
ARTICLE

Cellular deconvolution of GTEx tissues powers
discovery of disease and cell-type associated
regulatory variants
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The Genotype-Tissue Expression (GTEx) resource has provided insights into the regulatory

impact of genetic variation on gene expression across human tissues; however, thus far has

not considered how variation acts at the resolution of the different cell types. Here, using

gene expression signatures obtained from mouse cell types, we deconvolute bulk RNA-seq

samples from 28 GTEx tissues to quantify cellular composition, which reveals striking het-

erogeneity across these samples. Conducting eQTL analyses for GTEx liver and skin samples

using cell composition estimates as interaction terms, we identify thousands of genetic

associations that are cell-type-associated. The skin cell-type associated eQTLs colocalize

with skin diseases, indicating that variants which influence gene expression in distinct skin

cell types play important roles in traits and disease. Our study provides a framework to

estimate the cellular composition of GTEx tissues enabling the functional characterization of

human genetic variation that impacts gene expression in cell-type-specific manners.
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Understanding the regulatory impact of genetic variation
on complex traits and disease has been a longstanding
goal of the field of human genetics. To decipher the

mechanistic underpinnings of complex traits, the genotype-tissue
expression (GTEx) project1 has generated a large dataset,
including over 10,000 bulk RNA-seq samples representing 53
different tissues (corresponding to 30 organs) obtained from 635
genotyped individuals, to link the influence of genetic variants on
gene expression levels through quantitative trait loci analysis
(eQTL). While GTEx provides important biological insights,
unaccounted for cellular heterogeneity (i.e., different cell types
within a tissue and the relative proportions of each cell type
across samples of the same tissue) present in bulk RNA-seq can
affect genotype–gene expression associations2. Since regulation of
gene expression varies across cell types, not accounting for cel-
lular composition could result in loss or distortion of signal from
relatively rare cell types, thus characterization of cellular hetero-
geneity across all GTEx tissues is critical for more comprehensive
eQTL studies. It is possible that future studies pursuing cell-type-
associated eQTLs may utilize single cell approaches (e.g. single
cell RNA-seq; scRNA-seq); however, non-trivial technical chal-
lenges, such as hard to dissociate tissues and low capture effi-
ciencies, make the generation of a GTEx-scale single-cell
expression dataset a substantial undertaking, which would take
years to complete. Thus, as single-cell large-scale scRNA-seq
collections progress, our present knowledge of how genetic var-
iation influences cell-type-associated gene expression would
greatly benefit from conducting eQTL analyses on bulk GTEx
tissue samples whose cellular heterogeneity has been character-
ized through existing deconvolution methods3–5.

To characterize the heterogeneity of bulk RNA-seq samples,
gene signatures from cell types known to be present in a given
tissue can be used to deconvolute the cellular composition (i.e. the
proportion of each cell type). The signature genes needed to
deconvolute a heterogeneous tissue can be obtained by analyzing
scRNA-seq generated from an analogous tissue. However, there
are relatively few human scRNA-seq resources currently avail-
able6–10, and thus only a small fraction of GTEx tissues could be
deconvoluted using gene expression signatures derived from
existing human single-cell data. While human single-cell data is
limited, the Tabula Muris exists11, which is a powerful resource of
scRNA-seq data from mouse including more than 100,000 cells
from 20 tissue types (referred in the Tabula Muris resource as
organs and tissues). A recent study showed that similar cell types
in humans and mice share sufficient gene expression signatures to
integrate scRNA-seq data between the two species12, raising the
possibility of utilizing the available scRNA-seq from mouse to
generate the gene expression signatures for deconvolution of
GTEx tissues.

To examine the feasibility of using mouse-derived gene
expression signatures to deconvolute human tissues, we com-
pare cellular composition estimates of GTEx liver and GTEx
skin samples generated using human scRNA-seq to those
generated using the Tabula Muris scRNA-seq resource. We
show that the human and mouse single-cell data capture many
overlapping cell populations and that using either human-
derived or mouse-derived gene signatures to deconvolute the
175 GTEx liver samples and the 860 GTEx skin samples
resulted in highly correlated estimated cellular compositions.
We show that the main differences between the cell types
identified using the human-derived versus mouse-derived sig-
nature genes are due to: (1) subtle biological differences that
exist in human and mouse immune cells, and (2) resolution
(i.e., the ability to detect less abundant cell types and distin-
guish between similar cell types) which was impacted by
technical differences in the human and mouse scRNA-seq data

sets, including the number of cells captured and subjected to
scRNA-seq and the spatial location from which the tissue was
sampled. We use gene signatures derived from the Tabula
Muris resource to deconvolute 6829 GTEx samples corre-
sponding to 28 tissues from 14 organs, which enables us to
determine how the fractions of different cell types vary across
GTEx samples derived from the same tissue. Using deconvo-
luted liver and skin GTEx samples for eQTL analyses, we
identify thousands of previously undetected genetic associa-
tions (i.e. not detected using bulk RNA-seq samples) that tend
to have lower effect sizes, some of which are cell-type-
associated. Finally, we show that skin cell-type-associated
eQTLs colocalize with GWAS variants for melanoma, malig-
nant neoplasm, and infection signatures, indicating that var-
iants that are functional in limited skin cell types may play
major roles in skin traits and disease. Taken together, our study
demonstrates two major principles: (1) mouse-derived sig-
nature genes can be used to deconvolute the cellular compo-
sition of human tissues; and (2) the estimation of cellular
heterogeneity by deconvolution enhances the genetic insights
yielded from the GTEx resource.

Results
Mouse and human scRNA-seq capture similar cell types. To
examine the extent to which scRNA-seq generated from analo-
gous human and mouse tissues (Supplementary Table 1) captured
similar cell types, we first examined liver as a proof-of-concept
tissue (Fig. 1a, proof-of-concept). We used previously defined cell
types from Tabula Muris mouse liver cells (which were purified
for viable hepatocyte and non-parenchymal cells followed by
FACS sorting; 710 cells; 5 cell types)11, and to be consistent, we
used the Tabula Muris annotation approach to analyze existing
human liver scRNA-seq data (total liver homogenate; 8119 cells;
15 cell types)6. In brief, on the 8119 human liver single-cells, we
performed nearest-neighbor graph-based clustering on compo-
nents computed from principal component analysis (PCA) of
variably expressed genes, and then used marker genes to define
the cell populations corresponding to each of the 15 previously
observed cell types6 (see the “Methods” section).

Human and mouse scRNA-seq from liver captured several
shared cell types, including hepatocytes, endothelial cells, and
various immune cells (Kuppfer cells, B cells, and natural killer
(NK) cells) (Fig. 1b–e), however we noted that there were many
more distinct cell types for human liver. This was due to the
fact that cell type resolution (i.e. the ability to distinguish
between similar cell types) can be influenced by: (1) the number
of cells captured and subjected to scRNA-seq, which may
influence the proportion of observed common or rare cell
types13; and (2) how the tissue was sampled, which may enrich
for selected populations or capture how populations are
distinguished by spatial location (i.e. zonation). Some of the
15 cell types identified in the human liver scRNA-seq were
highly similar and clustered near each other, for example there
were four hepatocytes populations and two endothelial cell
populations (human periportal sinusoidal endothelial cells
(SEC) and central venous SECs) distinguished by their zonation
(Fig. 1b, c). In contrast, for the mouse liver scRNA-seq, which
had considerably fewer cells analyzed, we only observed
one hepatocyte population and one endothelial population
(Fig. 1d, e). If we collapsed the cell types that were similar to
each other in the human scRNA-seq, we obtained seven distinct
cell classes (Fig. 1b, f; Supplementary Table 2), which largely
corresponded to the five cell types from mouse liver scRNA-seq
(cholangiocytes and hepatic stellate cells were absent due to
having been sorted by FACS; Fig. 1d–f). Overall, these results
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show that scRNA-seq generated from human and mouse liver
captured similar cell types and that technical differences,
including the number of cells analyzed and tissue sampling
methodology, affects the cell type resolution.

