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Discovering the genes mediating the interactions
between chronic respiratory diseases in the human
interactome
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The molecular and clinical features of a complex disease can be influenced by other diseases

affecting the same individual. Understanding disease-disease interactions is therefore crucial

for revealing shared molecular mechanisms among diseases and designing effective treat-

ments. Here we introduce Flow Centrality (FC), a network-based approach to identify the

genes mediating the interaction between two diseases in a protein-protein interaction net-

work. We focus on asthma and COPD, two chronic respiratory diseases that have been long

hypothesized to share common genetic determinants and mechanisms. We show that FC

highlights potential mediator genes between the two diseases, and observe similar outcomes

when applying FC to 66 additional pairs of related diseases. Further, we perform in vitro

perturbation experiments on a widely replicated asthma gene, GSDMB, showing that FC

identifies candidate mediators of the interactions between GSDMB and COPD-associated

genes. Our results indicate that FC predicts promising gene candidates for further study of

disease-disease interactions.
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B iological networks are powerful resources for discovering
and understanding the mechanisms that underlie human
complex diseases1,2. Indeed, it is accepted that biological

components such as genes and proteins do not act in isolation,
but are connected through intricate networks of molecular
interactions that allow perturbations to diffuse across the system
and generate, enhance or alter the disease phenotype. Over the
last decade it has been observed that protein-coding genes asso-
ciated to a disease have a strong tendency to interact with each
other and agglomerate in a specific network neighborhood called
the disease module3–6. However, disease progression is strongly
influenced by the biological context of the organism. Perturba-
tions causing one disease might affect other diseases, especially
when the involved genes lie in the same network neighborhood,
producing complex phenotypes and comorbidities7.

Finding the molecular commonalities between related diseases
is crucial in understanding their heterogeneity as well as identi-
fying common biomarkers and therapeutics. As a step in this
direction, Menche et al.5 measured the network-based separation
between 226 disease pairs, observing that overlapping disease
modules display significant molecular similarity, elevated coex-
pression of their associated genes, similar symptoms and high
comorbidity. However, while the introduced separation measure
offers information on the similarity of two diseases, it does not
help in identifying the genes encoding proteins that influence both
diseases. Furthermore, mediator genes may not be part of either
disease module, but they could mediate the interactions between
the two diseases without participating in the core pathways of the
individual diseases. In this work we propose a methodology to
identify the mediators linking pairs of complex diseases, focusing
on asthma and chronic obstructive pulmonary disease (COPD),
two of the most widespread chronic respiratory diseases that have
been estimated to be the cause of over 3 million deaths world-
wide8. Asthma and COPD are influenced by genetic and envir-
onmental factors and they often manifest through similar
phenotypes, like airflow obstruction, inflammation, and shortness
of breath9,10. A widely-accepted definition of their differences is
still lacking since many cases fall in-between the two classic
descriptions of these conditions, and patients often show asthma-
like and COPD-like features simultaneously. For example, airflow
obstruction reversibility, considered one of the main hallmarks of
asthma, can be present in many COPD patients9,10. On the other
hand, fixed airflow obstruction, a cardinal manifestation of COPD,
can develop in asthmatics as well, particularly those with severe
disease or persistent symptoms since childhood11,12. Moreover,
people affected by asthma since birth are more likely to develop
COPD at later ages13–15. This phenotypic gray area has been the
source of extensive debate on a possible common genetic origin of
the two diseases, a hypothesis first proposed by Orie and Sluiter16,
and termed the “Dutch hypothesis”. Despite the considerable
effort in delineating and summarizing the richness of the clinical
manifestations of asthma and COPD, there is still little under-
standing of the shared molecular mechanisms and the causal
relationships between the two disorders. Next-generation
sequencing and genome-wide association studies (GWAS) allow
to identify potential causal genes that can explain the development
of these chronic respiratory diseases and possibly offer mechan-
istic insights into their shared causality17,18. Although the pre-
sence of shared disease gene associations might be expected in the
context of the asthma-COPD overlap, previous work has provided
little genetic support for the Dutch hypothesis, finding little to no
overlap between the major asthma and COPD genes identified via
GWAS12. Here we show that network-based statistical methods
can provide additional avenues to explore this problem.

We model asthma and COPD in the network of protein–protein
interaction (PPI), also referred to as the interactome. Each node of

the network corresponds to a protein-coding gene and the link
between two genes represents a physical interaction between the
corresponding proteins. In order to find the mediators between
the two diseases we define a topological measure, called flow
centrality (FC), identifying the genes that are involved in most of
the molecular interactions occurring between the two disorders.
We show that flow central genes are more functionally related
with each other and with the disease genes of asthma and COPD
than expected by chance. Furthermore, we generalize these results
by replicating it on 66 additional pairs of related diseases. Using
multiple lines of evidence, including prior literature, gene coex-
pression analysis in multiple transcriptomics datasets from
asthmatic and COPD subjects, and in vitro genetic perturbation
in a bronchial epithelial cell line (a cell type relevant to both
asthma and COPD), we show that genes with high FC values are
biologically meaningful and related to known asthma-specific,
COPD-specific and overlapping processes. Together, these results
establish flow centrality as a valuable tool in the detection of
genes mediating the interaction between different diseases,
offering an opportunity to understand the relation between
complex diseases.

Results
Disease modules construction. We considered the protein–protein
interaction constructed previously19, which integrates high-quality
yeast-two-hybrid data from publicly available datasets and
literature-derived interactions (see Methods). While a gene may
express different isoforms, we only considered one protein product
per gene, and thus we refer to the nodes of the network as genes or
proteins interchangeably throughout the text. We compiled two sets
of seed genes representing known GWAS loci associated to asthma
and COPD from the recent literature (see Methods). The asthma
seed gene set is composed of 36 genes (35 mapped in the network)
and the COPD gene set is composed of 30 genes (Supplementary
Data 1 and 2, respectively), and the two sets have no overlap. To
explore the network neighborhood of each disease we construct a
disease module by applying the DIAMOnD algorithm, a procedure
for ranking the genes in the network according to their connectivity
significance to the seed genes20 (see Methods). To define a cutoff for
the gene ranking calculated through DIAMOnD, we considered two
reference sets of GWAS-significant genes associated, respectively, to
asthma and COPD, downloaded from the UK-Biobank repository21

(UKB). For both the diseases, the final module size was chosen as
the size that maximized the enrichment of UKB genes in each
respective module (see Methods). The two modules have 14 over-
lapping genes (see Supplementary Fig. 1b), summarized in Sup-
plementary Data 3. Most of the overlapping genes in the list, such as
TP53, MDM2, NFKB1, RELA, CTNNB1, TGFBR2, SMAD3,
MAPK1, MAPK3, MAPK8, STAT1, and STAT3 are known to be
involved in the regulation of apoptosis, proliferation, inflammation,
cellular remodeling and differentiation22–26. Although these biolo-
gical processes may play a role in asthma and COPD, they are not
unique to these disorders. This inherent non-specificity can also be
deduced by the high degree that characterizes all these genes, as
shown in Supplementary Data 3. Furthermore, the empirical p-
value quantifying the significance of their overlap is largely non-
significant (� 0:39), confirming the elusive nature of the asthma-
COPD relationship. This lack of significance in the overlap moti-
vated our following analysis.

