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Genetic influence is linked to cortical morphology
in category-selective areas of visual cortex
Nooshin Abbasi1,2, John Duncan3,4 & Reza Rajimehr 3,5,6*

Human visual cortex contains discrete areas that respond selectively to specific object

categories such as faces, bodies, and places. A long-standing question is whether these areas

are shaped by genetic or environmental factors. To address this question, here we analyzed

functional MRI data from an unprecedented number (n= 424) of monozygotic (MZ) and

dizygotic (DZ) twins. Category-selective maps were more identical in MZ than DZ twins.

Within each category-selective area, distinct subregions showed significant genetic influence.

Structural MRI analysis revealed that the ‘genetic voxels’ were predominantly located in

regions with higher cortical curvature (gyral crowns in face areas and sulcal fundi in place

areas). Moreover, we found that cortex was thicker and more myelinated in genetic voxels of

face areas, while it was thinner and less myelinated in genetic voxels of place areas. This

double dissociation suggests a differential development of face and place areas in cerebral

cortex.
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V isual object categorization is a fundamental cognitive
process in human and nonhuman primates, which is
thought to be mediated by clusters of neurons (“mod-

ules”) within macroscopic regions in occipito-temporal and
occipito-parietal cortex1. These category-selective areas are often
named based on their stereotyped neuroanatomical locations.
Examples of such areas are fusiform face area (FFA), extrastriate
body area (EBA), and parahippocampal place area (PPA), which
predominantly represent faces, bodies, and places, respectively2.

A prominent yet unresolved question concerns strength of
genetic and environmental influences on the organization of
category-selective areas. Some studies have provided evidence in
favor of an innate categorical organization. Face-versus-place
selectivity can be detected in inferior temporal (IT) cortex in
human infants by 5−6 months of age3 and in macaque monkeys
as young as 1 month of age4. However, monkeys raised without
exposure to faces cannot develop normal “face patches” in IT
cortex—suggesting that face experience is necessary for the for-
mation of face domains5. Further evidence for the role of
experience in the development of category-selective areas comes
from other fMRI studies reporting that FFA and PPA are larger in
human adults than children6,7. However, using auditory stimuli
representing different categories, recent studies have demon-
strated a similarity in the functional organization of category-
selective ventral temporal cortex in congenitally blind subjects
and sighted controls—arguing that the development of category-
selective map in visual cortex does not rely on visual input and
visual experience8,9. It has been proposed that the broad orga-
nization of ventral visual stream is driven by innate connectivity
between regions that process semantic categories10,11. Finally,
individuals with congenital prosopagnosia show lifelong difficulty
in recognizing faces despite normal or almost normal exposure to
faces, suggesting that the face recognition deficit in these indivi-
duals may have a genetic basis12. Genetic determination of face-
processing system has also been suggested by studies reporting
the heritability of face recognition behavior13,14.

Given the conflicting results described above, a more direct
approach for testing the role of genetic factors in category-
selective cortex is needed. One important aspect of genetic
influence is the heritability of individual differences, as addressed
in classical twin studies. An fMRI study on identical (mono-
zygotic, MZ) and fraternal (dizygotic, DZ) twins provides a
unique opportunity for directly testing and disentangling the
relative contributions of genes (nature) and environment (nur-
ture) to the formation of category-selective areas. Using a small
sample of twins (24 twin pairs), a previous study reported that the
neural activity patterns in MZ twins were more similar than in
DZ twins for the face and place stimuli15. Here we used a large
sample of twins and a powerful analysis scheme (structural
equation modeling16) to assess exactly the contribution of genetic
factors to functional organization of category-selective areas,
while carefully parsing out the contribution of genetic factors to
structural similarity. Furthermore, we aimed to investigate the
relationship between structural maps and fine-scale spatial maps
of genetic influence in category-selective cortex.

Results
We used fMRI data of 424 healthy young adults (212 twin pairs)
from the Human Connectome Project (HCP) database (https://
www.humanconnectome.org/study/hcp-young-adult). The twin
subjects included 134 pairs of genetically confirmed MZ twins
and 78 pairs of genetically confirmed, same-sex DZ twins. Each
subject participated in a series of task fMRI scans. One of the
tasks was a working memory task in which blocks of stimuli/
pictures from four different visual categories (faces, bodies, places,

and tools) were presented. Category-selective maps were obtained
by statistically comparing the activation for one category versus
the average activation for the other three categories. For a given
contrast, the maps were based on z-statistics. In this study, we
considered face-, body-, and place-selective maps because these
categories have specific representations in the human brain2.
Maps from all subjects were projected onto a standard grayor-
dinates space17. The grayordinates space contained 91,282 cor-
tical and subcortical gray matter voxels/vertices.

