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Phosphocreatine (PCr) plays a vital role in neuron and myocyte energy homeostasis. Cur-

rently, there are no routine diagnostic tests to noninvasively map PCr distribution with

clinically relevant spatial resolution and scan time. Here, we demonstrate that artificial neural

network-based chemical exchange saturation transfer (ANNCEST) can be used to rapidly

quantify PCr concentration with robust immunity to commonly seen MRI interferences. High-

quality PCr mapping of human skeletal muscle, as well as the information of exchange rate,

magnetic field and radio-frequency transmission inhomogeneities, can be obtained within 1.5

min on a 3 T standard MRI scanner using ANNCEST. For further validation, we apply

ANNCEST to measure the PCr concentrations in exercised skeletal muscle. The ANNCEST

outcomes strongly correlate with those from 31P magnetic resonance spectroscopy

(R= 0.813, p < 0.001, t test). These results suggest that ANNCEST has potential as a cost-

effective and widely available method for measuring PCr and diagnosing related diseases.
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Phosphocreatine (PCr) is a high-energy phosphate com-
pound that is abundant in muscle and brain and used by
creatine kinase isoenzymes to generate adenosine tripho-

sphate from adenosine diphosphate. PCr plays a vital role in
cellular energy buffering and energy transport, particularly in
tissues with high and fluctuating energy demands, such as skeletal
muscle, cardiac muscle, and brain1. The measurement of PCr
provides a unique way to achieve insight into cellular energetics,
and has shown great potential in many areas, such as for evalu-
ating mitochondrial function in vivo2, and for identifying per-
ipheral arterial disease3 and heart failure4. PCr concentrations are
reduced in several neurodegenerative and muscle diseases. To
date, phosphorus-31 magnetic resonance spectroscopy (31P MRS)
has been the established method for noninvasively detecting and
quantifying PCr in vivo2,5,6. In addition to PCr measurement, 31P
MRS also provides information about pH, inorganic phosphate,
and adenosine phosphates (ATP, ADP, and AMP) in tissue. In
practice, 31P MRS is most commonly applied to monitor the time
dependencies of pH and PCr variation during exercise and
recovery for assessing mitochondria7,8. However, the inherent
low detection sensitivity of 31P MRS results in low spatial reso-
lution and long acquisition times that hinder its wide application.
In addition, 31P MRS is not available on most magnetic resonance
imaging (MRI) scanners in clinical practice due to additional
hardware costs associated with 31P excitation/detection that are
not used in clinical 1H MRI scanners, the significant expense of
broadband transmitting/receiving hardware, and the impracti-
cality of having to switch coils in a clinical setting. Therefore,
currently, there are no routine diagnostic tests to noninvasively
quantify or map the distribution of PCr in tissue with clinically
relevant spatial resolution and scan time.

Chemical exchange saturation transfer (CEST) is an MRI
sensitivity-enhancing approach that exploits the interaction
between exchangeable protons in low-concentration molecules
and the water protons detected in MRI, which has shown great
potential in detecting various metabolites in vivo9–11. CEST MRI
does not require special system hardware or coils, and thus can be
performed on standard clinical MRI scanners. However, its
translation from high-field animal studies to clinical practice has
been slowed by the lower field strengths used in the clinic (1.5 T
and 3 T), at which the frequency shifts between the exchangeable
protons and the water resonance, as well as the contrast-to-noise
ratio of the CEST signal, are reduced. Currently, no prior studies
have yet been performed to experimentally evaluate human PCr
mapping on clinical MRI systems. To explore and develop high-
quality PCr mapping using CEST for clinical practice at low field
strengths, optimization of the PCr CEST acquisition is required,
and the quantification method needs to be robust against the
inevitable static magnetic field (B0) and radio-frequency transmit
field (B1) inhomogeneities, as well as interference from other
saturation transfer components in tissues.

Artificial neural networks (ANNs) are increasingly used in
many diverse areas12–14 to successfully extract relevant features
from extremely large, annotated data sets, and utilize them to
create predictive tools based on patterns hidden inside. Once
trained, ANNs can apply the learned knowledge to analyses of
other data and/or solve task-specific problems. In this study, we
demonstrate that ANNs can be used for CEST quantification,
dubbed hereafter as ANNCEST. More specifically, we show that
this trained neural network can accurately and simultaneously
predict multiple important properties, including metabolite con-
centration, the exchange rate of the exchangeable protons, and
B1/B0 homogeneity information, with just the simple input of a Z
spectrum (water saturation transfer spectrum) for each image
volume element (voxel). After first training and validating
ANNCEST using numerical simulations and PCr phantom data

at 3 T, we optimize the PCr CEST acquisition to obtain maximum
PCr contrast on human skeletal muscle, and again train and apply
ANNCEST. We then show the feasibility of applying ANNCEST
to simultaneously quantify the PCr concentration of human
skeletal muscle, the exchange rate of the guanidinium protons
from PCr, and the B0 and B1 maps on a clinical 3 T MRI scanner.
As additional validation, the PCr depletion and recovery in
exercised human skeletal muscle were detected and quantified by
ANNCEST, and the results were compared with those from 31P
2D MRS. We also discuss the potential applications of ANNCEST
as well as its advantages and limitations. The results suggest that
the exchangeable guanidinium protons of millimolar concentra-
tion PCr can be exploited to detect it via the water signal in MRI
with greatly enhanced sensitivity (molar signal) using CEST MRI,
and its concentration can be quantified using ANNs.