Flow centrality between modules. Asthma and COPD manifest
through similar phenotypes and symptoms, and many asthma
patients develop COPD at older ages9,10,12. This observation sug-
gests that a perturbation originating from asthma-specific genetic
risk factors may slowly disrupt critical pathways, ultimately leading

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-14600-w

2 NATURE COMMUNICATIONS | (2020)11:811 | https://doi.org/10.1038/s41467-020-14600-w |www.nature.com/naturecommunications

www.nature.com/naturecommunications
www.nature.com/naturecommunications


to the development of COPD in susceptible subjects. This per-
turbation may not be carried exclusively by the direct interactions
of disease-specific genes; it may in fact travel through mediating
genes that are not specifically linked to a single disease, thus
making their recognition with standard approaches challenging.

These mediating genes are likely to be participating in the
majority of the interactions between the two modules, constitut-
ing a “bottleneck” in the communication between the two
diseases. In a network, betweenness centrality measures quantify
the frequency of occurrence of a node in the paths that connect all
the other nodes. A path is defined as an ordered sequence of steps
across the edges of the network that start from a source node and
lead to a destination node. There are multiple possible paths
between any source and destination, and several works in
literature have been dedicated to exploring different criteria for
selecting and weighting these paths. For example, the classic
betweenness centrality measure, proposed by Freeman27, con-
siders only the shortest paths between the source and destination
nodes. In other work a random walk betweenness centrality is
proposed, where paths are weighted by the probability of being
traversed by a walker in a random walk process28. Further, in
another study, the authors designed a factorial weighting scheme
that favors paths of shorter lengths, called communicability
betweenness29. Kivimaki et al.30 defined the framework of
randomized shortest paths (RSP), which interpolates between
the classic concept of shortest-path-based betweenness centrality
and the random walk betweenness centrality through a
temperature parameter. The canonical form of these measures
is an average across all the paths starting from any source node
and leading to any destination node, resulting in an estimate of
the node’s centrality in the global network topology. While
betweenness-central nodes may have a role in the pathways of
asthma and COPD, by definition they are not specific to these two
disorders (since their centrality does not change when consider-
ing different diseases), and thus they are less likely to provide
meaningful information about their shared pathways.

In this work we introduce the concept of flow centrality,
explained in detail in the Methods section (see Fig. 1a). Flow
centrality is a betweenness measure that is parametric on a source
set and destination set of nodes, and its coverage spans exclusively
the shortest paths connecting the two modules, instead of the whole
network, similarly to a recently proposed measure called Double
Specific Betweenness (S2B)31. Therefore, when all the nodes of the
network are selected as both sources and targets of the shortest
paths flow centrality reduces to the classic betweenness centrality
defined in ref. 27. Flow centrality and the betweenness centrality
measures described above are correlated to the node degree,
regardless of the chosen source and target modules. To correct for
this effect we defined a randomization scheme of the source and
target modules to generate a null distribution of expected flow
centrality values. The flow centrality score (FCS) is then calculated
as the z-score of the flow centrality value when compared with the
null distribution (see Fig. 1b and Methods section). A large positive
value of the FCS implies that the node is highly central with respect
to the source and target gene sets, even when accounting for its
global centrality.

By defining the asthma node set as the source module and the
COPD node set as the destination module, we calculated the flow
centrality scores of all the nodes of the network. While all the
betweenness centrality measures are highly correlated to the
degree and with each other (Spearman’s ρ ¼ 0:91 ± 0:07, see
Supplementary Figs. 2 and 3), denoting low specificity with
respect to the asthma and COPD modules, we find that the flow
centrality scores are quite orthogonal to the other measures
(Spearman’s ρ ¼ �0:22 ± 0:04), suggesting that FC is highly
specific of the particular source and target gene sets.

Among the top flow central nodes (see Supplementary
Data 4), several genes, such as SLC39A8, SOX17, and MFAP4
show a direct relationship with asthma and COPD. More
specifically, it has been found in literature that the expression
levels of SLC39A8, SOX17, and MFAP4 might directly affect
both asthma and COPD. For example, MFAP4-deficient mice
showed attenuated eosinophilic inflammation, eotaxin produc-
tion, airway remodeling and airway hyper-responsiveness that
are classical characteristics of asthma, while expression of
SOX17 in respiratory epithelial cells decreased the expression of
transforming growth factor-beta (TGF-β)-responsive cell cycle
inhibitors such as p15, p21, and p57 in the adult mouse
lung32,33. SOX17 also inhibited TGF-β-mediated transcriptional
responses in vitro, demonstrating an inhibitory effect on the
TGF-β pathway32,33. TGF-β, that is highly expressed in small
airway epithelium of COPD patients34, is known to play a role
in the increased submucosal collagen expression occurring
within the disease, and is also known to be a mediator involved
in tissue remodeling in the asthmatic lung35,36. SLC39A8, a zinc
transporter, is a major portal for cadmium (Cd) uptake37.
SLC39A8 mRNA and protein expression levels were found to be
significantly increased in lungs of chronic smokers compared
with nonsmokers37. Cd is found in cigarette smoke, and it could
contribute to smoking-induced lung diseases such as COPD37.
In the presence of Cd, inhibition of the NF-κB pathway and
SLC39A8 expression reduces cell toxicity while TNF-α treat-
ment of primary human lung epithelia and A549 (lung cancer
cell line) cells showed induced expression of SLC39A8, resulting
in higher cell death37,38. IHH and DHH are part of the sonic
hedgehog pathway and are known to directly interact with
HHIP (hedgehog interacting protein) which is strongly
associated with the risk of COPD39,40. HHIP competes with
Ptch1 (which is the membrane receptor for IHH) for the
binding of IHH and DHH. Ptch1 binding to IHH and DHH
triggers the hedgehog signaling pathway, therefore the binding
of HHIP with IHH negatively regulates the hedgehog pathway
which is known to have a crucial role in lung development39,41.

