchical tree, which are examined in later iterations of the
algorithm. A node is not further divided if the community
detection step produces only one cell cluster, or all cell clusters
produced by the community detection step are merged according
to the gene pathway differential activity criteria. Such a node
becomes a leaf of the hierarchial clustering process, and is
reported as one cell type identified by the algorithm. Therefore,
the merging criteria define termination of the iterations and
dictate the final number of clusters identified by the algorithm.

Dropout pattern identifies major cell types in PBMC. To
demonstrate the utility of dropouts and co-occurrence clustering,
we examined an scRNA-seq dataset of Peripheral Blood Mono-
nuclear Cells (PBMC) freely available from 10X Genomics. This
dataset contains scRNA-seq counts data for 32,738 genes in
2700 single cells that were sequenced on the Illumina NextSeq
500. 97.41% of the count matrix were zeros. The first iteration
examined the root cluster 0 which contained all 2700 cells. The
algorithm constructed a gene–gene graph based on co-occurrence
in the binary dropout pattern, and applied community detection
to identify four gene pathways, indicated by the upper-right
heatmap in Fig. 2a. Each pathway contained genes that were
significantly co-detected, as shown in the upper-left heatmap of
Fig. 2a. For each gene pathway, the percentage of detected genes
was used to represent the detected activity of the pathway in
individual cells, which was shown in the bottom heatmap of
Fig. 2a. Based on the cell–cell graph constructed by the Euclidean
distance of the pathway activity representation, community
detection yielded fifteen cell clusters, which were subsequently
merged to four-cell clusters according to merging thresholds of
1.5, 0.5, 2 for signal-to-noise ratio, mean difference and mean
ratio of pathway activities between each pair of cell clusters (see
details in the “Methods” section). These thresholds were chosen
to ensure that all resulting cell clusters exhibit distinct dropout
patterns, and the same values were used for all datasets examined
in this paper. The upper-left heatmap in Fig. 2a showed the
binary dropout pattern of genes in the pathways across all the
individual cells, where the rows and columns were arranged by
the gene pathways and cell clusters identified by the algorithm. It
was obvious that distinct cell clusters can be defined by the binary
dropout pattern of the identified pathways, both from the heat-
map of the binarized data itself and the heatmap of the pathway

activity space. In subsequent iterations, the four-cell clusters were
separately examined by the same algorithm. Cell clusters 1, 2, and
3 were further divided into smaller clusters, as shown in
Fig. 2b–d. Cluster 4 was not divided because the algorithm did
not identify any gene pathway with genes that exhibited sig-
nificant co-occurrence. Moving down the hierarchical process of
the iterative algorithm, among cell clusters 5~10, only clusters 5
and 10 were further divided, as shown in Fig. 2e–f. The others
were not divided due to lack of gene pathways identified in the
gene–gene graph, lack of cell clusters identified in the cell–cell
graph, or lack of cell clusters that exhibited differential pathway
activities exceeding the thresholds in the merging step. Details of
the iterative process were provided in Supplementary Note 1.
Overall, co-occurrence clustering of the dropout pattern identi-
fied a total of 13 gene pathways that defined 9 cell clusters in this
PBMC dataset.

This dataset was previously analyzed with Seurat, which
identified 8 cell clusters using community detection based on
principle component analysis of the expression data of highly
variable genes6. The clustering results between co-occurrence
clustering and Seurat were highly similar, with a Rand Index of
0.85. A detailed comparison of the two clustering results was
visualized in the heatmap in Fig. 2g. Each column of the heatmap
was colored by the percentages of overlap between one co-
occurrence cluster and the Seurat clusters, showing that most of
the co-occurrence clusters was primarily enriched by one Seurat
cluster. Six Seurat clusters (Dendritic cells, CD4 T cells, CD8
T cells, NK cells, FCGR3A+ Monocytes) were captured by
individual co-occurrence clusters (7, 14, 13, 9, 11). Co-occurrence
clustering did not capture the Seurat cluster of Platelets. Two
Seurat clusters (B Cells and CD14+ Monocytes) were divided
into subtypes. Overall, most of the Seurat clusters were well-
separated in the co-occurrence clustering results. In this
comparison, the number of highly variable genes defined by
Seurat was 1838, and the gene pathways identified by co-
occurrence clustering contained a total of 1583 genes. The overlap
was only 376. Many highly variable genes were not included in
the co-occurrence gene pathways mainly because co-occurrence
clustering worked with the binary dropout pattern. Therefore, the
co-occurrence clustering and identified gene pathways were
primarily driven by genes whose expression profiles were not
highly variable. Although the two algorithms were based on
different sets of genes and different types of signals, the general
agreement between the two clustering results was striking, and
suggested that the whole transcriptome binary dropout pattern
was as informative as the quantitative expression of highly
variable genes for the purpose of defining cell types.