Results
Validation of ANNCEST. We implemented ANNCEST with a
feed-forward neural network as shown in Fig. 1a. The neural
network was trained using Z spectra generated by the
Bloch–McConnell equations15 for various concentrations and
exchange rates of exchangeable protons at multiple offset fre-
quencies, and for spatially varying B1 and B0. Gaussian white
noise was added to the training Z spectra to mimic the real
situation (Fig. 1b). Numerical simulations were performed to
validate that ANNCEST can accurately and simultaneously pre-
dict metabolite concentration, exchange rate of exchangeable
protons, and B0 with the simple input of a Z spectrum per voxel.
The simulated Z spectra were generated based on a PCr phantom
model at 3T containing two CEST peaks at 1.95 ppm and 2.5 ppm
as shown in Supplementary Fig. 1d–f. The exchange rate ratio
between 1.95 ppm and 2.5 ppm was set to 1:2.19 according to
measures obtained in a PCr phantom at 37 °C using an inversion
recovery technique on a 17.6 T NMR spectrometer (see Supple-
mentary Section 2 and Supplementary Fig. 2). The number of
hidden layers was optimized to avoid the risk of overfitting
(Fig. 1c), and the initial findings suggested that seven hidden
layers can provide adequate predicted capacity, because the
improvement of performance with more hidden layers was less
than 5 × 10−4. Therefore, seven hidden layers were used in this
study unless otherwise specified. The statistical analyses of the
training results are given in the Supplementary Section 3. To test
the performance of the trained neural network for quantifying
new data, we generate new Z spectra pixel by pixel based on the
ground-truth maps shown in Fig. 1d–f. To give a comparison to
ANNCEST, Bloch equation fitting was also performed. The
quantification results and statistical analysis in Fig. 1g–n show
that ANNCEST can yield better fidelity to ground truth compared
with Bloch equation fitting, especially for the quantification of
exchange rate and B0 in regions with low concentration (detailed
values are listed in Supplementary Table 1). It should be noted
that ANNCEST is completed within 2 s on a personal computer
(Intel i5-6300U CPU with 8 G memory), while the Bloch fitting
requires around 18 h on a cluster computer with 8 parallel
computing (AMD Opteron 6100 8-core CUP with 16 G memory).

The same neural networks were applied to quantify the Z-
spectra obtained from PCr phantoms, and the results are shown
in Fig. 2. An excellent correlation (R= 0.9989) was observed
between the ground truth and predicted phantom PCr concen-
tration. The related Bland–Altman analysis of concentration is
shown in Fig. 2f. The exchange rates obtained by ANNCEST were
consistent with those obtained using an inversion recovery
approach (260 ± 40 Hz, mean ± s.d.) (detailed values are listed in
Supplementary Table 2). The predicted B0 map (Fig. 2e) showed a
strong correlation (R= 0.9969) with that obtained by water

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-14874-0

2 NATURE COMMUNICATIONS |         (2020) 11:1072 | https://doi.org/10.1038/s41467-020-14874-0 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


saturation shift referencing (WASSR) MRI16, as illustrated in
Fig. 2h.

Optimize PCr CEST contrast in vivo on human skeletal muscle
at 3 T. Our previous study on mouse skeletal muscle at 11.7 T
showed that PCr has two distinct CEST peaks around 1.95 ppm
and 2.5 ppm, and that the 1.95-ppm peak also contains con-
tributions from Cr and protein guanidinium protons17. However,
the CEST line shapes can be significantly different at lower fields,

especially in vivo, where strong magnetization transfer contrast
(MTC) exists. Here, CEST experiments with different saturation
powers and saturation lengths were performed on human skeletal
muscle to experimentally evaluate the PCr contrast on a 3 T
clinical system. Due to the presence of MTC, the Z spectra of
human skeletal muscle are quite different from those obtained on
PCr phantoms (see Supplementary Fig. 1). From the optimization
results for saturation powers ranging from 0.2 µT to 0.8 µT
(Fig. 3a–d), the Z spectrum obtained with a relatively low
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saturation power of 0.2 µT exhibits two discernible CEST peaks
around 2.5 ppm and 1.95 ppm. With the increase in saturation
power, the observed CEST signal (ΔZ) at 2.5 ppm increases at first
and then decays after reaching a maximum at 0.6 µT. The CEST
peak at 2 ppm is indiscernible from the Z spectra with the
saturation power larger than 0.4 µT due to the MTC scale-down

effect18. The saturation length was optimized with a fixed
saturation power of 0.6 µT. From the quantitative analysis shown
in Fig. 3i, a CEST protocol with a saturation length of 800 ms
yields the maximum ΔZ. Therefore, a saturation power of 0.6 µT
and a saturation length of 800 ms were applied in the remaining
studies unless otherwise specified.