A vertex-by-vertex intraclass correlation (ICC) analysis18 was
used to assess the similarity in category-selective maps between
MZ twins and between DZ twins (Fig. 1a). For each vertex of the
cortical surface and for a given category (e.g. face), the ICC value
indicates resemblance (the degree of absolute agreement) between
the z values in the maps of twins. The ICC maps were visualized
on a 2D flat patch of left and right hemispheres. Overall, the ICC
values were greater in the MZ group than the DZ group, espe-
cially in occipital, posterior parietal, and posterior temporal
cortices.

To quantify the effects, we ran a related analysis in which
Pearson’s correlation was computed between the whole-cortex
activation patterns (z maps) of one twin and the co-twin (Fig. 1b,
leftmost panel). Then, the distribution of correlation coefficient
values was plotted for all MZ and DZ twin pairs (Fig. 1b, right
panels). In face-, body-, and place-selective maps, mean correla-
tion was significantly higher in the MZ group than the DZ group.
Mean correlation was also calculated separately for each cortical
lobe (Fig. 1c). Consistent with the ICC maps, mean correlation
was significantly higher in the MZ group than the DZ group in
the occipital cortex.

Are face-, body-, and place-related activations genetically
determined equally in all parts of visual cortex or are the genetic
effects stronger in domain-specific areas? To address this ques-
tion, we quantified the spatial overlap between the whole-cortex
activation patterns in each twin pair, at different thresholds in the
z maps (Supplementary Fig. 1). The spatial overlap was higher in
MZ twins than DZ twins, especially when only vertices/patches
with higher category specificity were included in the maps. This
result suggests that the genetic effects are stronger in domain-
specific areas.

Next, we examined genetic influence on category-selective
areas. For this, category-selective areas were first identified in the
group-average maps of 787 subjects of the HCP database. Using
objective thresholds for the maps (see Methods), we obtained
distinct clusters of contiguous voxels that were analogous to
known face, body, and place areas based on their anatomical
locations (Fig. 2a and Supplementary Fig. 2). These areas inclu-
ded fusiform face area (FFA), occipital face area (OFA), medial
face area (MFA), posterior and middle superior temporal sulcus
face areas (pSTS and mSTS), amygdala face area (Amy), extra-
striate body area (EBA), fusiform body area (FBA), para-
hippocampal place area (PPA), occipital place area (OPA), and
medial place area (MPA)1. Place-selective activations were also
localized within early visual areas V1, V2, and V3—though these
activations may be related to the larger spatial extent of the place
images compared to the other image types19.

We then compared the correlation of activation patterns
between MZ twin pairs, DZ twin pairs, and unrelated pairs in
face, body, and place areas (Supplementary Fig. 3). The correla-
tion was higher in MZ twins than DZ twins, and in DZ twins than
unrelated pairs, suggesting a strong genetic influence in category-
selective areas. This result was also consistent with the graded
genetic similarity of MZ and DZ twins (MZ twins share all their
genes, while DZ twins share on average half of their genes).

For genetic analysis, we employed path analysis, which is a
common statistical technique used in twin studies16. In this
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analysis, a genetic structural equation model (Supplementary
Fig. 4) was fitted to the twin data in order to linearly decompose
the observed variance of the phenotype of interest (here,
category-selective activations) into genetic (A) and environmental
(E) components.