The gene pathways and their activities enabled interpretation
of identified cell phenotypes in terms of genes that are not highly
variable. Figure 2h showed the activities of five identified gene
pathways in individual cells grouped according to the co-
occurrence cell clusters, as well as enriched gene ontology (GO)
terms for the pathways. The enriched GO terms were consistent
with known biology of various cell types. For example, MHC
protein complex and antigen binding were enriched in B cells and
dendritic cells. Endocytosis and cell motility were high in
dendritic cells and monocytes. We applied random forest to
classify the co-occurrence clusters based on the activities of co-
occurrence gene pathways and expression of highly variable
genes. The excellent classification performance in Fig. 2i showed
that the co-occurrence clusters showed distinct pathway activities
that were easily classified. Figure 2j showed that the two B cell
clusters (8 and 4) and the two CD14+ monocyte clusters (12 and
6) were not separable according to the expression of highly
variable genes. Random forest analysis based on two imputed
versions of the data generated by MAGIC27 and scImpute29
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showed almost the same results (Supplementary Fig. 1a, b),
because the imputation algorithms relied on PCA for dimension
reduction, where the top principle components were primarily
driven by highly variable genes. These results confirmed that
approaches based on highly variable genes were unable to
separate the two B cell clusters and the two CD14+ monocyte
clusters identified by co-occurrence clustering. The two B cell
clusters (8 and 4) contained 320 and 26 cells, respectively. The
relatively smaller B cell cluster (cluster 4) had lower UMI counts
compared to the other B cell cluster (Supplementary Fig. 1c),
leading to lower detection rates for genes (Supplementary Fig. 1d)
and lower pathway activities in the co-occurrence analysis
(Fig. 2h). However, based on the raw expression counts before
binarization, the mean expression profiles of the two B cell
clusters showed tight correlation (Supplementary Fig. 1e, f),
especially after the UMI counts were library-size normalized and
log transformed. The observations for the two CD14+ monocyte
clusters (12 and 6) were almost the same compared to the two B
cell clusters (Supplementary Fig. 1g–i). This was further
confirmed by examining the raw expression counts of highly
expressed genes across all cell types and highly expressed genes
specific to B cells and monocytes (Supplementary Fig. 1j). The
most highly expressed genes across all cell types were primarily
related to ribosomal proteins, and their detected expression levels
were lower in clusters 4 and 6, consistent to the fact that cells in
those two clusters had relatively lower UMIs. In terms of top
genes specific to B cells and monocytes (such as CD79A, CD79B,
MS4A1, CD14 and LYZ), expression levels in clusters 4 and 6
were in par with those in clusters 8 and 12 which contained the
majority of B cells and monocytes (Supplementary Fig. 1j). Given
the detected expression levels of cell type specific genes, cells in
clusters 4 and 6 were likely to be biologically meaningful, rather

than poor quality cells. It was interesting that such cell clusters
with low UMI but high cell-type-specific gene expression were
only observed in B cells and monocytes.