Fig. 1 Validation of ANNCEST with numerical simulation. a Diagrammatic representation of the feed-forward artificial neural network used in this study.
This network comprises three layers: an input layer, fully connected hidden layers, and an output layer. The input of the neural network is the intensity of
the Z spectrum at different frequency offsets, and the outputs are the predicted values of metabolite concentrations, exchange rates of exchangeable
protons, and B1/B0. b Representative Z spectra of PCr phantom generated by three-pool Bloch–McConnell equations. Z spectra from 0.5 to 4.0 ppm were
sampled with a 50-saturation offset over equal intervals. Gaussian white noise with a standard deviation of 0.35% and B0 inhomogeneity offsets were
added to the Z spectra. The saturation power and length were set to 0.6 µT and 10 s, respectively. c The performance of neural networks as a function of
the number of hidden layers. The error bar was obtained by repeating the neural network training five times. d–f The ground truth maps of concentration,
exchange rate at 2.5 ppm, and B0 for generating validated Z spectra. The matrix size of maps is 256 × 256. The maps of concentration, exchange rate, and
B0 obtained by Bloch equation fitting (g, h) and ANNCEST (j–l), respectively. m, n Quantified concentrations and exchange rates, respectively. The bar and
error bar indicate the mean value and standard deviation across each phantom, respectively (n= 4523, 3655, 2770, 2610, and 2790 pixels for phantom
numbers 1–5, respectively).
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High-quality PCr mapping on human skeletal muscle using
ANNCEST. To train the in vivo network, Z spectra of human
skeletal muscle at 3 T were generated assuming the experimen-
tally verified situation of a single PCr CEST peak at 2.5 ppm and
an additional broad background signal to account for the con-
tributions from MTC and other metabolites that do not show
distinct CEST peaks on the Z spectrum. Maps of concentration,

exchange rate, B0 and B1 obtained by applying the newly trained
neural network to the in vivo data are shown in Fig. 4c–f. The
previously published polynomial and Lorentzian line-shape fit-
ting (PLOF) method was performed for comparison17,18. The
results showed that the concentration map obtained by PLOF was
degraded due to inherent B0 and B1 inhomogeneities as indicated
by the white arrow (Fig. 4b), while the concentration map
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obtained by ANNCEST shows much better robustness against B0
and B1 inhomogeneities. The quantified PCr concentrations of
gastrocnemius medial (GM), soleus (SOL), tibialis anterior (TA)
and peroneus (P) over five volunteers were 31.9 ± 2.0 mM, 31.7 ±
3.3 mM, 30.8 ± 4.1 mM, and 30.9 ± 3.9 mM, consistent with pre-
vious total muscle reports (29–36 mM)19,20. The quantified
exchange rate (164 ± 36.8 Hz across muscle) is consistent with a
previously reported value (140 ± 50 Hz)21. The B0 and B1 maps
obtained by ANNCEST also show high similarity with those
obtained by the established individual methods of dual-echo22 for
B0 and DREAM23 for B1. Although B0 and B1 showed clear
variation in the muscle (B0: −0.15–0.25 ppm; B1: 0.6–0.8 μT), the
ANNCEST method was still able to provide homogeneous con-
centration and exchange rate maps across the muscle, except for
the regions with blood vessels. In order to validate the robustness
of ANNCEST against T1 and T2 variations, we applied trained
ANNCEST to quantify Z-spectra simulated with different water
T1 and T2 values24 (Supplementary Fig. 10). From Supplementary
Fig. 10b, when increasing water T1 over a large range from 1.0 s to
2.0 s, the quantified concentration increased only from 35.03 ±
1.95 mM to 37.33 ± 1.90 mM, in an approximately linear fashion.
The exchange rate obtained by ANNCEST possessed excellent
resistance against water T1 variation (160.7 ± 2.6 Hz at T1= 1 s vs.
159.0 ± 3.3 Hz at T1= 2 s), as shown in Supplementary Fig. 10c.
The quantified concentrations and exchange rates as a function of
water T2 are shown in Supplementary Fig. 10e, f. These results
indicate that ANNCEST still can yield reasonable accuracy when
water T2 varies from 15 to 50 ms. We then performed a similar
test for sensitivity of ANNCEST to T1 and T2 variation for the
PCr protons. The results in Supplementary Section 8 and Sup-
plementary Fig. 11 show that concentrations and exchange rates
possess excellent resistance against T1 variation of PCr proton
(34.75 ± 2.35 mM and 163.7 ± 3.5 Hz at 30 ms vs 36.06 ± 2.16 mM
and 158.6 ± 4.9 Hz at 70 ms). Similarly, ANNCEST still can yield
satisfactory accuracy when the PCr proton T2 varies from 15ms
to 25 ms, giving a concentration variation between 34.9 mM
and 36.9 mM, while the exchange rate ranges from 162.8 Hz to
159.0 Hz.