Based on the AE model, the “genetic voxels” (voxels having a
significant genetic influence) were determined (Supplementary
Fig. 5; see also Methods). Figure 2b shows the maps of genetic
voxels in face, body, and place areas after FDR correction. These
maps, which were cross-validated (Supplementary Fig. 6),
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Fig. 1 Correlation between category-selective activations in MZ and DZ twins. a For each category, ICC maps in MZ and DZ twins are displayed on a 2D
flat patch of left and right hemispheres (left and right maps in each subpanel). b Left panel: A schematic diagram depicting the procedure for computing
Pearson’s r correlation. In each twin pair, the activation patterns (z maps) of one twin and the co-twin were correlated. In the activation vector, data from
two hemispheres were concatenated. Right panels: Distribution of correlation coefficient values for all MZ and DZ twin pairs in face-, body-, and place-
selective maps. c Mean correlation was calculated separately for each cortical lobe (O occipital, P parietal, T temporal, F frontal). Lobar parcellation was
based on PALS-B12 atlas of human cerebral cortex55 (http://brainvis.wustl.edu/wiki/index.php/Caret:Atlases). Error bars represent one standard error of
the mean, here and in the other figures. *p < 0.05, **p < 0.005, ***p < 0.0005; Bonferroni-corrected pooled t test for three comparisons in panel (b) and 12
comparisons in panel (c).
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Fig. 2 Genetic analysis in category-selective areas. a Face, body, and place areas are displayed on a 2D flat patch of left and right hemispheres (left and
right maps in each subpanel; see text for the full name of areas). The face-selective area in the posterior cingulate cortex56 was named MFA (medial face
area) here. The areal borders of V1/V2/V3 were estimated based on a probabilistic map of retinotopic areas in a group of 12 subjects57. Place-related
activations in V1/V2/V3, which avoided the V1/V2 border, were localized in/near regions representing the mid-peripheral visual field. For each category,
there were 913 category-selective voxels. b Voxels with a significant genetic effect (FDR-adjusted p < 0.05 based on 913 comparisons) are marked red in
the face, body, and place maps. For these voxels, the average A value was ~25%. c Region-of-interest analysis demonstrating descriptive statistics for the
genetic effect in category-selective networks (all areas together) and in individual category-selective areas. For this analysis, EBA and FBA in the right
hemisphere, which were conjoined in the map, were separated at their junction. The effect of A varied significantly (p < 0.0005; one-way ANOVA) across
networks, across face areas, and across place areas.
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revealed interesting features. First, a considerable number of
genetic voxels was observed in FFA, OFA, all body areas, and all
place areas, as quantified in Fig. 2c. Second, the genetic influence
was not homogeneous within the category-selective areas, sug-
gesting that the genetic effects could vary at a fine spatial scale—
with nearby subregions having different genetic effects. Third, the
genetic voxels were relatively clustered in FFA, OFA, and place
areas (e.g. in posterior+medial part of FFA and central part of
PPA), while they appeared to be scattered throughout the
body areas.

Consistent with a low percentage of genetic voxels in the whole
network of face areas (all face voxels together), the effect of A (the
percentage of variance explained by A in AE model) was sig-
nificantly lower in the face network than the body and place
networks (Fig. 2c). The effect of A varied significantly across face
areas and across place areas—though the pattern of variation
across these areas was strikingly similar in the two hemispheres
(Fig. 2c and Supplementary Fig. 7). Among face areas, the genetic
effect was strong only in FFA and OFA. Among place areas, MPA
showed the highest genetic effect.

Using structural data from all twin subjects, we explored
whether the pattern of genetic voxels within category-selective
areas has any systematic relationship with the pattern of cortical
folding/curvature, thickness, and myelination in those areas. For
this, we compared the maps of genetic effect with the maps of
structural properties which were obtained for an average (n=
424) cortical surface (Fig. 3a). In face and place areas, genetic
voxels were preferentially concentrated in regions with higher
cortical curvature (gyral crowns in face areas and sulcal fundi in
place areas). Genetic face voxels showed a significantly higher
cortical thickness and myelination, compared to nongenetic face
voxels. Conversely, genetic place voxels showed a significantly
lower cortical thickness and myelination, compared to nongenetic
place voxels. Such structural biases were not detected in body
areas.

The observed genetic effects in category-selective voxels were
primarily due to more similarity of functional activation patterns
in MZ twins than DZ twins. However, zygosity could have dif-
ferent effects on anatomical similarity as well. To address this
concern, we looked at the heritability of cortical curvature,
thickness, and myelination in category-selective areas. These
structural measures were more similar in MZ twins than DZ
twins, as revealed by the ICC maps (Fig. 3b); however, the pat-
terns of anatomical similarity were qualitatively different from the
patterns of functional similarity (see Fig. 1a). Genetic analysis in
category-selective areas provided a quantitative confirmation that
voxels showing the heritability of cortical structure had little or no
overlap with voxels showing the heritability of category-selective
activation (Fig. 3c). Thus, the genetic influence on category
selectivity could not be attributed to the heritability of macro-
scopic structural features per se.