Mouse liver signature genes can deconvolute GTEx human
liver. To establish the ability to use expression profiles of sig-
nature genes derived from mouse scRNA-seq for the deconvo-
lution of human GTEx tissues, we first examined if the similarly
annotated cell types identified in the two species (Fig. 1b–e)
clustered together based on their gene expression profiles. We
harmonized the human and mouse liver scRNA-seq using
canonical correlation analysis (CCA) and visualized using uni-
form manifold approximation and projection (UMAP) (Fig. 2a,
b). We observed that the corresponding cell types across the two
species clustered closely together, indicating that they had highly
similar gene expression profiles.

We next compared the cellular composition estimates of 175
GTEx bulk liver RNA-seq samples1 obtained by deconvolution

using human signature genes to those obtained using mouse
signature genes (Fig. 1a, proof-of-concept), which respectively,
consisted of the top 200 most significantly overexpressed genes
for each cell type identified in scRNA-seq from high-resolution
human liver (i.e. signature genes from 15 cell types) and low-
resolution mouse liver (i.e. signature genes from 5 cell types)
(Supplementary Data 1). From the 175 GTEx bulk liver RNA-seq
samples, we independently extracted the expression of the
signature genes at the two resolutions, and used CIBERSORT3

to estimate the cellular compositions (i.e. high-resolution human
liver estimates and low-resolution mouse liver estimates) (Fig. 2c,
d; Supplementary Data 9, 10). To investigate how resolution
impacted the correlation between human and mouse signature
gene estimates, we also collapsed the high-resolution human liver
cellular composition estimates for each of the 175 deconvoluted
samples by summing the estimates across similar cell types in
each of the 7 distinct cell classes (Supplementary Table 2)
(Figs. 1b, f and 2e). We then calculated all pairwise-correlations
between each of the estimated cell populations in the 175 GTEx
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Fig. 1 Human and mouse liver scRNA-seq contains similar cell types. a Overview of the study design, which was to deconvolute the cellular composition
of 28 GTEx tissues from 14 organs using mouse scRNA-seq to identify cell-type-associated eQTLs. We first conducted proof-of-concept analyses, where we
compared cellular estimates of two proof-of-concept GTEx tissues (liver and skin) deconvoluted using both mouse and human signature genes obtained
from scRNA-seq. We then performed cellular deconvolution of the 28 GTEx tissues from 14 organs using CIBERSORT and characterized both the
heterogeneity in cellular composition between tissues and the heterogeneity in relative distributions of cell populations between RNA-seq samples from a
given tissue. Finally, we used the cell type composition estimates as interaction terms for eQTL analyses to determine if we could detect cell-type-
associated genetic associations. b UMAP plot of clustered scRNA-seq data from human liver. Each point represents a single cell and color coding of cell
type populations are shown adjacent c. Similar cell types can be collapsed to single cell type classifications and are noted with colored, transparent shading
f. c Bar plots showing the fraction of each cell type from human liver scRNA-seq data. Color-coding of cell types correspond to the colors of the single cells
in b. d UMAP plot of clustered scRNA-seq data from mouse liver. Each point represents a single cell and color coding of cell type populations are shown
adjacent e. Each cell type has a corresponding collapsed cell type in human liver and is noted with colored, transparent shading f. e Bar plots showing the
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of collapsed similar cell types from human liver (transparent shading in UMAP b, d; Supplementary Table 2). All cell types from mouse liver have a
corresponding collapsed cell type in human liver (hepatocyte, endothelial, macrophages, B cell, NK/NKT cell) and human liver also contains two additional
cell types not present in mouse (cholangiocytes and hepatic stellate cells).
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liver samples from human (high and collapsed resolution
estimates) with the estimated cell populations from mouse
(low-resolution estimates) (Fig. 2f, Supplementary Fig. 1). We
found that hepatocyte estimates from mouse liver were positively
and highly correlated with the human high-resolution hepatocyte
0 population estimate (r= 0.71, p-value= 5.4 × 10−28), but not
correlated with any of the other three high-resolution hepatocyte

populations (1, 3, and 4); and was slightly less correlated with the
collapsed hepatocyte population estimate (r= 0.64, p-value=
1.015 × 10−21) (Fig. 2f, g). This indicates that the low-resolution
mouse hepatocyte population corresponds to one of the four
human hepatocyte populations/zones potentially due to tissue
sampling. Further, we observed that the endothelial estimates
from mouse were highly correlated with the collapsed human
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endothelial population estimates (r= 0.98, p-value= 1.2 × 10
−115) but not correlated with either high-resolution human
periportal SECs or central venous SECs (Fig. 2h). This indicates
that the human endothelial population estimates captured a
higher resolution of cell type specificity (i.e. two independent
endothelial zones), whereas the mouse endothelial population
estimates likely captured a mixture of both cell types (i.e. the two
endothelial zones are combined into a single cell population),
which is potentially due to the lower number of mouse cells
analyzed. While in general we observed high correlation in the
human and mouse population estimates for most cell types
(hepatocytes, endothelial cells, and Kupffer cells), B cells were
non-significantly correlated, and NK-like cells were negatively
correlated (Fig. 2f, Supplementary Data 2A). This difference in
immune cell estimates in GTEx liver is not wholly unexpected, as
biological differences, including immune response differences,
exist between species14. To further examine the accuracy of the
deconvolution, we conducted simulations to obtain 100 human
liver samples with known cell type distributions, and confirmed
that the estimated cell population distributions obtained using
both human and mouse gene expression signatures were
consistent with their expected values (Supplementary Fig. 2,
Supplementary Data 3). Our results show that, while technical
differences in scRNA-seq generation and biological differences
between humans and mice may impact cell estimation perfor-
mance, overall mouse signature genes can be used to deconvolute
human GTEx bulk RNA-seq samples.