The PCr mapping using ANNCEST was further validated by
comparison with 31P 2D MRS measures obtained before and
during in-magnet plantar flexion exercise. Subjects underwent the
same exercise protocol, once with CEST acquisitions and once
with 31P 2D MRS, in varied order. Shortly after the exercise, the
PCr depletion in the gastrocnemius muscles recovered to basal
values on the PCr maps obtained by both ANNCEST and 31P 2D
MRS as shown by the representative results in Fig. 5b, c. The PCr
recovery time can in principle be obtained from the dynamic PCr
maps as demonstrated in Supplementary Section 5. The Z-spectra
for a region of interest in the gastrocnemius muscles obtained at
two-time points are also plotted and demonstrate the decrease of
the PCr CEST peak during the exercise (Fig. 5d, e), namely from
30.38 mM to 15.42 mM. The PCr depletion observed in the
different muscle regions is in good agreement with those reported
previously in healthy volunteers using 31P spectroscopy, in which
the gastrocnemius muscle showed significantly greater PCr
depletion than other muscle groups during plantar flexion
exercise25–27. PCr concentrations obtained by ANNCEST during
exercise agreed very well with those measured by 31P 2D MRS, as
indicated by the correlation (p < 0.001, Student’s t test) and
Bland–Altman analyses between two methods in Fig. 5f, g,
respectively.

Discussion
PCr is an important intracellular high-energy phosphate molecule
that is depleted in many neurologic and muscle diseases but one

that is rarely quantified or mapped noninvasively in routine
clinical practice. Here, we present a technique, named ANN-
CEST, to reliably detect, quantify, and image high-quality PCr
distribution of human skeletal muscle on a 3 T standard clinical
MRI scanner within 1.5 min.

Our previous studies at high magnetic field strength (11.7 T)17

showed that PCr has two CEST peaks at 1.95 ppm and 2.5 ppm.
The same observation was confirmed by another group using 9.4
T and 15.2 T MRI28. However, to the best of our knowledge, there
has been no published study to map PCr in human skeletal
muscle with CEST at clinical magnetic field strength (1.5 T or 3
T). The observed PCr CEST signal at low magnetic field strength
is significantly different from that at high fields due to a reduced
frequency difference between the exchangeable protons and water
protons. From the optimization results shown in Fig. 3, two
discernible CEST peaks at 1.95 ppm and 2.5 ppm can be observed
for low saturation power (0.2 µT). However, with increased
saturation power, the CEST peak at 1.95 ppm becomes indis-
cernible and only one CEST peak at 2.5 ppm remains. This is
fortunate for PCr quantification because the CEST peak at 2.5
ppm is dominated by PCr as validated previously17,28. From the
PCr phantom experiments shown in Fig. 2, due to the reduced
CEST contrast, the exchange rate of 10 mM PCr phantom is more
vulnerable to systematic imperfections and exhibits a larger
standard deviation compared with the others. Therefore, opti-
mizing CEST sequence to obtain maximum PCr contrast is cri-
tical for robust quantification since the PCr contrast in vivo is
around 1% (Fig. 3h, i). The quantitation of the metabolites and
proteins that form the Z-spectrum is challenging in CEST studies
due to the concurrence of the CEST signals from solid-like
macromolecules and mobile proteins, as well as the water direct
saturation. Many techniques have been proposed for quantifica-
tion in CEST studies. The most common one is the asymmetry
analysis method, i.e., subtracting images acquired at two sym-
metric offsets with respect to the water resonance, which has been
used for quantifying various metabolites29–31. Some other
methods such as the Lorentzian fitting method32 and the rotating
frame relaxation theory33,34 have also been proposed for quan-
tification. In most of the CEST quantification methods, the
contribution of the CEST signal in the Z-spectrum was usually
simplified to a linear function and all contributions were assumed
to be superimposed linearly; however, these simplified models
usually only work in certain situations, such as with weak
saturation powers. CEST quantification is further complicated by
the inevitable B0 and/or B1 inhomogeneities, which can shift or
distort the in vivo CEST Z-spectra. Usually, B1 and B0 maps need
to be collected and included in the CEST quantitation modeling,
which not only lengthens the CEST experimental time but also
makes the quantification of CEST more challenging. Here, we
present the first evidence that ANNs can be used for quantifying
in vivo CEST signal. The initial idea of this study was inspired by
the work of Bo Zhu et al.14, who demonstrated that conventional
image reconstruction methods can be replaced by ANN-based
methods with much-improved performance. Similar to image
reconstruction, the CEST quantification is a kind of inverse
problem, where the useful information (e.g., concentration and
exchange rate) needs to be decoded from the acquired data (i.e.,
the intensities in a Z-spectrum). The encoding process of CEST
MRI can be well described by the Bloch–McConnell equations
and a training Z-spectrum can be easily generated with known
parameters. However, due to the complexity of the
Bloch–McConnell equations, an accurate solution is hard to
derive especially with the presence of possible B0 and B1 effects,
which means decoding quantitative concentrations and exchange
rates from Z-spectra is challenging. Here, ANNCEST provides a
new dimension for CEST quantification. A fully connected feed-
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forward neural network with enough neurons in its hidden layer
is known to be good at finding patterns behind one-dimensional
data35, which is well suited for CEST quantification. Instead of
needing to derive the solution of the Bloch–McConnell equations,
we train the ANN with a large annotated dataset to extract the
relationship between the Z-spectrum and quantifiable parameters.
As shown in Supplementary Section 4, the depth, width, and
offset of in vivo PCr peak are related to concentration, exchange
rate, and B0 introduced frequency shift, respectively, while B1
variation affects overall Z-spectral background intensity (Sup-
plementary Fig. 5d). These effects can be fully exploited by ANN
and applied to simultaneously quantify these parameters (Sup-
plementary Figs. 3 and 4). The ANNCEST approach proposed
here provides an additional dimension for CEST quantification.
Similar to other artificial intelligence methods, ANNCEST is a
data-driven quantification method and its accuracy highly
depends on the training data. In this study, the training data were
generated using the Bloch–McConnell equations with con-
sideration of B0 and B1 inhomogeneities and noise. The relatively
homogeneous T1 and MTC across the human skeletal muscle
benefit the generation of training data24,36,37. With optimal
saturation parameters, training Z-spectra within a limited spectral
range (1.3 ppm–3.5 ppm) can be generated using a three-pool
Bloch McConnel simulation, namely water protons, PCr guani-
dinium protons, and background. The background including the
contributions from MTC and all other metabolites can be well
represented by a single pool (Supplementary Fig. 5e). The dis-
cernible PCr guanidinium CEST peak in vivo provides a unique
opportunity for ANNCEST to learn the relationships between the
Z spectrum and PCr concentration, exchange rate, and B0 and B1
(Supplementary Sections 3 and 4), and to apply the learned
knowledge to simultaneously quantify these multiple parameters,
as demonstrated in Figs. 4, 5. Previous studies2,37,38 have shown
that the pH, T1, and T2 can change after exercise. We included the
effects of pH and T2 on training data by adopting varying