Dropout pattern clusters cells in human prefrontal cortex. To
demonstrate the generality of dropout as a useful signal, we
further examined a scRNA-seq dataset of the developing human
embryonic prefrontal cortex at gestational weeks 8 to 2636. The
data were generated with the SMART-seq2 technology, which
provided expression measurements for 24,153 genes across
2394 single cells, and the dropout rate was 82%. This dataset was
previously analyzed by a combination of tSNE and Seurat, which
defined six major clusters: neural progenitor cells (NPCs), exci-
tatory neurons, interneurons, oligodendrocyte progenitor cells
(OPCs), astrocytes and microglia36. When applied to the binary
dropout pattern in this dataset, the co-occurrence clustering
algorithm went through 23 iterations that identified meaningful
gene pathways and cell clusters, and eventually produced a total
of 38 cell clusters. Visualizations of all individual co-occurrence
clustering iterations were available in Supplementary Note 2,
which showed that all the identified gene pathways and cell
clusters exhibited visually striking differences in their dropout
patterns. Figure 3a showed that the clustering results of co-
occurrence clustering and Seurat were highly consistent, and each
Seruat cluster was captured by one or multiple co-occurrence
clusters. Figure 3b showed that the co-occurrence clusters were
also consistent with the developmental time points when the cells
were collected. Clusters of NPCs were present in gestational
weeks 9, 10, and 16. Clusters of excitatory neurons existed in all
gestational weeks sampled. All clusters of interneurons, OPCs,
astrocytes, and microglia emerged later in gestational week 26.
This was consistent with known literature that in the normal
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Fig. 2 Co-occurrence clustering applied to dropout pattern in PBMC data. a–g Gene pathways and cell clusters identified in each iteration of the co-
occurrence clustering algorithm. h Comparison between co-occurrence clusters and Seurat clusters on this dataset. i Pathway activities and enriched GO
terms. Enrichment is evaluated by one-sided hypergeometric test on the overlap between identified pathways and GO gene sets provided by MSigDB. The
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developmental process, NSCs give rise to neurons first and glial
cells later37,38.

Co-occurrence clustering identified eight clusters (30, 29, 60,
59, 46, 23, 37, and 24) corresponding to NPCs. As shown in
Fig. 3c, these eight co-occurrence clusters exhibited distinct
pathway activities according to six of the co-occurrence gene
pathways, which were enriched for GO terms including synapse,
neurogenesis, neuron differentiation, cell cycle, etc. Based on the
pathway activities, random forest with 5-fold cross-validation was
able to classify these eight NPC subpopulations with 92.3%
accuracy shown in Fig. 3d, confirming that these co-occurrence
clusters exhibited distinct dropout patterns. However, Fig. 3e
showed that random forest based on the quantitative expression
data of highly variable genes only achieved an accuracy of 79.8%,
and was unable to classify the two rare NPC subpopulations
(clusters 23 and 46) containing a dozen cells each. Random forest
based on two imputed versions of the data was able to improve
the classification accuracy for cluster 23 to some extent, but
unable to classify cluster 46 (Supplementary Fig. 2a, b). As shown
in Fig. 3b, c, majority of cells in these two rare NPC clusters
belonged to gestational week 10, and showed higher activity level
of a co-occurrence gene pathway enriched for extracellular space
and myelin sheath. Based on the raw counts (Supplementary
Fig. 2c, d), these two rare NPC clusters have similar total UMI
counts compared to other cell clusters, and showed elevated
expression of PRG2 (also known as MBP, myelin basic protein)
and MAG (myelin-associated glycoprotein), both associated to
myelination and oligodendrocyte differentiation39. Although the
OPCs did not emerge until gestational week 26 as shown in
Fig. 3b, the two rare NPC clusters revealed NPC subpopulations
that started to differentiate toward a more oligodendrogenic
fate40 in earlier gestational week while preserving their tripotency.

Dropout pattern delineates tissue types in Tabula Muris. To
further demonstrate the generality and scalability, co-occurrence
clustering was applied to the dropout patterns in a recently

published compendium of mouse tissues, the Tabula Muris41,
which contained scRNA-seq data for about 120,000 cells from 20
organs and tissue types in mouse, including skin, fat, mammary
gland, heart, bladder, brain, thymus, spleen, kidney, limb muscle,
tongue, marrow, trachea, pancreas, lung, large intestine, and liver.
Many of these organs were processed using two technologies,
SMART-seq2 on FACS-sorted cells and 10X Genomics on
microfluidic droplets. The FACS-sorted SMART-seq2 dataset
contained count data for 23,433 genes across 53,760 cells, with an
overall dropout rate of 89%. The droplet-based 10X dataset
contained count data of 70,118 cells for the same 23,433 genes,
with an overall dropout rate of 93%. The Tabula Muris allowed
evaluation of dropout patterns and co-occurrence clustering on
datasets with similar underlying heterogeneity but profiled by two
different scRNA-seq technologies.