Functional similarity of flow central genes. To validate the
biological relevance of flow central genes, we selected the shortest
paths between asthma and COPD seed genes whose intermediate
nodes (i.e., all the nodes in the path except for the source and
target) are characterized by high FCS (see Methods section for
further details on the selection). By applying this selection cri-
terion we obtained 371 distinct central paths to which we refer to
as flow central paths (see Fig. 1c).

We assessed the degree of functional relatedness between the
genes occurring in the flow central paths by considering their
associated Gene Ontology (GO) terms. The GO similarity
between two genes is defined as the best-match average (BMA)
of Resnik’s similarity measure, one of the most well-known
information-based similarity measures for hierarchically-ordered
elements42. Further, we defined the sequential similarity (SS), a
path-level quantity that measures the average GO similarity
between adjacent genes in a network path (see Fig. 1d top left and
Methods section). The higher the SS, the more functionally
similar are the genes along the path.

We calculated the SS for each flow central path, obtaining a
distribution of 371 similarity values. To estimate their significance
we generated two null distributions of network paths, namely the
random paths of Type A and Type B. To generate the Type A set
we extract 10,000 random paths with a distribution of lengths that
matches the empirical distribution observed in the FC paths
(length-preserved) using the randomization scheme explained in
Methods. The Type B set is constructed by randomly extracting
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10,000 paths from the pool of the shortest paths between asthma
and COPD seed genes (endpoints-preserved). Type A accounts
for the possible biases related to the particular lengths of the FC
paths, while Type B allows a direct comparison to the case where
no FC information is utilized.

Figure 2a shows the comparison of the SS distributions for the
flow central, Type A and Type B paths. The sequential similarities
of FC paths are considerably greater than the similarities of Type
A and Type B paths (one-tailed Mann–Whitney test p-values
1.12e−111 and 2.06e−77, respectively). We evaluated the separate
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contributions of the three main Gene Ontology categories to
the global similarity (see Fig. 2b): cellular component (CC),
molecular function (MF), and biological process (BP). In all cases
the similarities of FC paths are significantly higher than expected.
In Fig. 3a we show the FC paths ordered by number of GO
annotations and the top 50 BP GO terms ordered by their
information content, i.e., their specificity in the entire GO database.
Biological regulation is one of the most enriched categories, which is
expected because of the large number of genes annotated to
regulatory processes. However, its occurrence is still more frequent
than cellular process terms which are more common in the GO
annotation corpus, suggesting the importance of regulatory
mechanisms in the cross-talk between asthma and COPD pathways.
For example, in Figs. 3b–d are shown three FC paths that are
enriched in several biological processes which are relevant for both
the disease onset and exacerbation. Regulation of chemokine
production, regulation of T-cell activation, wound healing, tube
development and inflammatory response are biological processes
that are involved in airway remodeling and immune response for
both asthma and COPD. More specifically, the genes of the paths in
Fig. 3b, c are highly related to the TGF-β signaling pathway. The
TGF-β signaling pathway, which consists of proteins such as
TGFBR1, TGFBR2, SMAD2, and SMAD3, is involved in differentia-
tion, cell growth and many other cellular functions that play a
crucial role in development and wound healing43,44. The RAR
pathway, which interacts with the TGF-β signaling pathway
through the SMAD proteins, is activated by binding retinoic acid
to the retinoic acid receptors (RARs) such as RARB45,46. The RAR
pathway is also involved in cellular functions that play a crucial role
in development and wound healing45. On the other hand, the FC
path shown in Fig. 3d consists of genes that are involved in the
inflammatory response through the JAK-STAT signaling pathway
and the TLR4 signaling pathway47,48. Both the JAK-STAT signaling

pathway and the TLR4 signaling pathway play a crucial role in
immune response and the cross-talk between the two pathways is
thought to regulate the severity of the host inflammatory
response49.

Functional similarity of FC genes of related diseases. To test
whether the previous result holds in general, we considered the
corpus of gene-disease associations (GDA) contained in the
DisGeNet repository50 and the disease–disease similarities
extracted from the Disease Ontology knowledge base. We selected
all the pairs of similar diseases with a minimum of 50 associated
genes and low overlap as to reduce to a case similar to asthma and
COPD (see Methods section and Supplementary Figs. 6 and 7).
These criteria result in 66 distinct pairs of diseases that are related
according to their phenotypes, genetic causes, localization in the
organism, etc (Supplementary Data 5). Some examples are Alz-
heimer’s disease and amyotrophic lateral sclerosis, that are both
neurodegenerative diseases which share similar phenotypical
features such as dementia, language dysfunction, and muscle
weakness51,52, and pathologic processes involving genes playing a
major role in protein homeostasis and endoplasmic reticulum
stress53,54; psoriasis and allergic contact dermatitis are both
inflammatory skin diseases involving the immune response that
share similar phenotypical features due to inflammation55,56 and
pro-inflammatory pathways involving IL-36γ57; polycystic ovary
syndrome and Alzheimer’s disease do not share phenotypical
features, yet studies showed that the two diseases might have a
casual relation based on insulin resistance and through the pro-
tein phosphatase 2A pathway58–60. For each pair, we calculated
the flow centrality of all the nodes in the network, selected their
corresponding FC paths and extracted 10,000 Type A and B
paths, following the same scheme defined above. We proceeded to
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whiskers extend to an additional 1.5 * IQR interval, and the medians are highlighted in red. One, two, and three asterisks, respectively, denote a
Mann–Whitney p-value that is <0.05, 1e−4, and 1e−10, and “n.s.” stands for a non-significant result.
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evaluate the SS values of FC paths and Type A/B paths, com-
puting two p-values pA and pB, corresponding, respectively, to the
comparisons FC$ Type A paths and FC$ Type B paths. Then,
we classified every disease pair with its least significant p-value
(i.e., maxðpA; pBÞ), determining a worst-case estimate of the SS
increase in FC paths. The scores of the resulting p-values, com-
puted as their negative log-transformed values, are shown in
Fig. 2c. We find that for the vast majority of disease pairs (58 out
of 66) we obtain highly significant differences (p-value < 1e−20)
between the SS of FC paths and random. In addition, we tested
the specificity of the previous result. We generated 100 random
degree-preserved sets of nodes of each disease module occurring
in the 66 pairs (6600 pairs of random modules). For each original
disease pair, we compared its SS distribution to each random
pair through Mann–Whitney test, obtaining 100 worst-case
p-values (see Methods). We find that the FC paths of the original
disease pairs are almost always more sequentially similar than
their randomized counterparts (Supplementary Fig. 8), with the

only exception being the disease pair Hydrocephalus$ Leuko-
dystrophy, possibly due to a weaker genetic link between the two
diseases. Overall, this result shows that flow centrality is a highly
specific property of the source and destination modules, and
that it would not yield the same outcomes if applied to
unrelated genes.