exchange rates and T2 values. In addition, we tested the perfor-
mance of ANNCEST using simulated data over a range of water
and PCr proton T1 and T2 values (Supplementary Figs. 10 and
11). The results showed that the ANNCEST-determined exchange
rates and concentrations are robust over a water T1 range from
1.0 s to 2.0 s and a water T2 range from 15ms to 50 ms, which are
the relevant ones of in vivo ranges24. Concentrations were also
very insensitive to the PCr proton T1 and T2. ANNCEST can be
applied to quantify other metabolites under different situations
(see Supplementary Figs. 7, 8 and 9). In the case where the Z-
spectrum may be difficult to simulate using Bloch–McConnell
equations, the training data can be generated by combining
acquired Z-spectra with corresponding quantification results
obtained through other gold standard methods. An advantage of
CEST MRI for collecting adequate training data is that the size of
the training data set is proportional to the number of pixels of the
CEST image since each pixel has its own Z spectrum, thus pro-
viding sufficient samples and enhancing the power of the
resulting data (see Supplementary Section 7).

Though ANNCEST can efficiently exploit the relationship
between the Z spectrum and different parameters, the range and
frequency offset interval of the Z spectrum and the quantifiable
parameters still need to be carefully designed for the successful
application of ANNCEST. For the numerical simulations and
phantom experiments, the frequency offsets of the Z-spectra
ranged from 0.5 to 4 ppm with a total offset number of 50. Within
this limited Z-spectral range, B1 and concentration both affect the
depth of CEST peak. Therefore, when varying B1 variation (0.5
µT–0.7 µT) in the training, the accuracy of concentration quan-
tification was significantly degraded (the linear regression R-value
of neural network training dropped from 0.99983 to 0.85054). In
this study, due to the relatively small FOV of phantom experi-
ments (30 × 30 mm2), we, therefore, assumed the B1 to be
homogeneous across phantoms and a fixed B1 was adopted in the
training Z-spectra for numerical simulation and phantom
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Fig. 5 Representative PCr maps of human skeletal muscle pre and post in-magnet plantar flexion exercise using 31P 2D MRS and ANNCEST methods.
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experiments. This assumption worked well, and high fidelity of
PCr concentrations was obtained, as shown in Fig. 2c, f. In
phantom experiments where B1 inhomogeneity cannot be
neglected, an additional range of Z-spectrum (e.g., the direct
saturation of water or more background regions) may be required
for accurate quantification of PCr concentration, as well as B1.
For the human experiments, successful quantification of B1 and
concentration was possible since B1 affects not only the PCr CEST
peak but also the MTC-dominant background. An ANN can well
exploit this additional information and provide accurate quanti-
fication of B1 and concentration as shown in Supplementary
Fig. 4g, h. Compared with MRS methods for measuring PCr
metabolism of skeletal muscle on clinical scanners such as 13C
MRS39 and 31P MRS2,5,40–42, ANNCEST doesn’t require any
special MRI transmit or detection coils for heteronuclear or
expensive additional system hardware (amplifiers and cabling)
and is ready for use on most clinical MRI scanners. In addition,
CEST does not require the administration of exogenous contrast
agents. With a well-trained neural network, the PCr maps can be
calculated rapidly (within a few seconds) from the acquired CEST
images, which is much more time-efficient than existing fitting
methods, such as Bloch fitting (within a few hours) and PLOF
method (within a few minutes), and can provide real-time ana-
lysis of a CEST experiment. This is important for the future
clinical applications of PCr mapping, where ANNCEST has the
potential to address the major target of mapping of the time
dependencies of PCr concentration during exercise and recovery.
A preliminary result of estimating spatially resolved map of PCr
recovery rate constant using ANNCEST is shown in Supple-
mentary Fig. 6 and a recovery time constant of 70.7 ± 55.4 s was
obtained, which is consistent with that reported in the previous
study (63.1 ± 25.9 s)43. However, the temporal resolution of PCr
ANNCEST in the current study (i.e., 90 s) was too low to capture
very detailed dynamic changes. Future possibilities for reducing
the scan time of PCr ANNCEST are adopting fewer saturation
offsets or utilizing fast CEST sequences44–46, which needs further
study. Finally, as can be seen from Supplementary Fig. 2d, e, the
exchange rate depends on both pH and temperature. While we fit
out the exchange rate, it is currently not trivial to separate out the
effects of pH and temperature and this will be a topic for
further study.