Mouse skin signature genes can deconvolute GTEx human
skin. To examine the similarity of cellular estimates across 860
GTEx human skin samples obtained using human-derived versus
mouse-derived signature genes, we used scRNA-seq from human
epidermal cells15 (digested dorsal forearm skin biopsies; 5670
cells; 9 cell types) (Fig. 3a, b) and Tabula Muris mouse skin cells
(FACS sorted epidermal keratinocytes; 2263 cells; 6 cell types)
(Fig. 3c, d). While the previous human and mouse liver scRNA-
seq studies6,11 used similar naming conventions for the cell type
annotations (Fig. 1b–e), the human and mouse skin scRNA-seq
studies11,15 did not (Fig. 3a–d), and thus we first needed to
identify the corresponding cell types across the two species. To
accomplish this, we harmonized the human dermis and mouse
skin scRNA-seq using CCA (Fig. 3e, f) and visualized using
UMAP. We observed three distinct superpopulations: (1) super-
population 1, epidermal cells, consisting of the four human ker-
atinocyte populations (14, 5, 711, and 1) and mouse epidermal
cells, basal cells, stem cells of epidermis, and outer bulge cells
(keratinocyte stem cells), (2) superpopulation 2, consisting of the
three human fibroblast populations (0, 3, and 4) and mouse inner
bulge cells (keratinocyte stem cells); and (3) superpopulation 3,
leukocytes, consisting of human lymphocytes and mouse leuko-
cytes (Fig. 3e, f). Further, the different cell types within each of

the three clusters expressed corresponding marker genes (Sup-
plementary Fig. 3c, f), confirming that they indeed were similar
cell types in the human and mouse skin scRNA-seq. Overall, we
found human and mouse skin scRNA-seq captured shared cell
types that cluster into three distinct superpopulations.

We next compared the cellular composition estimates of 860
GTEx bulk skin RNA-seq samples1 obtained by deconvolution
using human gene expression signatures to those obtained by
using mouse gene expression signatures (Fig. 1a, proof-of-
concept). We obtained signature genes for each cell type identified
in scRNA-seq from human skin (i.e. signature genes from each of
9 dermis cell types) and mouse skin (i.e. signature genes from
each of 6 skin cell types) (Supplementary Data 1) and used
CIBERSORT to deconvolute the 860 GTEx skin RNA-seqs
(Fig. 3g, h). Given the presence of the three superpopulation
clusters observed in the mouse and human scRNA-seq integra-
tion analysis (Fig. 3f), similar to liver, we investigated how
resolution impacted the correlation between human and mouse
signature gene estimates. We independently collapsed the high-
resolution human epidermis (9 cell types) and the high-resolution
mouse skin (6 cell types), by summing the estimates across the
cell types in each of the three distinct superpopulations
(Supplementary Table 3). We then calculated all pairwise-
correlations between each of the estimated cell populations in
the 860 GTEx skin samples from human estimates (high and
collapsed) with the estimated cell populations from mouse (high
and collapsed resolution) (Fig. 3i, Supplementary Fig. 4). Using
the integration analysis (Fig. 3f) as a guide, we examined the
similarity of estimates from human and mouse cell populations
mapping to each of the three superpopulations. First, we
examined the similarity of human cell types in Superpopulation
1 (Keratinocyte 14, Keratinocyte 5, Keratinocyte 711, Keratino-
cyte 1, cornified envelope, and collapsed estimates of these cell
types) and mouse cell types in Superpopulation 1 (epidermal cell,
basal cell, stem cell of epidermis, outer bulge, and collapsed
estimates of these cell types) (Fig. 3f; dark purple shading). We
observed the human keratinocyte population 14 had a strong
positive correlation with the mouse stem cell of the epidermis
estimates (R= 0.89; p= 2.4 × 10−103) (Fig. 3i, j). We also found
that collapsed mouse epidermal cell estimates were correlated
with collapsed human keratinocyte population estimates (R=
0.44, p= 1.19 × 10−43) (Fig. 3i, k). These results indicate that
despite differences in annotations, estimates from mouse and
human cell types mapping to the epidermal cell superpopulation
are highly correlated. Second, we examined the similarity of
human cell types in superpopulation 2 (fibroblast 0, fibroblast 3,
fibroblast 4, and collapsed estimates of these cell types) and the
single mouse cell type (inner bulge) in this cluster (Fig. 3f; light
purple shading). We found that human fibroblast (high resolution
and collapsed) estimates were not correlated with the mouse
inner bulge cell population estimates (Fig. 3i), indicating that,
despite similar enough global gene expression patterns for the

Fig. 2 Comparison of GTEx liver cell estimates using mouse versus human signature gene. a UMAP plot of integrated scRNA-seq data from human and
mouse liver. Each point represents a single cell and color coding of cells indicates the species the cells were obtained from (human= green; mouse=
purple). b UMAP plot of integrated scRNA-seq data from human and mouse liver. Each point represents a single cell and color coding of cell type
populations are shown in the adjacent legend. The collapsed populations are the same as those shown in Fig. 1f. c–e Bar plots showing the fraction of cell
types estimated in the 175 GTEx liver RNA-seq samples deconvoluted using gene expression profiles from high-resolution human liver scRNA-seq c, low-
resolution mouse liver scRNA-seq d, and GTEx estimates generated by collapsing high-resolution human cell types within each of the seven distinct cell
classes e. f Heatmap showing the correlation of GTEx liver cell population estimates from human liver scRNA-seq at high and collapsed resolutions (rows)
and mouse liver (columns) at low resolution. Color coding of heatmap scales from red, indicating negative correlation in estimates, to blue, indicating
positive correlation in estimates. Most correlations were significant (p-values are reported in Supplementary Data 2A). g, h Scatter plots of estimated cell
compositions across 175 GTEx livers deconvoluted using human scRNA-seq for human hepatocyte 0 population d and human collapsed endothelial cells
e versus estimated cell populations deconvoluted using mouse scRNA-seq.
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human fibroblasts and mouse inner bulge cells to cluster together,
their signature genes distinguish them as different cell types
during deconvolution. Third, we examined the similarity of the
human cell type (lymphocyte) and mouse cell type (leukocyte) in
superpopulation 3 (Fig. 3f; pink shading). Similar to the liver
estimates, mouse and human leukocyte estimates were not
correlated (Fig. 3i, Supplementary Data 2B), likely due to known
species differences in immune cells. As we observed in liver, we
confirmed that technical and biological differences influence cell

estimate performance, however overall cell composition estimates
derived from human and mouse skin signature genes are
correlated, supporting our ability to use mouse scRNA-seq as
an alternative to human scRNA-seq for the deconvolution of
GTEx tissues.

Deconvolution of GTEx tissues reveals striking heterogeneity.
To understand the extent to which the mouse signature genes
obtained from cell types across 14 tissues were able to distinguish
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between the 28 GTEx tissues, we extracted the expression of the
signature genes (Supplementary Table 1, Supplementary Data 1)
across the 6829 bulk GTEx RNA-seq samples and visualized how
the samples clustered (Fig. 4a). We observed that the mouse
signature genes were able to differentiate between the human
GTEx organs, as well as illustrated the existence of organ sub-
structures delineating heterogeneity in tissues belonging to the
same organ. For example, tissues from the same organ clustered
closely together and distinctly from other organs, including the
heart tissues (atrium and ventricle), brain tissues (cortex, frontal
cortex, hippocampus, anterior cingulate cortex, amygdala, sub-
stantia nigra, spinal cord, putamen, nucleus accumbens, caudate,
and hypothalamus), adipose (visceral and subcutaneous), and
colon (sigmoid and transverse). Of note, within the brain we also
observe clustering according to zonation, including clustering of
samples from the cerebellum and cerebellar hemisphere, as well
as clustering of samples from the frontal cortex, cortex, and
anterior cingulate cortex. These results suggest that signature
genes capture both expression differences between organs, as well
as differences between cell types within tissues belonging to the
same organ.