How much of the greater similarity in spatial patterns of
functional response for MZ than DZ twins results simply from
the overall greater similarity in the shape of the brain in MZ than
DZ twin pairs? To address this question, we measured the
similarity of the transformations required to register the two co-
twin brains to the standard brain used in our study. Using three
different metrics, we found that the registration-induced dis-
tortion maps were more similar between two MZ than between
two DZ twins (Supplementary Fig. 8a). However, an additional
analysis showed that this similarity in the brain shape of MZ
twins was a ubiquitous phenomenon that was present in both
“genetic” and “nongenetic” category-selective cortex (Supple-
mentary Fig. 8b). Thus, the similarity of functional activation
patterns in MZ twins was above and beyond the mere similarity
in the brain shapes.

Discussion
The comparison of MZ and DZ twins in our study revealed the
heritability of category-specific representations in visual cortex.
Face-specific activations appeared to be only modestly heritable.
FFA and OFA showed strong genetic influence, as they were
located in regions with high ICC values. However, genetic
influence was weak in other face-selective areas (e.g. pSTS and
MFA). Genetic influences have also been reported for other
aspects/measures of cortical organization including cortical sur-
face area20, cortical thickness21, cortical regionalization22, struc-
tural and functional connectivity architecture23–25, functional
activations26, and brain rhythms27. Using a small sample of twins,
one study reported that the neural activity patterns in MZ twins
were more similar than in DZ twins for the face and place sti-
muli15. Here using a large sample of twins, precise anatomical
localization and genetic modeling, we discovered that the genetic
influence was not homogeneous across the category-selective
areas; only parts of these areas showed significant genetic effect.
Strikingly, genetic subregions within face and place areas con-
tained specific structural properties (i.e., the genetic influence had
a link with the pattern of cortical curvature, cortical thickness,
and cortical myelination in these areas).

Face and place recognition have been ecologically important
cognitive tasks in primates throughout evolution. Converging
evidence from human and macaque fMRI studies suggests that
these two primate species have a homologous cortical architecture
for the processing of faces and places28–31. Thus, it is plausible
that the organization of face- and place-selective areas is at least
partially dictated by genetics. The link between genetics and
cortical folding could then be explained by tension-based theory
of cortical morphogenesis32. According to this theory, cortical
connections between functionally related areas are formed during
the prenatal stage of cortical development (see also ref. 10).
Mechanical tensions along axons of these connections would
force cortically adjacent regions to get closer to each other, which
would subsequently induce the formation of gyral folds. Axonal
tensions may also pull remotely interconnected regions towards
one another, thus contributing to the formation of sulcal folds.
These mechanisms could possibly explain why genetic face and
place voxels are more prevalently found in regions with higher
folding/curvature.

Previous fMRI studies have shown that the representation of
visual field eccentricity (a low-level visual feature) extends into
higher-tier category-selective cortex33. For instance, the face-
selective FFA and the word-selective visual word form area34

contain a foveal representation, whereas the place-selective PPA
contains a peripheral representation. The heritability of category-
specific representations could be, to some extent, related to the
heritability of lower-level eccentricity representations. In the case
of word area, evidence suggests that word-selective activations are
heritable35, and that visual experience is not needed for the for-
mation of this area36,37. Reading is not an evolutionarily old skill.
Thus, it is unlikely that the word selectivity itself has a genetic
basis. However, a more primitive form of representation in this
area (namely, the foveal representation) could have emerged
through innate mechanisms. In the case of face, body, and place
areas, it remains an open question how much of the heritability in
the activation patterns is related to the heritability of eccentricity
representations.

An increased cortical thickness in genetic face voxels suggests
that these voxels may contain a higher number of neurons, per-
haps for a “sparse coding” of faces. As shown previously, tissue
development and microstructural proliferation in face-selective
(but not place-selective) cortex is coupled with increases in face
selectivity and improvements in face recognition38. On the other
hand, myelin content has been shown to be inversely correlated
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with intracortical circuit complexity39. Thus, a decreased cortical
myelination in genetic place voxels suggests that these voxels may
have more dynamic intracortical circuits, perhaps for a “dis-
tributed coding” of places.

Further studies are needed to test whether the density of
neurons and their connections is indeed different in genetic and
nongenetic subregions of category-selective areas. New advances
in diffusion MRI technique (e.g. “neurite imaging”40) makes it
possible to investigate fiber density within gray matter at a high
resolution. Furthermore, recent databases such as the whole-brain
gene expression maps provide a unique platform for screening
genes and relating them to the cortical organization41. Exploring
these databases may shed light on how genes play a causal role in
the formation and development of category-selective areas.