In conclusion, as a noninvasive and high-spatial-resolution
PCr mapping technique that can be implemented on widely
available clinical MRI scanners, PCr ANNCEST has tremendous
potential to bring non-contrast metabolic imaging to the clinic
whereby identifying, quantifying, and mapping metabolic changes
at rest and exercise may guide the diagnosis of many muscle-
related, neurologic, and other diseases.

Methods
Neural network architecture and training. A feed-forward neural network
composed of one input layer, one output layer, and multiple hidden layers was used
for the current study (Fig. 1). The input of the neural network is Z-spectral
intensity at different saturation offsets, and the output is the corresponding
quantification result. A sigmoid transfer function is used in the hidden layer, and
the scales of input and output are normalized to [−1, 1] using a linear function.
The weights and biases of the neural network are trained by a scaled conjugate
gradient backpropagation algorithm. Some strategies were utilized to avoid over-
fitting. First, the number of hidden layers was optimized to provide just large
enough fitting capacity for the current study. Second, early stopping was applied
during the training process. The training data were randomly divided into three
sets: training (80%), validation (15%), and test (5%) data. The training data were
used to calculate the gradient and update the weights and biases of the neural
network. The error on validation data was monitored during the training process. If
the validation error increased for 40 iterations, the training was stopped. The test
data were used to evaluate the randomness of data division. The test set was
designed to compare the performance of different ANN models, and while the
error on the test set is not used during training, in practice, it is still useful to
monitor. If the error in the test set reaches a minimum at a significantly different

iteration number than the error in the validation set, this might indicate a poor
division of the data set. In this study, since the training Z-spectra were generated by
randomizing the quantifiable parameters within certain ranges and no other ANN
model was adopted, the test set is not critical for the training of neural network.
Therefore, we set the portions of the test set and the training set to 5% and 80%,
respectively. Finally, a modified performance function, γ ´msw þ 1 � γð Þ´mse,
was used to evaluate the neural network, where mse refers to the mean squared
normalized error in training data,msw stands for the mean of the sum of squares of
the network weights and biases, and γ is the regularization parameter (set to 0.01 in
the current study). The application of msw causes the network to have smaller
weights and biases, and forces the network response to be smoother and less likely to
overfit. Besides the early stopping constraint, the neural network training was stopped
once any of the following conditions were met: (1) the calculated gradient was smaller
than 10−7; (2) the mean squared normalized error on validation data was smaller
than 10−4; (3) or the maximum epochs number reached 106. All of the above
processing was accomplished on the MATLAB platform (www.mathworks.com,
version 9.4.0.813654).

Z spectra for neural network training. In this study, training data were generated
using the Bloch–McConnell equations with consideration of various imperfect
situations, such as B0/B1 inhomogeneity and noise. Details of the parameters used
can be found in Supplementary Table 3 for the phantom and Supplementary
Table 4 for the human leg. To mimic the real situation, measurements of water T1
and T2 values were performed for use in this training data. However, it is important
to realize that such measurements are not necessary for the ANNCEST applications
after the neural network is well trained (See Results Section above). For the
numerical simulation and phantom experiments, the frequency offsets of the Z-
spectra ranged from 0.5 to 4 ppm with a total offset number of 50. The offsets of
PCr CEST peaks were set to 1.95 ppm and 2.5 ppm. The exchange rate ratio
between 1.95 ppm and 2.5 ppm was set to 1: 2.19 according to the measurement in
a PCr phantom at 37° using a magnetization recovery technique (see Supple-
mentary Section 2). The T1 and T2 of water protons were set to 2.6 s and 1.8 s,
respectively, according to the measurements on the phantom. The T1 and T2 values
for PCr protons were set to 0.05 s and 0.02 s, respectively. The saturation power
and duration were 0.6 µT and 10 s. The concentration, exchange rate at 1.95 ppm,
and B0 inhomogeneity were randomly chosen from the ranges of 5 to 85 mM, 50 to
200 Hz, −0.4 to 0.4 ppm, respectively. Gaussian white noise with zero mean value
and 0.0015 standard deviations was imposed on the simulated Z spectra. The
number of Z-spectra used for neural network training was 105.