To understand the cellular heterogeneity of 28 GTEx tissues
(Fig. 1a, cellular deconvolution), we used the signature genes from
14 mouse tissue types (Supplementary Table 1, Supplementary
Data 1) to perform cellular deconvolution of 28 GTEx tissues
from 14 organs (Fig. 4b; Supplementary Tables 1, 4, 5;
Supplementary Data 4–17), where the number of samples for
each GTEx tissue varied from 11 (bladder) to 860 (skin). We
found that all samples were well-deconvoluted (p-value < 0.001;
CIBERSORT, 1000 permutations) and that each deconvoluted
GTEx tissue contained a variable number of cell types ranging
from two (bladder) to seven (brain and heart) (Fig. 4c). In ~30%
of the tissues (9 out of 28), we found that not all mouse cell types
were estimated, possibly due to the GTEx tissues having been
isolated for bulk RNA-seq from a different spatial location than
mouse or species differences in cell types. Additionally, the
relative distribution of the estimated cell types varied between
different samples of the same tissue (Fig. 4d). Tissues with the
least heterogeneous cell population distributions between samples
were aorta and spleen (Supplementary Data 4,16), whereas those
with the most heterogeneous cell population distributions
between samples were brain (13 tissues), colon, and left ventricle
(Supplementary Data 6,7,17). Examining the tissues correspond-
ing to the same organ, we noted that some had the same cell types
estimated at similar distributions (adipose subcutaneous and
visceral), some had the same cell types present at variable
proportions (heart atrial appendage and left ventricle; 13 brain
tissues), and others had variable cell types present/absent (colon
transverse and sigmoid). These results reveal a striking

heterogeneity in GTEx tissues that has not been previously
appreciated and may be contributing noise to eQTL analyses.

eQTL analyses using deconvoluted tissues increases power.
Since we observed heterogeneity in the relative distributions of
cell populations across GTEx RNA-seq samples, we hypothesized
that considering the cell population distributions of each sample
would improve eQTL analysis by increasing our power to detect
tissue and/or cell type associations (Fig. 1a). We identified 19,621
expressed genes in GTEx liver samples and performed one eQTL
analysis not considering cellular heterogeneity (i.e. bulk resolu-
tion; Supplementary Data 18), and three eQTL analysis using cell
population estimates as covariates to adjust for cellular hetero-
geneity (Supplementary Data 19–21): (1) considering high-
resolution human liver estimates (15 cell types; Supplementary
Data 9, 19; Fig. 2a); (2) considering collapsed resolution human
liver estimates (7 cell types; Supplementary Table 2; Supple-
mentary Data 9, 20; Fig. 2c); and (3) considering low-resolution
mouse liver estimates (5 cell types; Supplementary Data 10, 21;
Fig. 2b). Using cell population estimates as covariates we detected
many more genes with significant eQTLs (eGenes) than at bulk
resolution (Fig. 5a). We found that considering high-resolution
estimates identified the most eGenes (10,117) with 1.3 fold and
3.1 fold more than collapsed and low-resolution estimates,
respectively. These findings show that conducting eQTL analyses
using highly resolved cell population estimates as a covariate
significantly increases the power to identify eGenes.

Given the differences in the number of detected eGenes based
on cell-type resolution, we hypothesized that eGenes detected at
low powered resolutions (bulk and collapsed resolution) com-
monly shared eQTLs with other GTEx tissues (i.e. tissue-neutral)
and the eGenes detected using higher powered resolutions had
more tissue-associated eQTLs (i.e. less frequently in other GTEx
tissues). For each resolution, we calculated the number of GTEx
tissues in which each eGene has eQTLs. We observed that eGenes
identified using cell populations as covariates in general were
more tissue-associated than eGenes detected at bulk resolution.
Compared to bulk resolution, high resolution eGenes were the
most tissue-associated (p= 4.2 × 10−194; Mann–Whitney U test),
then low-resolution eGenes (p= 2.17 × 10−174; Mann–Whitney
U test), and collapsed resolution was the least tissue-specific (p=
6.59 × 10−94; Mann–Whitney U test) (Fig. 5b), showing that the
resolution of cell population estimates used as covariates is
correlated with the power of the study to identify tissue-
associated eGenes.

Furthermore, using cell populations as covariates resulted in
decreased effect size (β) (Fig. 5c) and standard error (SE) of β
(Fig. 5d), where relative to bulk resolution, the higher the

Fig. 3 Comparison of GTEx skin cell estimates using mouse versus human signature genes. a UMAP plot of clustered scRNA-seq data from human
epidermis. Each point represents a single cell and color coding of cell type populations are shown adjacent b. b Bar plots showing the fraction of each cell
type from the scRNA-seq data from human epidermis. Color-coding of cell types correspond to the colors of the single cells in a. c UMAP plot of clustered
scRNA-seq data from mouse skin. Each point represents a single cell and color coding of cell type populations are shown adjacent in d. d Bar plots showing
the fraction of each cell type from the scRNA-seq data from mouse skin. Color-coding of cell types correspond to the colors of the single cells in c. e UMAP
plot of integrated scRNA-seq data from human epidermis and mouse skin. Each point represents a single cell and color coding of cells indicates the species
the cells were obtained from (human= green; mouse= purple). f UMAP plot of integrated scRNA-seq data from human epidermis and mouse skin. Each
point represents a single cell and color coding of cell type populations and collapsed superpopulations are shown in the adjacent legend. g, h Bar plots
showing the fraction of cell types estimated in GTEx skin RNA-seq samples from human epidermis scRNA-seq g and mouse skin scRNA-seq h. i Heatmap
showing the correlation of GTEx skin cell population estimates from mouse skin scRNA-seq at high and collapsed resolutions (rows) and human skin
(columns). Color coding of heatmap scales from red, indicating negative and low correlation in estimates, to blue, indicating positive and high correlation in
estimates. Most correlations were significant (p-values are reported in Supplementary Data 2B). j, k Scatter plots of estimated cell compositions across
860 GTEx skin samples deconvoluted using human scRNA-seq for human keratinocyte 14 population versus mouse stem cell of epidermis population j and
keratinocyte 1, 5, 14, 711 population versus collapsed mouse epidermal cell populations k.
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resolution of the eQTLs, the smaller the β and SE of β. However,
in general the β values for the top hit for each gene were highly
correlated between eQTLs detected using cell populations and
eQTLs detected without using cell populations (r > 0.975,
Supplementary Fig. 7A–C). By performing a permutation test,
we confirmed that the detection of a larger number of eQTLs

using cell populations was biologically relevant, rather than
simply resulting from the fact that a larger number of covariates
were used (Supplementary Fig. 8). These results indicate that
using cell population distributions as covariates overall reduces
the noise, thereby potentially increasing our power to
identify eQTLs.