Coexpression of flow central genes. To highlight the putative
mechanistic connections between asthma and COPD, we mea-
sured the coexpression of the genes along the flow central paths
connecting the two diseases. Although gene coexpression does not
necessarily imply a functional relation, it indicates whether two
genes are synergistic (or antagonistic) in terms of expression,
suggesting co-participation in the same biological processes. Thus,
a higher degree of coordination between FC genes with asthma
and COPD disease genes indicates their involvement in biological
processes common to both diseases.
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As reference expression data we considered two expression
datasets of asthmatic and COPD patients from Gene Expression
Omnibus. The first dataset is a microarray expression measure-
ment of airway epithelial cells in asthmatics and healthy controls
(GSE430261), and the second one is an RNA-seq profiling of lung
tissue in COPD patients and healthy controls (GSE5714862) (see
Supplementary Data 6 and Methods section for details). To
measure the coexpression of the genes along each path, we
defined the sequential coexpression (SC) as the average absolute
coexpression between adjacent genes in the path (see Methods).
For a given path, a higher sequential coexpression denotes a
larger degree of coexpression between the genes interacting along
the path. For each expression dataset, we calculated the SC of the
FC paths for the healthy and disease states separately (Fig. 1d, e),
obtaining two distributions of SC values for asthma and COPD,
respectively. In the same way, we evaluated the SC values of the
Type A and Type B paths for the same cases described above
(asthma control/disease and COPD control/disease).

We find that in both the asthma and COPD data the FC paths
are enriched for statistically higher SC values compared with both
Type A paths (MW p-values 8.38e−10 and 2.14e−18, respec-
tively) and to Type B paths (p-values 2.25e−8 and 1.41e−33, see
Fig. 4a). In addition, the same result holds in the samples of
healthy patients (worst-case p-value < 1e−9), suggesting that FC
paths correspond to interaction cascades that can be active both
in healthy and disease state.

We repeated the same analysis in 16 additional GEO
expression datasets. In each dataset, several subdivisions of the
disease and healthy samples (classes) were considered when
further information was available (such as cell type, tissue, or

disease severity, see Supplementary Data 6). Similarly as before,
we classified every dataset with its least significant p-value across
all the classes. The SC values and the scores of the resulting p-
values are shown, respectively, in Supplementary Fig. 9 and
Fig. 4b. Despite the large variability of the considered expression
datasets, we find similar outcomes for all the disease classes in a
total of 13 out of 18 GEO datasets, with five cases being largely
significant (worst-case p-value < 1e−10). These results suggest
that the interaction paths identified by flow centrality are robust
to fluctuations and are not specific to a single cell type, tissue or
experimental setting. Interestingly, we observe that the same
result holds also in the respective classes of the healthy or control
states (see Supplementary Fig. 10).

Since asthma and COPD are related, we hypothesized that their
flow central paths are more coexpressed than random paths
connecting asthma to other unrelated diseases. To test this
hypothesis, we considered the DisGeNet GDA corpus, from
which we extracted all the unrelated diseases and phenotypes with
number of annotated genes similar to asthma and COPD
(between 25 and 35 genes), for a total of 59 phenotypes. We
thus measured the SC of random paths connecting the asthma
and COPD seed genes to the genes associated to these phenotypes
(see Methods). The SC values of the random paths connecting the
asthma seeds and each DisGeNet phenotype were measured in
the epithelial brushings of asthmatic samples (GSE4302), whereas
the SC values between these phenotypes and COPD seeds were
measured in the lung tissue of COPD samples (GSE57148).
Figure 5a shows the SC distributions of FC paths and random
paths of each DisGeNet phenotype in the asthma case (top) and
COPD case (bottom). For clarity we show only the distributions
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Fig. 4 Sequential coexpression of flow central paths. a Distributions of sequential coexpression values of the flow central (FC) paths compared with
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non-significant result.
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of the top 10 phenotypes, ordered by their p-value scores (bars at
the top of each plot). In both cases we find that the FC paths are
characterized by significantly larger coexpression values, con-
firming the close relationship between asthma and COPD. In
order to further test the specificity of the asthma-COPD relation
and account for eventual intrinsic biases of the processing steps,
including disease module construction and flow centrality
evaluation, we re-executed the whole processing pipeline between
asthma and two related diseases of the lung, pneumonia and
idiopathic pulmonary fibrosis (IPF) (see Methods). We find that
asthma and COPD are characterized by higher SC values with
respect to asthma$ pneumonia and asthma$ IPF pairs in the
epithelial brushings of asthmatic samples (GSE4302) (Fig. 5b,
top). We then repeated the same analysis for the pairs COPD-
pneumonia and COPD-IPF, obtaining a similar result in lung
tissue of COPD samples (GSE57148) (Fig. 5b, bottom). This
result suggests that the molecular interaction of asthma and
COPD may be deeper than expected when compared with other
lung diseases, as conjectured by the Dutch hypothesis.

Overexpression and knockdown experiments in cell lines. To
further validate the FC approach, we used in vitro gene pertur-
bation to experimentally establish a connection between an
asthma source seed gene and a COPD target seed gene via a
network path of high flow centrality (see Methods). For this, we
focused our attention on the asthma seed gene GSDMB, one of
several genes on 17q21 that harbors the most replicated asthma-
susceptibility locus identified by GWAS63. GSDMB is expressed
in bronchial epithelium (a cell type relevant to the pathogenesis of
both asthma and COPD) and recent murine models suggest that
GSDMB overexpression results in spontaneous airway remodel-
ing64—subepithelial fibrosis—that in humans contributes to fixed
airway obstruction observed in COPD. For this experiment, we
considered all the flow central paths between GSDMB and any of
the COPD seed genes (Fig. 6a), i.e., those paths where all the
intermediate genes have a significant FCS. To maximize the
sensitivity of the analysis we consider as significant those genes
whose FCS is >2 or whenever the right-tailed empirical p-value of
their flow centrality value is <0.05. We find 8 paths satisfying

2

a

0.8

0.6

0.4

0.2

Ast.-pneumonia

Pneumonia-COPD IPF-COPD Asthma-COPD

Asth
m

a-
COPD

Asth
m

a-
COPD

COPD-R
igh

t m
idd

le 
ce

re
...

COPD-E
m

bo
lic

 in
far

cti
o..

.

COPD-M
idd

le 
ce

re
br

al 
A...