Methods
Subjects. In this study, we used the “HCP1200” dataset (March 2017 data release)
of healthy adults aged 22−35 (https://www.humanconnectome.org/study/hcp-
young-adult/document/1200-subjects-data-release). The dataset included 424 twin
subjects (252 females, 172 males). Of 212 twin pairs, 134 pairs were genetically
confirmed MZ twins and 78 pairs were genetically confirmed, same-sex DZ twins.
Subjects were recruited from Washington University (St. Louis, MO) and the
surrounding area. The HCP data were acquired using protocols approved by the
Washington University institutional review board, and written informed consent
was obtained from all subjects.

Data acquisition. The HCP MRI data acquisition has previously been described in
detail42–44. Images were acquired using a customized 3T Siemens “Connectom”
Skyra scanner having a 100 mT/m SC72 gradient insert and a standard Siemens 32-
channel RF-receive head coil. At least one 3D T1w MPRAGE image and one 3D
T2w SPACE image were acquired at 0.7 mm isotropic resolution. Whole-brain
resting-state fMRI and task fMRI data were acquired using multiband EPI
sequence with parameters of TR= 720 ms, 2 mm isotropic voxels, and multiband
acceleration factor of 8. Spin echo field maps were acquired during both structural
and fMRI scanning sessions to enable accurate cross-modal registration of struc-
tural and functional images in each subject.

Task paradigm. Functional data in this study were based on the HCP working
memory task19. It was a version of the N-back task to assess working memory and
cognitive control. By presenting blocks of trials that consisted of pictures of faces,
places, tools, and body parts, this task could also be used as a “functional localizer”
to obtain category-specific representations45.

Subjects performed two runs of the working memory task. Each run contained
eight task blocks (25 s each) and four fixation blocks (15 s each). The four different
stimulus types (faces, places, tools, and body parts) were presented in separate task
blocks. Each task block contained ten trials. On each trial, the stimulus was
presented for 2 s, followed by a 500 ms inter-trial interval. Within each run, four
blocks used a 2-back working memory task (respond “target” whenever the current
stimulus was the same as the one 2-back) and the other four blocks used a 0-back
working memory task (respond “target” whenever the current stimulus was the
same as the target stimulus presented at the start of the block). A 2.5 s cue indicated
the task type (and target for 0-back) at the start of the block. In each block, there
were two targets and 2–3 nontarget stimuli (repeated items in the wrong n-back
position, either 1-back or 3-back).

Data analysis software. Data were preprocessed and analyzed using the publicly
released HCP pipelines42. The software packages used for analysis included Con-
nectome Workbench commandline tools, FreeSurfer, and FSL46,47. Connectome
Workbench “wb_view” GUI (http://www.humanconnectome.org/software/
connectome-workbench.html) was used for visualization of maps and
creating ROIs.

Analysis of structural data. Structural images (T1w and T2w) were used for
extracting subcortical structures and reconstructing cortical surfaces in each sub-
ject. Volume data were transformed into MNI space using a nonlinear volume-
based registration. For accurate cross-subject registration of cortical surfaces, a
multimodal surface matching (MSM) algorithm48,49 was used. The MSM algorithm
had two versions: “MSMSulc” (nonrigid surface alignment based on folding pat-
terns) and “MSMAll” (optimized alignment of cortical areas using sulcal depth
maps plus features from other modalities including myelin maps, resting-state
network maps, and visuotopic connectivity maps). Data in our work were based on
MSMSulc registration. We obtained similar results when data were based on
MSMAll registration. After surface and volume registration, cortical vertices were
combined with subcortical gray matter voxels to form the standard “CIFTI

grayordinates” space (91,282 vertices/voxels with ~2 mm cortical vertex spacing
and 2 mm isotropic subcortical voxels).

For each point/vertex of the cortical surface at the boundary of gray matter and
white matter, the measurement of cortical curvature was based on mean curvature:
the average of principal curvatures derived from the inverse of the radius of the
osculating circles at that point. Cortical thickness was measured as the distance
between gray matter and white matter. Because gyral crowns tend to be thicker
than sulcal fundi, the cortical thickness values were corrected for folding-related
biases by regressing out the mean curvature from thickness data50. Myelin maps
were computed using the ratio of T1w/T2w image intensities, and they were
corrected for the residual bias field present in the image39,50.