Fig. 4 Cellular deconvolution of 28 GTEx tissues. a UMAP using the expression of all scRNA-seq-derived signature genes across the 28 GTEx tissues.
b Stacked bar plots showing the fraction of cell types estimated in GTEx RNA-seq samples from mouse scRNA-seq. A colorblind-friendly version of this
figure is shown in Supplementary Fig. 5. c Bar plots comparing the number of cell types discovered in mouse scRNA-seq (light gray) vs. the number of
these cell types that were estimable for each GTEx tissue. d Box plots showing per RNA-seq sample the distribution of the log2 average square distance
from the mean estimated cellular compositions for each GTEx tissue. The thick, black line indicates the median and the dashed lines indicate the bounds of
the upper and lower whiskers.
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Fig. 5 Using cellular deconvolution to discover cell-type-associated eQTLs. a Bar plot showing the number of eGenes detected in each eQTL analysis
from liver (shades of red) and skin (shades of blue). b–d Distributions of b number of GTEx tissues where each eGene has significant eQTLs, c effect size β,
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cell population considering cell estimates for: liver high resolution e, liver collapsed resolution f, liver low resolution g, skin high resolution h, and skin
collapsed resolution i. Total number of eGenes for each cell type indicates the cell type is significantly associated and the hashed number of eGenes for
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Resolution impacts cell-type-associated eQTL detection. To
examine if some of the eQTLs identified using cell population
estimates as covariates were cell-type-associated, we used a sta-
tistical interaction test16–18 to assess if modeling the contribution
of a cell type significantly improved the observed association
between genotype and gene expression. Interaction tests were
performed on all independent pairs of eGenes and corresponding
lead eQTLs using liver cell type estimates from the high, col-
lapsed, and low resolution as interaction terms. Overall, across
the high, low, and collapsed resolutions we, respectively detected
74, 121, and 528 cell-type-associated eGenes (i.e., eGene is more
significant considering cell type estimates but associated with one
or more cell type(s); FDR-corrected p-values < 0.1, χ2 test,
Fig. 5e–g) and 54, 68, and 220 cell-type-specific eGenes (i.e.
eGene is associated with only one cell type; Fig. 5e–g). We
investigated if relative cell abundance influenced our ability to
detect cell-type-associated eGenes (i.e., is there more power for
high abundance cells) and determined that it did not play a factor
(Supplementary Fig. 9). Further, we noted by using low resolution
and collapsed resolution cell populations, we respectively detected
1.6 and 7.1 times more cell-type-associated eQTLs than high-
resolution cell populations (respectively, p= 1.9 × 10−7 and 7.3 ×
10−250, Fisher’s exact test, Fig. 5e–g). While initially counter-
intuitive to the previous evidence showing higher resolution
eGenes are more tissue-specific (Fig. 5b) and have decreased noise
(Fig. 5c, d), it is possible we identify a greater number of cell-type-
associated eGenes using low resolution cell population estimates
due to prevention of the dilution of eQTL signals between shared
cell types, as might occur in cases where a regulatory variant has
similar effects across similar cell types. Overall, these results
suggest that accounting for cellular heterogeneity between sam-
ples allows for the discovery of cell-type-associated (and cell-type-
specific) eQTLs.

Detection of cell-type-associated eQTLs in GTEx skin. To fur-
ther investigate the impact of using cell populations on power to
identify previously undetected eGenes and cell-type-associated
eQTLs, we conducted eQTL analyses using the GTEx tissue (skin),
which includes the largest number of RNA-seq samples (Fig. 4b).
Although we deconvoluted 860 skin RNA-seqs using signature
genes from high-resolution mouse skin scRNA-seq (6 cell types;
Fig. 3b), only 749 had corresponding genotypes from 510 distinct
individuals. We identified 24,029 expressed genes in the 749 skin
RNA-seq samples with corresponding genotypes and performed
three eQTL analyses: (1) without considering cell population
distributions (bulk resolution) (Supplementary Data 22); (2)
considering high-resolution mouse skin cell estimates (6 cell types;
Supplementary Data 14, 23; Fig. 3c); and (3) considering collapsed
resolution mouse skin cell estimates (3 cell types; Supplementary
Data 2,14, 24; Fig. 3c, f). Using cell (high and collapsed) popu-
lation distributions as covariates, respectively, we detected a 30%
and 24% increase in eGenes with significant eQTLs (12,011 and
11,497 compared with 9232, Fig. 5a). Similar to our observation in
liver, we found that eGenes specific for the eQTL analysis per-
formed using high and collapsed cell populations as covariates,
respectively, had eQTLs in fewer tissues than eGenes detected at
bulk resolution (p= 8.46 × 10−157; p= 4.12 × 10−128,
Mann–Whitney U test; Fig. 5b), had a decreased effect size β (p=
1.81 × 10−32; p= 8.53 × 10−23, Mann–Whitney U test, Fig. 5c),
and had decreased standard error (SE) of β (p= 1.93 × 10−18; p=
2.04 × 10−13, Mann–Whitney U test, Mann–Whitney U test;
Fig. 5d). We also observed that the β values for the top hit for each
eGene were highly correlated between eQTLs detected using high
and collapsed cell populations and eQTLs detected without using
cell populations (r= 0.994; r= 0.996, Supplementary Fig. 7d).

Further, at high resolution we detected 384 cell-type-associated
eGenes (FDR-corrected p-values < 0.1, χ2 test, Fig. 5h) and 375
cell-type-specific eGenes (FDR-corrected p-values < 0.1, χ2 test,
Fig. 5h), which were predominantly associated with leukocytes,
while at collapsed resolution we detected 511 cell-type-associated
eGenes (FDR-corrected p-values < 0.1, χ2 test, Fig. 5i) and 220
cell-type-specific eGenes (FDR-corrected p-values < 0.1, χ2 test,
Fig. 5i), associated with both the collapsed epidermal cell popu-
lation and leukocytes (Superpopulations 1 and 3; Fig. 3f). We
hypothesize that substantially fewer cell-type-specific associations
were observed in the high-resolution epidermal cell types (epi-
dermal cell, basal cell, stem cell of epidermis, outer bulge; Fig. 5h)
compared with the collapsed epidermal cells (Fig. 5i), because of a
dilution of signal between similar cell types. The relatively large
number of cell-type-associated eGenes in skin compared with the
liver could be reflective of sample size differences between the two
tissues (749 and 153, respectively) impacting power to detect
eGenes. These results show that even in eQTL studies using large
sample sizes, accounting for cellular heterogeneity results in the
detection of thousands more eGenes, which tend to show cell-
type-associated differential regulation.

Skin cell-type-associated eQTLs colocalize with skin disease. To
explore the functional impact of the cell-type-associated eQTLs
identified in skin, we examined their overlap with GWAS signals
for skin traits and disease. From the UK Biobank, we extracted
GWAS summary statistics for 23 skin traits where the cell types
identified from skin scRNA-seq (Fig. 6a) likely played a role in
the traits (Supplementary Data 25) and grouped them into seven
categories based on trait similarity: (1) malignant neoplasms, (2)
melanomas, (3) infections, (4) ulcers, (5) congenital defects, (6)
cancer (broad definition, non-malignant neoplasm), and (7)
unspecified skin conditions. As the three collapsed skin super-
populations identified the most cell-type-associated eGenes, we
performed colocalization of the eQTLs identified using the col-
lapsed resolution cell estimates (Supplementary Table 3) and skin
GWAS loci to identify shared causal variants using coloc19 and
examining instances with PP4 > 0.5 (PP4, posterior probability of
the colocalization model having one shared causal variant). We
identified 394 variants that showed evidence of colocalization
(Supplementary Data 25). These results show that we could
identify hundreds of skin eQTLs that likely share a causal variant
with skin GWAS traits.