COPD-M
idd

le 
ce

re
br

al 
A...

COPD-M
idd

le 
ce

re
br

al 
A...

COPD-T
hr

om
bo

tic
 in

far
c..

.

COPD-L
ef

t m
idd

le 
ce

re
b..

.

COPD-In
far

cti
on

, m
idd

l...

Ast.
-M

ar
fan

 sy
nd

ro
m

e

COPD-M
ar

fan
 sy

nd
ro

m
e

Ast.
-T

ox
ic 

ep
ide

rm
al 

N...

Ast.
-A

cu
te

 co
ro

na
ry

 S
y..

.

COPD-A
cu

te
 co

ro
na

ry
 S

y..
.

Ast.
-S

tev
en

s-
Jo

hn
so

n 
S...

Ast.
-S

tev
en

s-
Jo

hn
so

n 
S...

Ast.
-O

va
ria

n 
cy

sts

Ast.
-B

ila
te

ra
l w

ilm
s T

...

Ast.
-H

yp
er

ins
uli

nis
m

Ast.
-D

ru
g-

ind
uc

ed
 st

ev
...

Ast.
-M

yc
op

las
m

a-
ind

uc
e.

..

Ast.-IPF Asthma-COPD

0.05 Line

0.05 line

SC in asthmatic samples (GSE4302)
SC in asthmatic patients (GSE4302)

SC in COPD samples (GSE57148) SC in COPD patients (GSE57148)

0
0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

–0.1

20

0
0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

–0.1

S
eq

ue
nt

ia
l c

oe
xp

re
ss

io
n

S
eq

ue
nt

ia
l c

oe
xp

re
ss

io
n

0.8

0.6

0.4

0.2

S
eq

ue
nt

ia
l c

oe
xp

re
ss

io
n

–l
og

(p
-v

al
)

S
eq

ue
nt

ia
l c

oe
xp

re
ss

io
n

–l
og

(p
-v

al
)

b

Fig. 5 Sequential coexpression of random paths connecting to unrelated phenotypes. a Sequential coexpression (SC) of the FC paths compared with
random paths between the asthma module and each DisGeNet phenotype (top) and between the COPD module and each DisGeNet phenotype (bottom).
For clarity only the top 10 phenotypes are shown, ordered by increasing significance. b (top) SC distribution of the asthma-COPD pair compared with SC of
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Mann–Whitney p-value that is <0.05, 1e−4, and 1e−10, and “n.s.'' stands for a non-significant result.
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these criteria. Of note, all eight flow central paths pass through
one of two GSDMB neighbors HIVEP1 and PEBP1 (Fig. 6b). In
experiments conducted in triplicate in a human bronchial epi-
thelial cell line, we either augmented or suppressed GSDMB
mRNA expression by plasmid transfection or siRNA knockdown,
respectively, and obtained expression data for GSDMB, all pre-
dicted flow central genes, and target COPD seed genes from
RNA-seq profiles of global gene expression (see Methods for
details). We found strong evidence for connections between the
asthma seed GSDMB and its predicted downstream target COPD
seeds IL27, HHIP, and GSTCD. As summarized in Fig. 6b, both
overexpression and silencing of GSMDB resulted in reciprocal
downstream alterations in the expression of most flow central
genes and target COPD genes. For example, GSDMB silencing
resulted in significant changes in the expression of flow central
HIVEP1 (expression increased), MAPK8 (decreased), IL27RA
(increased), and the COPD seed gene IL27 (increased), while
GSDMB overexpression resulted in changes in expression oppo-
site to those induced by GSDMB silencing (MAPK8 increased,
IL27RA decreased, with non-significant decreased expression of
HIVEP1, see path 1 in Fig. 6b. Baseline expression of IL27 was
below meaningful detection levels, precluding its analysis).
Similar patterns were observed for most genes in paths con-
necting GSDMB to HHIP and GSTCD.

Discussion
The causal relationships of complex diseases are elusive because
often multiple mechanistic processes explain why these diseases
occur and develop in many different forms. However, with the
advent of sequencing technologies and multi-omic assays it is
now possible to obtain a more complete overview of the genetic

profiles that are more susceptible to developing a condition. The
long-standing question of the potential mechanistic relationships
between asthma and COPD can thus be approached from a
molecular viewpoint, and the putative causes analyzed at the level
of genes and proteins. Yet, the information obtained by such
technologies is mostly about the ‘actors’ of the processes, more
than the processes themselves, leaving room for targeted studies
analyzing the relations between the genes involved in disease
development and pathways cross-talk.

The analysis of protein–protein interactions connecting the
two diseases represents a first step in disentangling the intricate
pathways that are responsible for the common pathogenesis of
diseases such as asthma and COPD.

In this work we defined flow centrality, a topological measure
to detect the genes mediating the molecular interactions occur-
ring between asthma and COPD. Flow central genes show high
specificity and can not be trivially associated to disease genes
through first-neighbor interactions. By analyzing the network
paths connecting asthma to COPD, we showed that flow central
genes are functionally similar to the seed genes of the two dis-
eases. This pattern is quite general: for a multitude of related
disease pairs we observed high functional similarity between the
flow central genes and their respective sources and targets, sug-
gesting that flow centrality captures low-level molecular
mechanisms that underlie different pathological conditions. As
further support of this hypothesis, we measured high coexpres-
sion between flow central genes and the disease genes of asthma
and COPD in multiple human transcriptomics datasets. To
obtain experimental evidence of the regulation patterns occurring
between the asthma and COPD genes, we restricted our attention
to GSDMB, one of the most replicated genes associated to asthma,
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and assessed the downstream effects of its perturbation through
in vitro overexpression/knockdown experiments. The flow central
nodes occurring within the network paths connecting GSDMB to
the COPD seed genes show strong differential expression pat-
terns, hinting that these genes could participate in the molecular
mechanisms carrying the perturbation from the asthma-specific
to the COPD-specific domain.

These results suggest that flow centrality can help in identifying
the genes involved in the key pathways associated with the
transitioning or hybrid phenotypes between the two diseases.
Multi-omics measurements (such as transcriptomics, genomics
and epigenomics assays) could be leveraged to define a molecular
profile of the flow central genes in affected patients65. By corre-
lating these molecular profiles with the patients’ clinical condi-
tions and outcomes, it would be in principle possible to locate
these profiles on the asthma-COPD spectrum, creating new
opportunities for targeted therapeutics.