The dropout patterns of the droplet-based dataset and the
FACS-based dataset were analyzed by co-occurrence clustering
separately. In both datasets, co-occurrence clustering identified
roughly 100 cell clusters. The gene pathways and cell clusters
identified in each co-occurrence iteration all exhibited distinct
dropout patterns that were visually obvious, as shown in
visualization of each iteration of the co-occurrence clustering
processes in Supplementary Notes 3 and 4. The Tabula Muris
dataset provided tissue type annotations for each individual cell,
which was used to evaluate whether the dropout patterns were
able to delineate various tissue types. As shown in Fig. 4a, b, co-
occurrence clustering of the dropout patterns successfully
separated the tissue types in both datasets, and identified further
subpopulations within many of the tissue types. This can also
be achieved by clustering analysis based on highly variable genes,
as indicated in previous literature41 and our own analysis
(Supplementary Fig. S3a, b). The numbers of subpopulations
co-occurrence clustering identified within each of the 12 over-
lapping tissue types in the two datasets were generally in line with
each other as shown in Fig. 5a. The outliers were mainly because
the distributions of cells across the tissue types were different
between the two datasets. Trachea and lung were two dominant
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tissue types that accounted for 30% and 13% of the droplet-based
dataset, whereas these two together accounted for 6% of the cells
in the FACS-based dataset. In contrast, heart was the largest
tissue type in the FACS-based dataset, but the smallest in the
droplet-based dataset. Co-occurrence clustering identified a total
of 261 gene pathways in the analyses of these two datasets. For
each gene pathway, we computed its average activity (percentage
of detection) for each of the 12 overlapping tissue types in the two
datasets separately. The heatmaps in Fig. 5b showed the activities
of the gene pathways in various tissue types were highly
correlated between the two datasets. The tight correlation was
further visualized in Fig. 5c, one scatter plot for each tissue type
with the dots corresponding to the 261 gene pathways. For most
tissue types (except heart, kidney, and thymus), the pathway
activities were higher in the FACS-based dataset, consistent with
the fact that the dropout rate in the FACS-based dataset was
lower. The comparisons in Fig. 5 demonstrated that the dropout
patterns in the two datasets were highly consistent with each
other. In contrast, similar analyses based on the expression of
highly variable genes showed that the expression levels were less
correlated between the two datasets compared to the dropout
patterns (Supplementary Fig. S3c–e). This analysis demonstrated
the utility and robustness of dropout patterns in large scRNA-seq
datasets generated by two different technologies, as well as the
scalability of the co-occurrence clustering algorithm, which
together identified tissue types and subpopulations based on the
binary dropout patterns in the data.

Discussion
Using multiple scRNA-seq datasets generated by different
scRNA-seq technologies in various biology contexts, we have
demonstrated that dropout is an extremely useful signal for
identifying cell types, and is as informative as the quantitative
expression of highly variable genes. This validates our hypothesis
that different cell types exhibit distinct binary dropout patterns in
scRNA-seq analysis. Since most existing computational methods
for scRNA-seq treated dropout as a problem to be fixed, our
analyses explore an opposite view and present a unique
perspective.

In existing scRNA-seq analysis methods, feature selection is
typically performed only once. The two most popular feature
selection strategies are using highly variable genes and perform-
ing principal component analysis, both of which are primarily
driven by genes that exhibit high variation. In the co-occurrence
clustering algorithm, feature selection is re-visited in each itera-
tion. Depending on the set of cells under consideration, each
iteration builds a gene–gene graph based on co-occurrence, and
applies community detection to identify gene pathways that are
able to characterize the heterogeneity in the set of cells under
consideration. In our analyses, the gene pathways constructed in
the initial iteration are often of larger size compared to those in
later iterations. This is mainly because the initial set of cells is
typically more heterogeneous, containing drastically distinct cell
types that can be characterized by the binary on/off expression
states of many genes, whereas the sets of cells examined in
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subsequent iterations contain less heterogeneity manifested in
relatively smaller number of genes.