We next asked if skin GWAS traits were enriched for eQTLs
that are associated with distinct cell types. We tested the
enrichment of cell-type-associated eQTLs at multiple PP4
thresholds and found malignant neoplasms and melanomas were
enriched for eQTLs associated with keratinocyte stem cells from
the inner bulge (p= 1.13 × 10−3, p= 2.82 × 10−4 Fisher’s Test;
Fig. 6b, c), and infections were enriched for eQTLs associated
with leukocytes (p= 9.69 × 10−3 Fisher’s Test; Fig. 6d). We did
not observe a significant enrichment of cell-type-associated
eQTLs in ulcers (Fig. 6e), congenital malformations (Fig. 6f),
cancer (broad definition), or unspecified skin conditions. It is
unclear if this is to be expected, as it is possible other cell types
not estimated may be contributing to the diseases or in the case of
congenital malformations, it is possible that expression differ-
ences impacting congenital malformations may be functioning
during development and not detectable in adult skin. Overall,
these results suggest that GWAS lead variants are commonly cell-
type-associated regulatory variants, indicating that onset or
progression of human disease and traits may be controlled at
the cell type level.

We next sought to specifically examine the eGenes that most
strongly colocalized with malignant neoplasms or melanoma
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(PP4 ≥ 0.8), as bulge stem cells have been implicated in playing a
role in cancer20–25. We found six eGenes not previously
associated with skin cancers with eQTLs significantly associated
with inner bulge stem cells, including: (1) BRIX1, which has been
found to play a role in cancer progression26; (2) RP11-875011.1,
an antisense gene, which has not previously been implicated in
cancer, however antisense genes are thought to contribute to the
regulation of human cancers27; (3) MUL1, which has been
associated with the progression of human head and neck
cancer28; (4) PMS2P3, has been implicated in affecting survival
in pancreatic cancer29; (5) FTH1, which has been shown to be
involved in regulating tumorigenesis30,31 and whose increased
expression in keratinocytes may be in response to stress32,33; and
(6) CNTN2, which is involved in cell adhesion and has been
implicated in tumor development34,35. The identification of these
disease-associated eGenes supports our ability to identify skin
cell-type-associated eQTLs whose functions are congruent with
playing a role in the etiology of cancer. Together these results
show that conducting eQTL studies accounting for cellular
heterogeneity can identify the likely causal cell-type-associated
variants and genes underlying GWAS disease loci.

Discussion
Human scRNA-seq data representative of all tissues in GTEx that
could be used to deconvolute the more than 10,000 GTEx bulk
RNA-seq samples does not yet exist. As the Tabula Muris
resource of mouse scRNA-seq from 20 organs was recently
released11, we sought to determine if mouse signature genes
obtained from scRNA-seq could be used as an alternative for
human signature genes for cellular deconvolution of GTEx RNA-
seq samples. Using scRNA-seq from both mouse and human for
two proof-of-concept tissues (liver and skin), we derived sig-
nature genes and used these expression profiles to deconvolute
GTEx liver and skin RNA-seq samples. In general, human and
mouse estimates between the two proof-of-concept tissues were
comparable, where discrepancies in cell composition estimates
between the two species primarily resulted from technical and

subtle immunological differences. Specifically, in both liver and
skin, technical differences impact the resolution at which cellular
composition can be estimated, including: (1) the number of cells
captured and subjected to scRNA-seq; and (2) tissue sampling
methodology. Further, differences in cell composition estimates
for immune cells were observed most likely due to immunological
differences between the two species. These differences highlight
that high-resolution scRNA-seq (more cells/cell types sampled
from diverse zones) is key to identifying and estimating the
composition of highly specialized and rare cell types. For these
reasons, the cell composition estimates we obtained from
CIBERSORT using mouse-derived signature genes from proof-of-
concept liver and skin scRNA-seq may still be missing cell types
not captured in the Tabula Muris resource. An additional chal-
lenge we found that influenced our ability to compare cell com-
position estimates was the scRNA-seq cell annotations in human
and mouse skin did not use consistent naming conventions, thus
it was not immediately clear how to compare cell estimates across
the studies. We were able to overcome this challenge by inte-
grating the mouse and human scRNA-seq, which allowed us to
infer three similar superpopulations of cell types across the two
species based on gene expression.

To examine cellular heterogeneity across the GTEx resource,
we used the signature genes obtained using scRNA-seq from 14
mouse tissue types to deconvolute 6829 GTEx RNA-seq samples
mapping to 28 tissues from 14 organs. We found that GTEx
tissues exhibit substantial cellular heterogeneity, with the number
of cell types ranging from two in bladder to seven in brain and
heart. Additionally, some of the tissues, including brain, colon,
and left ventricle, showed highly variable proportions of esti-
mated cell types between samples, contributing to intra-tissue
cellular heterogeneity. Together, these results reveal a source of
heterogeneity in GTEx tissues that has not been previously con-
sidered and may contribute to reduced power to detect eQTLs.

While genetic association studies performed by GTEx have
identified a wealth of insights into how human genetics func-
tion across bulk tissues1, these analyses have not considered
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how cellular heterogeneity can confound these studies through
biasing or even masking cell-type-specific signals. We found
that considering cellular heterogeneity significantly improved
eQTL analyses by increasing power to detect lower effect size
genetic associations, as well as by identifying cell-type-specific
associations that were masked in analyses using bulk RNA-seq
data from the same samples. Further, we found resolution of
cellular heterogeneity influenced eQTL results, where con-
sidering high-resolution estimates identified substantially more
eQTLs than using lower resolutions (low resolution or col-
lapsed resolution); however, high-resolution cell estimates
identified fewer cell-type-associated genetic associations than
lower resolutions. It is possible this decrease in associations
may be due to a dilution of signal between similar cell types.
Our observations suggest these two resolutions should both be
used to power eQTL analyses in complementary ways: (1) high-
resolution estimates to power association analyses to discover
lower effect size eQTLs; and (2) collapsed resolution estimates
to identify cell-type associated eQTLs. We further show that
cell-type-associated eQTLs colocalize with lead variants from
relevant GWAS traits, highlighting a potential path forward for
understanding the impact of genetic variation on mechanisms
underlying complex traits.

Overall, we demonstrate that while efforts to generate a
resource of scRNA-seq data from human tissues36 are in progress,
QTL studies using human bulk RNA-seq data could utilize readily
available mouse-derived signature genes to estimate cellular het-
erogeneity and optimize power to identify cell type-specific
genetic associations. As the Tabula Muris resource does not
represent all of the human GTEx tissues (28 of 53) it is possible
that scRNA-seq resources from other mammalian species could
be used to deconvolute the non-represented GTEx tissues. Our
study further emphasizes that the straightforward approach of
taking tissue heterogeneity into account when conducting genetic
association studies has the potential to greatly expand our
understanding of the functional impact of genetic variation on
molecular and complex human traits.

Methods
Single cell expression profiles from 14 mouse organs. Single cell transcriptome
profiles from 14 mouse organs were used in this study11. Briefly, transcriptome
profiles were generated from three female and four male mice (C57BL/6JN; 10–15-
month-old) from: aorta, atrium, bladder, brain nonmicroglia, colon, fat, kidney,
liver, mammary gland, muscle, pancreas, skin, spleen, ventricle (Supplementary
Table 1). Upon extraction of these organs from the mice, single cell transcriptomes
were generated by first sorting by fluorescence-activated cell sorting (FACS) for
specific populations (FACS method; SMART-Seq2 RNAseq libraries). We down-
loaded the normalized gene expression and annotated single-cell clusters from each
organ as Seruat12 R objects (https://figshare.com/articles/
Robject_files_for_tissues_processed_by_Seurat/5821263/1).