For the PCr mapping of human muscle, the frequency offset range of the
acquired Z spectra was from 1.3 to 3.5 ppm, with a total offset number of 50. The
CEST peak offset was set to 2.5 ppm. The T1 was set to 1.2 s according to the
measurement obtained on human skeletal muscle. T2 was varied from 15 to 35 ms.
The T1 and T2 values for PCr protons were set to 0.05 s and 0.02 s, respectively. The
robustness of ANNCEST against T1 and T2 variations of PCr protons is shown in
Supplementary Fig. 11. The saturation power and duration were, respectively, 0.6
µT and 800ms. The concentration, exchange rate, B0 inhomogeneity, and B1
inhomogeneity were randomly chosen from the ranges of 0 to 100 mM, 80 to 230
Hz, −0.25 to 0.25 ppm, and 0.5 to 0.7 µT, respectively. Gaussian white noise with a
zero mean value and 0.0035 standard deviations was imposed on the simulated Z-
spectra. The MTC-dominated background signal was incorporated as an additional
pool with a concentration of 8 M for the exchanging protons and an exchange rate
of 30 Hz. The T1 and T2 values for the background signal were set to 1 s and 9.1 ×
10−6 s, respectively. The lineshape for the background signal was a Super
Lorentzian function. The goodness of background fitting using the above
parameters is shown in Supplementary Fig. 5e. The number of Z-spectra used for
neural network training was 105.

Numerical simulation. The ground truth concentration, exchange rate, and B0
maps with a matrix size of 256 × 256 are shown in Fig. 1d–f. The Bloch equations
were applied to simulate the Z-spectrum for each pixel. In comparison to ANN-
CEST, Bloch fitting was performed to quantify the concentration, exchange rates,
and B0. The initial values for the ranges of concentration, exchange rate at 1.95
ppm, and B0 were 5 mM (5–85 mM), 50 Hz (50–200 Hz), and 0 ppm (−0.4 to 0.4
ppm), respectively. The other parameters were the same as those used for the Z-
spectra simulation. The Bloch fitting was performed at a Penguin computer cluster
with eight parallel workers (AMD Opteron 6100 8-core CUP and 16 G memory).

Magnetic resonance imaging of in vitro phantoms at 3 T. The phantom
experiments were performed on a 3 T Bruker Biospec system (Bruker, Ettlingen,
Germany). PCr phantoms with different concentrations (i.e., 10 ± 1 mM, 20 ± 1
mM, 40 ± 1 mM, 60 ± 1mM, and 80 ± 1mM) were prepared. Phantoms were
prepared in phosphate-buffered saline (PBS) titrated to pH 7.3 ± 0.1. All samples
were studied in 10 mm glass tubes. A continuous wave saturation module with a
saturation power of 0.6 µT and a saturation time of 10 s was applied. Data were
acquired using a turbo spin echo (TSE) sequence with TR/TE= 13 s/4.5 ms, TSE
factor= 32, slice thickness of 2 mm, acquisition matrix size of 32 × 32. Zero filling
was applied for the Fourier transform and lead to a reconstructed image with a
matrix size of 64 × 64, and a resolution of 0.47 × 0.47 mm2. The CEST experiments
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were carried out with only first-order B0 shimming. The B0 map was obtained via
the WASSR method16, in which 21 offsets from −0.5 to 0.5 ppm were collected
with acquisition parameters and geometry identical to other CEST experiments.
The saturation offsets were swept from 0.5 to 4 ppm with an increment of 0.1 ppm.
A 0.05 ppm increment was used between 1.5 ppm and 3 ppm to facilitate the
detection of CEST peak. The image collected with an offset of 100 ppm was used as
the S0 image. The T1 and T2 maps were also collected on the phantom and were
applied for the generation of training data. T1 maps were acquired using an
inversion recovery sequence with inversion time (TI) from 7ms to 11.5 s and TR=
15 s, while the T2 map was obtained by a Carr–Purcell–Meiboom–Gill (CPMG)
echo train followed by a TSE readout47 with geometry identical to that of the T1

map measurement. In both T1 and T2 measurements, a slice thickness of 4 mm and
a matrix size of 32 × 32 were applied. In the T2 CPMG experiment, the inter-echo
time was fixed at 5 ms and the total echo time was varied by increasing the number
of echoes (40), while block pulses were used for the 90° excitation, and
90x–180y–90x composited pulses were applied for the 180° refocusing. T1 values
were found to be 2.6 ± 0.02 s for all PCr phantoms, while T2 values were found to
be 1.8 ± 0.05 s.