In almost all of the datasets analyzed here, the co-occurrence
clustering algorithm generated more clusters than the previous
analyses of these datasets, which can be both a blessing and a
curse. Although the dropout patterns showed clear differences
among the clusters generated in each iteration (Fig. 2 and Sup-
plementary Notes 1–4), the results presented a challenge for
interpreting the biological functions and distinctions among the
cell clusters. One strategy is to bring back the quantitative gene
expression information, and interpret the identified cell clusters
using both pathway activities defined by dropouts and expression
profiles defined by highly variable genes. Binarizing scRNA-seq
data to focus on the dropouts may not be the best strategy for
analyzing scRNA-seq data, because the quantitative information
of detected gene expression levels is ignored. However, recog-
nizing the utility of dropouts suggests an alternative direction for
developing computational algorithms for scRNA-seq. We envi-
sion future algorithms that combine quantitative expression of

highly variable genes and binary dropout pattern of other genes
to fully exploit the richness of scRNA-seq data.

Methods
Dropout pattern represented by binarizing scRNA-seq counts. The only data
preprocessing required here is converting the count matrix into binary, where all
the dropouts are still 0, and all the non-zero counts are turned into 1 regardless of
the expression level. No normalization, transformation or imputation is required.

Filter genes and cells before co-occurrence clustering. In each iteration, the co-
occurrence clustering algorithm focuses on the dropout pattern (binarized expression
data) of one cell cluster. Based on the binary dropout pattern, the algorithm filters
both genes and cells. More specifically, the algorithm removes genes detected in too
few cells, and removes cells in which too few genes are detected. The default
thresholds for both genes and cells were 10 for all the datasets analyzed in this paper.

Construct gene–gene graph and gene pathways. Given the set of cells under
consideration in the current iteration, the co-occurrence clustering algorithm first
evaluates the co-occurrence between each pair of genes using the chi-square sta-
tistics. Based on the binarized data of two genes g1 and g2, denote A as the number
of cells in which both genes are detected, B as the number of cells in which g1 is

c
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detected but g2 is undetected, C as the numbers of cells where g1 is undetected but
g2 is detected, and D as the number of cells where both genes are undetected. The

chi-square score is defined as signðAD� BCÞðAD� BCÞ2
ðAþ BÞðAþCÞðBþDÞðCþDÞ. If the score is large, the two

genes exhibit high co-occurrence. Random permutation is used to the define a
threshold for what score is considered as large. Ten randomly permutated datasets
are obtained by randomly reshuffling each row/gene independently, and the
highest chi-square score from the random data is recorded. In the collection of
pairwise chi-square scores from the actual data, for the ones smaller than the best
random score, the mean and standard deviation are computed. A threshold is
defined as the mean plus the standard deviation. An undirected unweighted
gene–gene graph is then constructed by applying the threshold to the pair-wise chi-
square scores. The Jaccard index34 is applied to filter the unweighted graph into a
weighted graph, and the Louvain algorithm35 is applied to detect communities in
the gene–gene graph, which are referred to as gene pathways here. A pre-defined
pathway size threshold is used to discard gene pathways that are too small. If all the
gene pathways produced by the community dection algorithm are smaller the size
threshold, all of them are discarded, and the current iteration ends without dividing
the cells under consideration into clusters. The default threshold for the minimum
pathway size was 20 for all the datasets analyzed in this paper.