Processing scRNA-seq from human liver. 10X Genomics formatted BAM files
from five human total liver homogenate samples6 were downloaded (GEO acces-
sion: GSE11546) and converted to fastq files using 10X bamtofastq (https://
support.10xgenomics.com/docs/bamtofastq). Converted fastq files were then pro-
cessed using cellranger count utility to generate gene expression count matrices,
then the five processed liver samples were merged using cellranger aggr utility.

Annotation of cell populations in human liver scRNA-seq data. Analysis of
scRNA-seq from human liver6 were conducted following the same approach used
to annotate mouse organs11. Cells with fewer than 500 detected genes or cells with
fewer than 1000 UMI were filtered from the data, resulting in 8119 cells analyzed
from human liver. Gene expression was then log normalized and variable genes
were identified using a threshold of 0.5 for the standardized log dispersion. PCA
was performed on the variable genes and significant PCs. Clustering was performed
using a shared-nearest-neighbor graph of the significant PCs and single cells were
visualized using UMAP. Cell populations were then annotated based on the
expression of known liver marker genes11.

Collapsing liver cell population estimates. To collapse similar cell populations in
GTEx liver samples, we examined the UMAP from high-resolution human liver
scRNA-seq (Fig. 1b) and compared to the UMAP from low-resolution mouse liver
scRNA-seq (Fig. 1c) to identify broader/lower resolution classifications of cell types
present in the liver (Supplementary Table 2). We identified populations in the
human liver scRNA-seq that were similar (e.g. Hepatocyte populations 0, 1, 3, and
4; Fig. 1b) with a corresponding population in the mouse liver scRNA-seq (e.g.
Hepatocyte; Fig. 1c). For populations identified in human not present in mouse, we
did not perform any collapsing.

Annotation of the cell populations in skin scRNA-seq data. Human: Skin
scRNA-seq12 gene expression data and cell annotations for 8388 cells (Supple-
mentary Fig. 3a) were downloaded from http://dom.pitt.edu/rheum/centers-
institutes/scleroderma/systemicsclerosiscenter/database/. Cells with fewer than 200
detected genes were filtered from the data. Gene expression was then log nor-
malized and variable genes were identified using a threshold of 0.5 for the stan-
dardized log dispersion. PCA was performed on the variable genes and significant
PCs. Clustering was performed using a shared-nearest-neighbor graph of the sig-
nificant PCs and single cells were visualized using UMAP. The single cells were
then annotated using provided cell annotations and validated using marker gene
expression. As the human skin scRNA-seq contained cell types belonging to var-
ious layers of the skin, whereas the mouse scRNA-seq was enriched for epidermal
cells, we extracted only the 5670 human cells belonging to the epidermal layer of
the skin. We then reanalyzed the subsetted data following the above methods by
performing PCA, reclustering, and visualization using UMAP.

Mouse: Tabula Muris cell annotations (Supplementary Fig. 3d) were confirmed
by examining marker gene expression for epidermal cells, basal cells of the
epidermis (Krt1High), stem cells of the epidermis (Top2aHigh), leukocytes
(Lyz2High), and keratinocyte stem cells (Cd34High). While Tabula Muris annotated
a single keratinocyte stem cell population, we reannotated this population by
distinguishing between: (1) inner bulge cell population exhibiting Dkk3High and
ITGA6Low expression; and (2) outer bulge cell population exhibiting Fgf18High and
ITGA6High expression.

Deconvolution of bulk tissues using CIBERSORT. Identification of signature
genes from single cell populations: For 16 scRNA-seq datasets from human liver,
human skin, and scRNA-seq from 14 mouse organs, we obtained gene expression
signatures for each annotated cell type (Supplementary Data 1) and used as input
into CIBERSORT3 to estimate the cellular composition of GTEx adult tissues
(Supplementary Table 1). For each tissue, we identified differentially expressed
genes using Seurat FindMarkers and then extracted the top 200 most significantly
overexpressed genes (adjusted p-value < 0.05; average log2 fold change >0.25) for
each of the annotated scRNA-seq cell types (gene expression signatures). For
signature genes obtained from mouse scRNA-seq, we converted the mouse genes to
their human orthologs using the biomaRt database37,38. The final gene signature
sets only included mouse signature genes that also had a human ortholog. For a
given signature gene set: (1) if a mouse gene had more than one human ortholog,
only one human ortholog was retained in final signature set; and (2) if different
mouse genes corresponded to the same human ortholog, only unique human
orthologs were retained in the final signature set.

Cell composition estimation: The mean expression levels of the signature genes
were used as input for CIBERSORT to calculate the relative distribution of the cell
populations of 28 GTEx tissues from 14 organs (Supplementary Tables 4 and 5;
Supplementary Data 4–17). CIBERSORT (https://cibersort.stanford.edu/) was run
with default parameters using the TPM values for the signature genes identified
from scRNA-seq in all RNA-seq samples from the analogous GTEx tissue (https://
gtexportal.org/home/datasets) (Supplementary Table 1). To determine the cell
types detected in GTEx compared to the cell types modeled from mouse, we
classified a given cell type as estimable in GTEx as those with CIBERSORT
estimates >0.05% in more than 5% of RNA-seq samples from a given GTEx tissue.
To estimate cellular heterogeneity across GTEx RNA-seq samples, heterogeneity
was measured as the average square distance from the mean for each GTEx tissue.
We further examined how time from death or withdrawal of life-support until each
tissue sample was fixed/frozen (i.e. ischemic time) is associated with cellular
heterogeneity and we did not observe a consistent trend between ischemic time and
cellular heterogeneity (Supplementary Fig. 6). GTEx organs are defined as the
regions from which tissues are sampled (variable name SMTS from sample
attributes data table; phv00169239.v7.p2) and GTEx tissues are defined by the
distinct area of the organ where the tissue was taken (variable name SMTSD from
sample attributes data table; phv00169241.v7.p2). For example, samples from the
GTEx organ, colon, is comprised of two tissues: sigmoid colon and
transverse colon.

Correlation between human and mouse cell type estimates for liver and skin:
Supplementary Data 2 shows, for each combination of cell types from human and
mouse, the observed correlation, the mean and standard deviation of correlations
in 1000 permutations, the Z-score (calculated as the difference between observed
correlation and mean correlation in the permutations, divided by the standard
deviation), the empirical p-value (calculated using as the number of permutations
with correlation greater than the observed value, divided by the number of
permutations +1) and the Benjamini–Hochberg-adjusted p-value.
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Simulations to test the accuracy of deconvolution. To test the accuracy of the
deconvolution, we conducted simulations to obtain 100 samples of known cell type
distributions using scRNA-seq data from human liver. We performed deconvo-
lution on these samples using both human and mouse gene expression signatures
and compared the deconvolution results with the known cell type distributions.
Specifically, we used the following approach:

1. Using scRNA-seq data from the 8119 human liver cells, we created
100 samples with different cell type compositions. To create each of these
pseudo-bulk samples, we selected a random number of cells (between 50
and the total number of cells, using the R function sample with replace=
FALSE) for each cell type. The random number of cells associated with each
cell type provides the known sample composition of each pseudo-bulk
sample (Supplementary Data 3).