Magnetic resonance imaging on human skeletal muscle at 3 T. The Johns
Hopkins Institutional Review Board approved all human studies, with trial regis-
tration at ClinicalTrials.gov (NCT04234880). The outcomes of clinial trial are high-
resolution PCr and creatine mapping of human skeletal muscle. The inclusion
criteria are (1) Subject must be at least 18 years of age. (2) Subject must be willing
and able to undergo verbal and written informed consent. (3) Healthy subjects will
have no history of cardiovascular or peripheral vascular disease, diabetes, claudi-
cation, or difficulty walking. The exclusion criteria are (1) Unable to understand
the risks, benefits, and alternatives of participation and give meaningful consent.
(2) Contraindications to MRI scan (e.g., implanted metallic objects). (3) Significant
cardiovascular (heart failure, significant coronary artery disease, infiltrative or
hypertrophic cardiomyopathy, constrictive pericarditis), pulmonary or muscu-
loskeletal, or orthopedic disease that significantly limit exercise capacity. (4)
Weight > 350 lbs (inability to fit in the MRI). (5) Cognitive or speech impairments
that would limit completion of questionnaires or fatigue reporting. (6) Subjects
with rest pain, critical limb ischemia will be excluded for the study. (7) Pregnant
women. All subjects gave informed written consent after explanation of the study
and protocol. All procedures involving human participants were in accordance
with the ethical standards of the institutional and national ethical regulations. The
optimization of PCr CEST signal and PCr mapping on resting-state skeletal muscle
were performed on a 3 T Philips MRI system equipped with a 16-channel knee coil
for radio-frequency transmission and reception. Seven healthy subjects (age 27 ± 5
years) were recruited for the PCr optimization and high-quality PCr mapping. The
FOV for human skeletal muscle experiment was 160 × 160mm2. High-resolution
T2 weighted images were collected for anatomical referencing using TSE sequence
with a resolution of 0.63 × 0.63 × 5.0 mm3. A continuous wave saturation module
with a saturation power of 0.6 µT and a saturation time of 800 ms was applied for
PCr mapping on resting-state human skeletal muscle. Images were acquired using a
single-shot TSE sequence with TR= 3.5 s, TE= 3.7 ms, TSE factor= 37, and a
resolution of 2.2 × 2.2 × 5.0 mm3. The Z-spectra between 1.3 ppm and 3.5 ppm
were sampled together with two S0 images collected at an offset of 100 ppm.
Number of offsets acquired for the Z-spectrum was 52 and total scan time was 3
min. B0 maps were obtained using a dual-echo sequence with TR= 10 ms, TE=
4.6 ms, and flip angle of 30°. B1 maps were obtained using the dual refocusing echo
acquisition mode (DREAM) technique with a stimulated echo acquisition mode
(STEAM) flip angle of 60°23. When optimizing the PCr signal in muscle, the
extraction of the PCr signal was achieved by the PLOF method17,18. The Z-
spectrum between 1.6 and 3.5 ppm was utilized for the two-step fitting in the PLOF
method, and two regions of the Z-spectrum, i.e., 1.6–2.1 ppm and 2.9–3.5 ppm,
were selected for the background fitting. A single Lorentzian function was assumed
for the PCr CEST peak at 2.5 ppm. The observed PCr CEST signal ΔZPCr was given
by taking the difference between the fitted background Zss

back

� �
and the observed Z

value at the 2.5 ppm, i.e., Zback � Z2:5

� �
.

The CEST experiments and 31P 2D MRS on exercised human skeletal muscle
were performed on a second 3 T Philips MRI system equipped with a 2-channel
surface coil for 1H imaging and a 31P excite/receive coil placed beneath the calf
muscle for 31P 2D MRS. Four healthy subjects (age 27 ± 5 years) were recruited for
in-magnet plantar flexion exercise. The exercise protocol involved plantar flexion
exercise with repetitively lifting a 16 lb weight at a rate of 1 Hz for 80 s, and then
holding the load for 90 s before stopping all exercise to allow subsequent measures
of postexercise PCr recovery48. CEST images were acquired using a single-shot TSE
sequence with TR= 3 s, TE= 9.3 ms (the shortest TE available), TSE factor= 37,
and a resolution of 2.2 × 2.2 × 20.0 mm3. The Z-spectra between 1.3 ppm and
3.5 ppm were sampled together with one S0 image collected at an offset of 100 ppm.
Number of offsets acquired for the Z-spectrum was 30 and total scan time was
1.5 min. The 31P 2D MRS was performed with TR= 1.5 s, TE= 1.44 ms, and a
total scan time of 1.5 min. 60 measurements on an 8 × 8 k-space were acquired
except for the four corners (circular k-space shutter). The k-space data were then
reconstructed on a 16 × 16 grid leading to a voxel size of 10 × 10 mm2. The slice
thickness of 31P 2D MRS was determined by the excitation profile of the 31P coil,
which is in the order of 80 mm.

Correlation analysis of PCr maps obtained by ANNCEST and 31P 2D MRS. A
correlation analysis was performed to compare PCr maps obtained by ANNCEST
and gold-standard 31P 2D MRS on resting and exercised human skeletal muscle.
To remove the location mismatch in the CEST images caused by motion, image
registration was applied to ANNCEST results using the Medical Imaging Regis-
tration Toolbox (MIRT). Because 31P 2D MRS is less sensitive to motion with
worse spatial resolution, the ANNCEST results were downsampled from 72 × 72 to
16 × 16 to match the matrix size of 31P 2D MRS. The downsampling map was
calculated by averaging the intensity within the corresponding patch on high-
quality PCr mapping. The PCr maps of baseline, during holding, and 0.75 min of
recovery were chosen for comparison. Because the 31P was placed beneath the
skeletal muscle and may lead to poor sensitivity to the upper-half FOV,
only the regions close to the coil were chosen for correlation analysis. The pixel-by-
pixel correlation analysis was accomplished using Matlab built-in function
“corrcoef”.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The source data underlying Figs. 1d–n, 2c–g, 3a–i, 4b–h, 5b–g are provided as a Source
Data file. The other data that support the findings of this study are available from the
corresponding author upon reasonable request.

Code availability
The code used in this study is provided in Supplementary Data 1. We also deposit the
code in https://github.com/LinChenMRI/ANNCEST.git.
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