The effectiveness of the flow centrality approach depends on
the reliability of current PPI data. However, it is estimated that
only around 20% of the total protein interactions are known, and
a considerable number of the modeled interactions could be the
result of false positive interactions5. Moreover, since the discovery
of real interactions is nonuniform, and mainly driven by the
interest in researching proteins that are associated to important
functions or diseases, it may result in an inaccurate modeling of
the actual wiring patterns of the network. However, the increase
in reliability allowed by new and improved bias-free experimental
and prediction66 assays of protein interactions (such as yeast-two
hybrid), will be crucial in refining our understanding of the genes
responsible for carrying a disease perturbation.

Methods
Construction of the interactome. The network we utilized in this work has been
compiled by Cheng et al.19, and integrates protein–protein interactions extracted
from 15 databases:

1. Binary PPIs tested by high-throughput yeast-two-hybrid (Y2H) systems
(refs. 67,68, http://interactome.baderlab.org).

2. Kinase-substrate interactions from KinomeNetworkX69, Human Protein
Resource Database (HPRD)70, PhosphoNetworks71,72, PhosphositePlus73,
DbPTM 3.074, and Phospho. ELM75.

3. PPIs identified by affinity purification followed by mass spectrometry (AP-
MS), Y2H and by literature-derived low-throughput experiments, and
protein three-dimensional structures from BioGRID76, PINA77, Instruct78,
HPRD70, MINT79, IntAct80, and InnateDB81.

4. Signaling network by literature-derived low-throughput experiments as
annotated in SignaLink2.082.

By considering only the largest connected component of the network and
removing self-loops, the resulting interactome includes 16,656 proteins and
243,592 interactions. For further details, refer to ref. 19.

Asthma and COPD seed genes. We identified a set of well-established genes by
aggregating several sources of genome-wide associations studies that have been
replicated for COPD and asthma susceptibility and specific genes implicated by
eQTL or functional studies within GWAS regions. The sources considered for
asthma and COPD are detailed, respectively, in Supplementary Data 1 and 2. For
COPD, we also considered genes causing Mendelian syndromes which include
emphysema as part of their phenotypes: alpha-1 antitrypsin deficiency (SERPINA1)
and cutis laxa (ELN and FBLN5).

Disease module construction. The asthma and COPD disease modules are built
through the DIAMOnD algorithm20. DIAMOnD is based on an iterative scheme
that exploits the network’s topology to gradually build a disease module. Given a
disease gene set of Ns genes, at each iteration DIAMOnD calculates the statistical
significance of connectivity of each node of the network to the disease genes. If the
disease module at the current iteration is composed of s genes, then a candidate
node with degree k and ks edges connected to the s genes in the module has a
p-value

p-valðk; ksÞ ¼
Xk

ki¼ks

pðk; kiÞ ð1Þ

where pðk; kiÞ is the hypergeometric distribution

pðk; kiÞ ¼
s
ks

� �
N�s
K�Ks

� �

N
k

� � ð2Þ

and N is the total number of genes in the network. In ref. 20, seed genes can be
weighted in order to be more preponderant in the p-value calculation, but in this
analysis this possibility is not explored. Among the candidate nodes, the node that
is most significantly connected to the set (and thus has a smaller p-value) is added
to the module and the procedure starts again with the increased gene set. This
operation is repeated for a fixed number of iterations N , reaching a final module
size of Ns þ N genes. In order to choose N we extracted from UK-Biobank21 the
genes significantly associated with asthma and COPD, using a threshold p-value of
1e� 3, and not present, respectively, in the asthma and COPD seed genes set.
While UKB genes are in general different from the seed genes of asthma and
COPD, some overlap may occur. Therefore, we considered only the UKB genes
that are not present in the seed genes of asthma and COPD, respectively, 742 and
458 genes. Starting from the asthma seed genes we executed DIAMOnD and, at
each iteration, we measured the hypergeometric p-value between GWAS-
significant genes and the genes in the current module, obtaining the curve shown in
Supplementary Fig. 1(a, left). We then selected as iterations cutoff N the value that
yielded the lowest p-value in the curve. We repeated the same operations for the
COPD module (Supplementary Fig. 1(b, right)). The final sizes of the asthma and
COPD modules are, respectively, 373 genes and 228 genes, with 14
overlapping genes.

Significance of overlap between the modules. In order to test the significance of
the overlap between the asthma and COPD modules we generated 1000 random
pairs of gene sets of asthma and COPD with the procedure described below
(section Gene set randomization in Methods), and calculated the fraction of times
when the measured overlap between random samples is equal or greater than the
observed value (14 genes).

Flow centrality. Given a source disease module T and a destination module S, we
define the flow centrality of a node v is given by

FCS;T ðvÞ ¼ 1
jSjjTj

X
s2S;t2T

σstðvÞ
σst

ð3Þ

where σstðvÞ is the number of shortest paths from s to t passing through node v, σst
is the total number of shortest paths between s and t, and j � j is the size of the
corresponding set. In the particular case when S ¼ T ¼ V , where V is equal to the
set of all the nodes of the networks, then the flow centrality reduces to the
betweenness centrality measure. Note that, while Eq. (3) implies a directionality
between the source disease module S and target module T , in undirected networks
such roles are interchangeable.

The raw values of flow centrality as calculated by Eq. (3) are biased toward
hubs: high-degree nodes are more likely to participate in shortest paths between
node pairs just by chance. To account for this bias we calculate the statistical
significance of the obtained values by comparing them with a null distribution
generated by randomizing 1000 times the source and target modules. The details of
the randomization scheme are described in Methods section. For each random pair
of source and target modules we calculate the flow centrality of each node of the
network and measure the average μFC and standard deviation σFC across all the
samples. The FCS of a node v is then calculated as

FCSS;T ðvÞ ¼ FCS;T ðvÞ � μFC
σFC

: ð4Þ

A large positive FCS indicates that the node is more likely to occur in the shortest
paths connecting the source and target modules, while a small or negative value
suggests that the node is not relevant to the chosen pair of modules.

FCS stability. To evaluate the stability of FCS values to moderate variations of the
boundaries of the disease modules we performed the following test. We defined a
range of possible small variations in the selected cutoff value iteration of DIA-
MOnD modules, i.e., Δ 2 �30;�20;�10;�5;�1; 1; 5; 10; 20; 30f g. For example,
when considering a variation �30 from the list in the case of the asthma module
(373 genes), we build a perturbed asthma module by considering only the first
N � 30 genes prioritized by DIAMOnD, where N is the original cutoff value,
obtaining a module size of Nasthma � 30 ¼ 343 genes. We repeat the same scheme
for COPD. For each value of Δ we calculate the perturbed FCS values by setting the
perturbed modules as source and target. The perturbed FCS are then compared
with the original ones (see Supplementary Fig. 4), and Supplementary Fig. 5 shows
their Spearman’s correlation for each value of Δ. The obtained correlation values
are very high (�0:94), indicating the robustness of the FCS scores to moderate
variations of the modules size.