2. To obtain pseudo-bulk expression levels, for each gene we summed the
normalized expression (object@assays$RNA@data in the Seurat object) of
each cell.

3. We ran CIBERSORT using both human and mouse signature genes on all
the 100 pseudo-bulk samples. We collapsed cell types as described above
(Collapsing liver cell population estimates) and ran CIBERSORT on the
collapsed cell types.

4. As a measure of accuracy, we calculated the correlation between the known
sample composition, cell types estimated using human signature genes and
cell types estimated using mouse signature genes (Supplementary Fig. 2).

Harmonization of human and mouse scRNA-seq. To harmonize scRNA-seq
from human and mouse liver and skin, mouse genes for each tissue scRNA-seq
dataset were first converted to their human orthologs using the BioMart
database37,38. Mouse and human scRNA-seq were then harmonized by identifying
genes that anchor the two datasets using Seurat FindIntegrationAnchors and using
these anchors to integrate the datasets using Seurat IntegrateData. Integrated
datasets were then visualized using UMAP and corresponding cell types were
identified by examining overlap of mouse and human cells.

eQTL analysis. To detect eQTLs, we obtained gene TPMs for 153 liver bulk RNA-
seq samples and 749 skin bulk RNA-seq samples (sun-exposed and not sun-
exposed) from the GTEx V.7 website (https://gtexportal.org/home/) and down-
loaded WGS VCF files from dbGaP (525 individuals, phs000424.v7.p2). Only genes
with TPM > 0.5 in at least 20% samples were considered (19,621 genes in liver and
24,029 in skin). Gene expression data was quantile-normalized independently for
each tissue type. For all eQTL analyses, we used the following covariates: age, sex,
and the first five genotype principal components (PCs) calculated using 90,081
SNPs in linkage equilibrium39. We fitted different linear mixed models (LMMs)
using the lme4 package (https://www.jstatsoft.org/article/view/v067i01/0)) to detect
eQTLs in liver and skin. We used the following model18:

Expression � genotypeþ covariatesþ 1jsubject idð Þ
where (1|subject_id) denotes subject-specific random effects, which we used for
skin because several individuals had two samples. For liver, we used sex as random
effect to fit an LMM using a method analogous to skin eQTL analysis:

Expression � genotypeþ covariatesþ 1jsexð Þ
where (1|sex) denotes sex-specific random effects. We calculated associations with
all variants (minor allele frequency >1%) ±1Mb around each expressed gene. For
each gene, we Bonferroni-corrected p-values and retained the lead variant. To
detect eGenes, we used Benjamini–Hochberg FDR at 10% level on all lead variants.

Using cell population distributions to improve eQTL detection. We repeated
eQTL detection using LMMs with cellular compositions as covariates. Since several
cell types were detected at very low frequency, we only used a subset of the cell
types described in Fig. 4. Specifically, we detected liver eQTLs using human (high
resolution and collapsed) and mouse (low resolution) cell populations as covariates.
We used the following cell populations: (1) for human high resolution: periportal
SEC, central venous endothelial cells, gdT cells, hepatocytes0, hepatocytes3,
hepatocytes4, inflammatory macrophages, and NK/NKT cells; (2) for human col-
lapsed resolution: endothelial cells, hepatocytes, macrophages, NK cells, B cells,
cholangiocytes, and heptatic stellate cells; and (3) for mouse low resolution:
endothelial cells of hepatic sinusoid, hepatocytes, Kupffer cells, and NK cells. We
detected skin eQTLs using mouse (high and collapsed resolution) cell populations
as covariates. We used the following cell populations: (1) for mouse high resolu-
tion: epidermis stem cell, leukocyte, inner bulge, outer bulge, epidermis, and epi-
dermis basal cells; and (2) for mouse collapsed resolution: epidermal cells,
leukocyte, and inner bulge cells. For each cell population, we compared the fol-
lowing two models:

H0: expression ~ genotype + covariates + cell_populations + (1|random)
H1: expression ~ genotype + covariates + cell_populations

+ genotype: cell_population + (1|random)

where (1|random) denotes each tissue’s random effect. We next calculated the
difference between the two models using ANOVA and obtained χ2 p-values using
the pbkrtest package (https://www.jstatsoft.org/article/view/v059i09). For each
eGene, we compared each cell population to H0 and retained only the most
significant association. Only eGenes that satisfied two requirements were considered
as cell type-associated: (a) Benjamini–Hochberg-adjusted χ2 p-value < 0.1; and (b)
ΔAIC ¼ AICinteraction � AICno interaction < 0. eGenes that were associated with only one
cell type were considered cell-type-specific. We further determined the impact of
cell type abundance on power to detect cell-type-associated eGenes by examining
the distribution of ß, standard error, and p-value for cell-type-associated-eQTLs
between estimated cell types.

Permutation analysis of liver eQTLs. To test if the detection of more eQTLs
using cell populations as covariates was due to improved accuracy of the linear
mixed model estimation or was simply associated with an increased number of
covariates, for each top hit (defined as the variant with the strongest p-value for
each gene), we permuted the cell type distribution across samples, 1000 times. We
obtained the average p-value, beta and standard error of beta across all permuta-
tions and compared these values with the measured p-value, beta and standard
error of beta for each gene using a paired t-test.

Colocalization of GWAS for skin traits and GTEx skin eQTLs. For each eGene in
the skin eQTL analysis deconvoluted using cell type estimates, we extracted the p-
values for all variants that were used to perform the eQTL analysis. From the UK
BioBank, we obtained summary statistics for 23 skin-related traits (Supplementary
Data 25), where the traits were grouped into seven categories based on shared
nomenclature in the trait descriptions: (1) malignant neoplasms; (2) melanoma; (3)
infection; (4) ulcers; (5) congenital malformations of the skin; (6) other cancer (non-
melanoma or malignant neoplasm); and (7) unspecified. For all the variants geno-
typed in both GTEx and UK BioBank, we used coloc V. 3.119 to test for colocalization
between eQTLs and GWAS signal. For each colocalization test, we considered only
the posterior probability of a model with one common causal variant (PP4).
Enrichment of the associations was calculated using a Fisher’s Test at multiple PP4
thresholds (0–1; by 0.05 bins), where the contingency table consisted of two classi-
fications: (1) if the variant was significantly cell-type-associated (FDR < 0.05); and (2)
if the variant colocalized with the GWAS trait greater than each PP4 threshold.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Sequence data that support the findings of this study (all Figures) is available for human
liver scRNA-seq (“GSE11546”); for human skin scRNA-seq (http://dom.pitt.edu/rheum/
centers-institutes/scleroderma/systemicsclerosiscenter/database/); and for Tabula Muris
mouse scRNA-seq (https://figshare.com/articles/Robject_files_for_tissues_processed_by_
Seurat/5821263/1). The source data underlying all Figures is available in Supplementary
Tables 1–5 and Supplementary Data 1–25).

Code availability
Scripts to process, analyze, and generate figures from the data is available at https://
github.com/mkrdonovan/gtex_deconvolution.
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