Construct cell–cell graph and cell clusters. For each gene pathway generated from
the gene–gene graph, the percentage of detected genes is computed for each cell.
These percentages form a low-dimensional representation of the cells, where the
dimensionality is the number of gene pathways, and each dimension describes the
activity of one gene pathway in the cells. Using the pairwise Euclidean distance among
the cells based on the pathway activity representation, a k-nearest neighbor graph is
constructed, which is an undirected unweighted cell–cell graph. The Jaccard index is
again applied to filter the unweighted graph into a weighted graph, and the Louvain
algorithm is applied to detect communities in the cell–cell graph, which are referred to
as cell clusters here. Cell clusters that are smaller than a pre-defined threshold are
considered as tiny clusters, and are merged into the nearest non-tiny cluster. Here,
“near” is defined by Euclidean distance based on the pathway activity representation.
If all cell clusters are tiny, or only one cluster remains after the tiny clusters are
merged, the current iteration ends without generating additional clusters. In all the
datasets analyzed in this paper, the default k was 5 for the k-nearest neighbor graph,
and the default threshold for tiny clusters was 10.

Merge cell clusters. Although the cell–cell graph is defined based on the pathway
percentages of detection, the cell clusters generated by community detection on the
cell–cell graph are not necessarily prominently different in terms of the pathway
percentages of detection. Therefore, the algorithm further merges the cell clusters
according to three metrics of the percentages of detection: mean difference, mean
ratio, signal-to-noisy ratio (SNR). For two cell clusters, the mean difference of a
gene pathway is defined as the difference in the mean of the pathway’s percentage
of detection in the two cell clusters; the mean ratio of the gene pathway is the ratio
between the mean of the pathway’s percentage of detection in the two cell clusters;
the SNR of the pathway is defined as the mean difference over the sum of the
standard deviations of pathway’s the percentage of detection in the two cell clus-
ters. In order for two cluster to be considered as prominently different, the algo-
rithm requires two criteria to be met: (1) the maximum of their SNRs of the gene
pathways is larger than 1.5, and (2) either the maximum of their mean differences
for the gene pathways is larger than 0.5, or the maximum of their mean ratios is
larger than 2. Clusters that do not meet these criteria are merged. After the clusters
are merged according to these criteria, any two resulting cell clusters will exhibit
prominent difference in at least one gene pathway, where prominent difference
means that the SNR is larger than 1.5, and either the mean difference is larger than
0.5 or the mean ratio is larger than 2. If only one cluster remains due to these
merging criteria, the current iteration ends without generating additional clusters.
If otherwise, subsequent iterations of the algorithm will examine the resulting cell
clusters separately, and see whether they can be further divided in to sub-clusters
that are prominently different in terms of certain gene pathways. The values 1.5, 0.5
and 2 are chosen to ensure that all resulting cell clusters exhibit distinct dropout
patterns, and the same values were used for all the datasets analyzed in this paper.

Iterative application of co-occurrence clustering. Similar to all divisive hier-
archical clustering methods, the co-occurrence clustering algorithm represents a
divide-and-concur strategy. When examining the root node that contains many
distinct cell types, the gene–gene co-occurrence and the gene pathways are
dominated by the differences among the major groups of cell types, enabling the
initial iteration to identify the major cell clusters. Each subsequent iteration focuses
on a previously identified cell cluster, where the gene–gene co-occurrence leads to
different gene pathways driven by the heterogeneity within the cell cluster, which
provides the basis for identifying further cell clusters. Typically, the sizes of gene
pathways gradually decrease as the iterations proceed, because the cell clusters
examined by later iterations are less heterogeneous compared to earlier iterations,
and less heterogeneity means less prominent differences among further subtypes
that are manifested in fewer genes and smaller pathways. The key strength of this
algorithm is that different iterations use different sets of genes and pathways to
cluster the cells.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The Peripheral Blood Mononuclear Cells (PBMC) dataset was downloaded from 10X
Genomics (https://s3-us-west-2.amazonaws.com/10x.files/samples/cell/pbmc3k/
pbmc3k_filtered_gene_bc_matrices.tar.gz). The dataset on human prefrontal cortex was
downloaded from GEO, with accession number GSE104276. The Tabula Muris was
obtained from the easy-data Github repository provided in the collaborative
computational tools for the Human Cell Atlas (https://github.com/czi-hca-comp-tools/
easy-data/blob/master/datasets/tabula_muris.md).

Code availability
Source code for the co-occurrence clustering algorithm implementation is available at
https://github.com/pqiu/cooccurrence_clustering.
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