Gene set randomization. We defined a randomization scheme designed to create
a null distribution of random modules that are topologically similar to a given
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DIAMOnD module. A straightforward way to generate randomized genes sets
would be to select a number N of random genes in a degree-preserved way, where
N is the size of the disease module we want to randomize, and repeat this process a
number of times to obtain the samples. This method, however, has the drawback of
generating disease modules that are quite different from the asthma and COPD sets
we calculated with DIAMOnD. DIAMOnD iteratively searches in the neighbor-
hood of the seed genes, generating modules that are more compact and well
interconnected with respect to a random selection. Therefore, a z-score evaluated
by comparing on such samples would be confounded by the different topological
properties of the random modules. For this reason we defined the following ran-
domization scheme:

1. Given a set of N seed seed genes of a disease module M (obtained with
DIAMOnD), we extract a new set of Nseed random seed genes in a degree-
preserved way.

2. We run DIAMOnD on the set of random seed genes for N iterations, where
N is the size of M, obtaining a new random module of size N .

In this way, the procedure generates random modules that are topologically
more similar to those generated by DIAMOnD.

Selection of network paths. The flow central paths are selected as all the shortest
paths connecting the asthma and COPD seed genes, whose intermediate genes (i.e.,
those genes that are not the source or destination of the path) have a flow centrality
score of 2 or greater. Assuming a normality in the null distribution of the FC
values, a value that is 2 standard deviations away from the average value is well
outside the bulk of the null distribution. Choosing an excessively large threshold
can result in too few nodes being selected and might lead to missing important
nodes in areas of lower edge density, while a too low threshold would increase the
false positives. As an additional constraint we require for all the intermediate nodes
in the paths to participate in at least five shortest paths connecting COPD and
asthma nodes, in order to remove from the pool all the nodes that have unstable
FCS values because of low shortest-path statistics. Note that while the full disease
module information has not been used to select the initial pool of shortest paths,
this information is embedded in the calculation of flow centrality of each gene in
the network, since the FC depends on the source and target disease modules.

The Type A path randomization scheme is structured as follows:

1. Extract one length value L from the empirical distribution of FC path
lengths.

2. Create an empty path P.
3. Select a node n uniformly at random in the network and add it to P.
4. Select one random neighbor of n among those not already in P and add it

to P.
5. Repeat from step 3 until the length of P is L.
6. Add P to the current set of random paths.
7. Repeat from step 1 until a desired number of random paths is obtained.

Note that in the actual implementation of the scheme above some additional
controls are performed in order to account for edge cases such as when no new
neighbors can be added to the path, etc.

The Type B random paths are selected by uniformly sampling paths from the
pool of shortest paths connecting the genes of the two diseases.

Sequential similarity. Given a path PðnÞ of length n as an ordered sequence of
unique genes in the network ðg1; g2; g3; :::; gnÞ. The sequential similarity is then
defined as

sseqðPðnÞÞ ¼ 1
n� 1

Xn�1

i¼1

s gi; giþ1

� � ð5Þ

where s �; �ð Þ is any GO terms similarity measure between genes. In this work we
considered the best-match average (BMA) of Resnik’s similarity measure83,84,
defined as follows. Given two genes u and v associated to the sets of GO terms U
and V, respectively, the BMA Resnik similarity has the form

s u; vð Þ ¼ 1
jUj þ jVj

X
α2U

max
β2V

simðα; βÞ½ � þ
X
β2V

max
α2U

simðα; βÞ½ �
2
4

3
5

where sim ðα; βÞ denotes the Resnik similarity measure between the GO terms α
and β.

Sequential coexpression. Given a path PðnÞ of length n as an ordered sequence of
unique genes in the network ðg1; g2; g3; :::; gnÞ. The sequential coexpression is then
defined as

ρseqðPðnÞÞ ¼ 1
n� 1

Xn�1

i¼1

ρ egi ; egiþ1

� ����
��� ð7Þ

where eg is the random variable indicating the expression values of gene g and
ρð�; �Þ is the Pearson correlation. The sequential coexpression is the absolute cor-
relation of the expression of adjacent genes in a network path, and therefore it

measures the extent of coordination in the gene expression along the path. Notice
that multiple transcripts in the expression data can be associated to the same gene.
In those cases, we calculated the sequential coexpression as the maximum absolute
value of correlation between all the possible pairs of probes/transcripts associated
to the two genes. If at least one gene is not present in the expression dataset
considered, then the sequential coexpression of path PðnÞ is considered null and
excluded from the analysis.

Sequential similarity of related disease pairs. We downloaded from the Dis-
GeNet repository50 all the curated gene-disease associations (GDA) and the disease
mappings to convert the UMLS CUI identifiers to the identifiers of several other
vocabularies. Note that in order to limit the amount of false positives, the DisGeNet
associations obtained by text mining of MEDLINE abstracts (extracted through the
BeFree tool) are excluded from the analysis. The data have been downloaded on
July 19th from the webpage http://www.disgenet.org/downloads. From the GDA
data we selected only the annotations to phenotypes of the type “Disease or Syn-
drome”. We then filtered all the diseases that are associated to <50 genes that can
be mapped on the PPI network. Each resulting disease is associated to a list of
Disease Ontology IDs (DOID), as annotated in the disease mapping data. Disease
Ontology is a standardized ontology of human diseases that semantically integrates
disease and medical vocabularies through cross mapping and integration of MeSH,
ICD, NCI’s thesaurus, SNOMED CT and OMIM85,86. Notice that a disease can be
mapped to multiple DOIDs, since it can belong to multiple categories in the
ontology tree. We proceeded to calculate the pairwise similarities between diseases,
using the R package DOSE87. For each pair, the similarity is calculated as the
maximum Resnik similarity between all their associated DOIDs. The calculated
similarities are shown in Supplementary Fig. 2, where the similarities that could not
be retrieved (i.e., returned as null by the DOSE function) are set as 0. The related
disease pairs are selected as those pairs with:

● Similarity greater than the 90th percentile in the overall distribution of
similarities, not considering the similarities that could not be retrieved and the
similarities equal to 0.

● Similarity <1, to avoid selecting disease IDs that are synonyms of the same
phenotype.

● Number of overlapping associated genes <10, to retrieve related diseases with
little common genetic basis, as in the asthma-COPD case.