Analysis of fMRI data. Functional images were minimally preprocessed in the
HCP pipeline42. The preprocessing included correction for spatial distortions due
to gradient nonlinearity and b0 field inhomogeneity, fieldmap-based unwarping of
EPI images, motion correction, brain-boundary-based registration of EPI to
structural T1w scan, nonlinear registration into MNI space, and grand-mean
intensity normalization. Data from the cortical gray matter ribbon were projected
onto the surface and then onto the standard grayordinates space. Subcortical data
were also projected to a set of subcortical gray matter structures in the grayordi-
nates space. Data were minimally smoothed by a 2 mm FWHM Gaussian kernel in
the grayordinates space (smoothing was constrained to cortical surface and sub-
cortical gray matter parcels). Data were cleaned up for artifacts and structured
noise using ICA+ FIX.

The preprocessed functional time series were entered into a general linear
model (GLM) to estimate functional activities in each vertex/voxel in each run19.
For the working memory task, eight regressors/predictors were used in the GLM
design—one for each type of stimulus in each of the N-back conditions. Each
regressor covered the period from the onset of the cue to the offset of the final trial
(27.5 s). All regressors were convolved with a canonical hemodynamic response
function and its temporal derivatives. The time series were temporally filtered with
a Gaussian-weighted linear highpass filter with a cutoff of 200 s, to remove low-
frequency drifts/fluctuations presumably unrelated to the task design. The time
series were also prewhitened to remove temporal autocorrelations in the fMRI data.
Linear contrasts were computed to estimate effects of interest: each stimulus type
versus all others, collapsing across memory load. Fixed-effects analyses were
conducted to estimate the average effects across runs within each subject, then
mixed-effects analyses treating subjects as random effects were conducted to obtain
group-average maps.

The category-selective voxels were defined as the top 1% of voxels (913 out of
91,282 voxels) which had the highest z values in a given contrast (e.g. faces versus
all other categories). The 99th percentile corresponded to the cutoff-point z values
of 12.38, 16.89, and 27.35 in group-average face, body, and place maps,
respectively. The category-selective voxels were almost identical using MSMSulc
versus MSMAll registrations (Supplementary Fig. 9). One minor difference
between MSMSulc and MSMAll maps was that, in the right hemisphere, the
“middle STS face area” was better localized in the MSMSulc map while the
“anterior STS face areas” were better localized in the MSMAll map.

Genetic modeling. For genetic modeling of twin data, a univariate structural
equation model was constructed in the statistical package OpenMx51,52. The
components of the model included variance caused by additive genetic factor (A),
dominance genetic factor (D), and environmental factors (see Supplementary
Fig. 2). The environmental effects were divided into those that were shared in
common by members of a twin pair (C) and those that were unique to each twin
(E, including measurement error).

To determine which model (ADE or ACE/AE) was the most appropriate one
for our data, the ICC correlation data in MZ and DZ groups (see Fig. 1a) were used
to estimate the broad sense heritability [h2= 2*(rMZ− rDZ)] and common
environmental influence [c2= (2*rDZ)− rMZ] in each category-selective vertex/
voxel53, then the distributions of h2 and c2 were plotted (see Supplementary Fig. 3).
In face, body, and place areas, the h2 values were generally greater than zero,
consistent with the presence of genetic influences (heritability). In some voxels, the
c2 values were negative (i.e., the DZ correlations were less than half the MZ
correlations), suggesting genetic dominance effect in those voxels. However, many
voxels (~50% of voxels) did not show genetic dominance effect. Thus, there was not
enough support for the ADE model.

To compare ACE and AE models, we calculated a model-fit metric (the Akaike
Information Criterion, AIC) for ACE and AE models in all category-selective
voxels. In almost all voxels, the AIC of AE model was less than the AIC of ACE
model (average ΔAIC= 19.42). Since the ACE model showed significantly worse fit
to the data compared to the AE model (ΔAIC > 1054), we selected the more
parsimonious AE model—with A including all genetic factors, and E including all
environmental factors.

In each category-selective voxel, the relative contribution of each latent factor
(A and E), expressed by the regression path coefficients a and e, was estimated
using the maximum likelihood criterion. The variance related to each factor was
defined as the square of the path coefficients, a2 and e2. Thus, the percentage of
variance explained by A in AE model was defined as a2/(a2+ e2) × 100. For each
voxel, the effect of genetics was considered significant if dropping A from the
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model (i.e., using the submodel E) resulted in a significant decrease in the
goodness-of-fit χ2 statistic.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All data used in this manuscript are part of publicly available and anonymized HCP
database (https://www.humanconnectome.org).

Code availability
All analysis codes are available for sharing upon request.
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