After applying this criteria, the resulting disease pairs are 66, listed in
Supplementary Data 5. We manually scrutinized the disease pairs to assess the
existence of an actual relation between them, obtaining for most of them a positive
match. Given a disease pair D1–D2, we evaluated the flow centrality values of all
the nodes in the network, by following the scheme outlined in the main text, with
the only difference being in the generation of the random modules for the FCS
calculation. In this case the disease modules correspond to the set of GDA retrieved
from DisGeNet, without recurring to DIAMOND prioritization, and thus the
random samples are obtained with a simple degree-preserved randomization of the
disease genes. After the FCS values are calculated, we selected the corresponding
FC paths, extracted the random paths of Type A (RdmA) and B (RdmB) as
described in the main text, and evaluated the three distribution of sequential
similarities (SS). For each disease pair we perform two right-sided Mann–Whitney
tests, comparing the SS of the FC paths with the SS of RdmA and the SS of RdmB,
obtaining two p-values pA and pB . A final p-value is calculated as max ðpA; pBÞ.
Significance of the aggregated p-value implies that the SS of the FC paths are
significantly greater than the SS of both RdmA and RdmB, and thus the FC paths
are more likely to represent meaningful biological links between the two diseases.

To assess the specificity of the result, for each disease pair D1–D2 in the pool
defined above we generated two sets of 100 random modules, by randomizing the
disease genes of D1 and D2 in a degree-preserving way. By using the values of flow
centrality evaluated for the original pair, we selected the flow central paths of each
random pair, i.e., the shortest paths connecting the nodes of the two random
modules where all the intermediate genes have flow centrality >2. We refer to these
paths as random FC paths. Then, we performed a Mann–Whitney test between the
distribution of SS values of the original disease pair and the SS values of each
random pair, separately. As a result of this operation we obtained 100 p-values
comparing the SS of the actual disease pair with the SS of each random pair.

Selection of random diseases and phenotypes. In order to test the significance
of the sequential coexpression of the flow central paths, we considered a number of
diseases and phenotypes from the DisGeNet repository50 that are unrelated to
asthma and COPD. The objective of this test is to compare the coexpression of the
FC paths of asthma and COPD with random paths connecting asthma to a random
disease, and repeat the same for COPD. We selected only the diseases and phe-
notypes with gene set sizes similar to the asthma and COPD seed gene sets, i.e.,
between 25 and 35 genes after mapping to the PPI network. In addition, we restrict
the selection to the phenotypes annotated as “Disease or Syndrome”. With this
criterion we obtained a total of 59 diseases and phenotypes. For each of these gene
sets, we sampled 10,000 shortest paths by iteratively choosing one random seed
gene of asthma as source and one random gene in the set as target, and repeated
the same for COPD.
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GEO expression data. We considered 18 microarray and RNA-seq expression
datasets from GEO, as detailed in Supplementary Data 6. For each dataset, standard
data processing steps were applied, such as conversion of probe IDs and gene
symbols to entrez IDs and log-transformation, when necessary. For each expression
dataset different subgroups of samples were selected, depending on the information
available. Samples were first divided in disease or healthy condition, when present,
and analyzed separately. Different tissues or cell types in the same dataset where
further divided in separate classes and analyzed separately, when the information
were available. For example, in GSE104468 data the asthmatic and control samples
are further divided in bronchial epithelia, nasal epithelia and PBMC. Classes of
samples that were not relevant for the analysis of the asthma-COPD overlap were
excluded. For example, since allergy is an asthma-specific feature, atopic samples
were excluded from the analysis when non-atopic counterparts were available (e.g.,
GSE473). In addition, in some cases we also considered overlapping groupings. For
example, in GSE37147, we selected both the class of COPD smokers and its subclass
of COPD smokers with no history of asthma. More details on the selected classes and
the corresponding numbers of samples are provided in Supplementary Data 6.

SC of asthma and COPD with pneumonia and IPF. We selected the seed genes of
pneumonia and idiopathic pulmonary fibrosis (IPF) from the DisGeNet repository,
obtaining, respectively, 52 and 18 genes mapped on the PPI. In order to build a
module with the same size as the COPD module, we run DIAMOnD with N ¼
NCOPD � 52 ¼ 176 iterations for pneumonia and N ¼ NCOPD � 18 ¼ 210 itera-
tions for IPF, where NCOPD ¼ 228 is the size of the COPD module. We then
evaluated the flow centrality of the PPI nodes with the asthma module as source
and the pneumonia module as target gene set, and repeat the same for asthma and
IPF. The FCS of each gene is calculated by randomizing the asthma, pneumonia
and IPF modules with the procedure described above. In brief, seed genes are
randomized in a degree-preserved way, and DIAMOnD is subsequently executed
on the random gene sets to create the random modules. The sequential coex-
pression of the two pairs is then evaluated and compared with the SC of the
asthma-COPD pair on expression data of asthmatic patients (GSE4302). The same
process is repeated for COPD-pneumonia and COPD-IPF on expression data of
COPD patients (GSE57148).

Overexpression and knockdown experiments. Cell culture: Human bronchial
epithelial cell line Beas-2B or 16HBE cells were purchased from ATCC and cul-
tured in Dulbecco’s modified Eagle medium (DMEM) or Eagle’s minimal essential
medium (EMEM), respectively, supplemented with 10% fetal bovine serum,
penicillin (50 units/ml), and streptomycin (50 g/ml).

Overexpression of recombinant GSDMB in Beas-2B cells: Human GSDMB in
pCMV6 (epitope-tagged with Myc and FLAG, both at the carboxy-terminus)
purchased from Origene (catalog number RC202279). Beas-2B cells were plated in
6-well plates at 4 ´ 105 cells/well overnight in complete medium. The next day,
0.5 μg of GSDMB plasmids or control plasmids and 1 μl of Lipofectamine 3000®
(Thermo Fisher) were added into cells with fresh DMEM medium according to the
manufacturer’s instructions in triplicate wells. RNA extraction was done at 48 h
after transfection for RNA sequence.

siRNA knockdown in 16HBE cells: 16HBE cells were plated in 6-well plates at
6 ´ 105 cells/well overnight in complete medium. The next day, 30 pmol of
GSDMB siRNA or control siRNA and 5 μl of Lipofectamine RNAiMAX (Thermo
Fisher) were added into cells with fresh EMEM medium according to the
manufacturer’s instructions in triplicate wells. Two different hairpins (Thermo
Fisher, s31709, s31711) were used in the experiments. RNA extraction was done at
48 h after transfection for RNA sequence.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The authors declare that the main data supporting the findings of this study are available
within the article and its Supplementary Information files. Extra data are available from
the corresponding author upon request.

Code availability
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