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Quantum non-demolition measurement of a
many-body Hamiltonian
Dayou Yang1,2, Andrey Grankin1,2, Lukas M. Sieberer1,2, Denis V. Vasilyev 1,2 & Peter Zoller 1,2*

In an ideal quantum measurement, the wave function of a quantum system collapses to an

eigenstate of the measured observable, and the corresponding eigenvalue determines the

measurement outcome. If the observable commutes with the system Hamiltonian, repeated

measurements yield the same result and thus minimally disturb the system. Seminal quantum

optics experiments have achieved such quantum non-demolition (QND) measurements

of systems with few degrees of freedom. In contrast, here we describe how the QND

measurement of a complex many-body observable, the Hamiltonian of an interacting many-

body system, can be implemented in a trapped-ion analog quantum simulator. Through a

single-shot measurement, the many-body system is prepared in a narrow band of (highly

excited) energy eigenstates, and potentially even a single eigenstate. Our QND scheme,

which can be carried over to other platforms of quantum simulation, provides a framework to

investigate experimentally fundamental aspects of equilibrium and non-equilibrium statistical

physics including the eigenstate thermalization hypothesis and quantum fluctuation relations.
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Recent experimental advances provide intriguing opportu-
nities in the preparation, manipulation, and measurement
of the quantum state of engineered complex many-body

systems. This includes the ability to address individual sites of
lattice systems enabling single-shot read-out of single-particle
observables, as demonstrated by the quantum gas microscope for
atoms in optical lattices1,2, single-spin or qubit read-out of
trapped ions3–7 and Rydberg tweezers arrays8–12, and super-
conducting qubits13,14. In contrast, we are interested below in
developing single-shot measurements of many-body observables
such as the Hamiltonian Ĥ of an interacting many-body system.
For an isolated quantum system, Ĥ represents a quantum non-
demolition (QND) observable, and our goal is to implement a
QND measurement of energy of a quantum many-body system in
an analog simulator setting. We note that quantum optics pro-
vides with several examples of QND measurements; however
these have so far been confined to observables representing few
quantum degrees of freedom14–20.

Developing QND measurement of a many-body Hamiltonian
Ĥ provides us with the unique opportunity to distill—in a single
run of the experiment—an energy eigenstate ‘j i from an initial,
possibly mixed, or finite temperature state, by observing in par-
ticular run the energy eigenvalue Eℓ. In case of measurement with
finite resolution, this will prepare states in a narrow energy win-
dow, reminiscent of a microcanonical ensemble. We emphasize
that state preparation by measurement is intrinsically probabil-
istic, that is, will vary from shot to shot, reflecting the population
distribution. Furthermore, this provides us with a tool to deter-
mine populations and population distributions of (excited) energy
eigenstates, as required in, for example, many-body spectro-
scopy21. The ability to prepare and measure (single) energy
eigenstates provides us with a unique tool to address experimen-
tally fundamental problems in quantum statistical physics, such as
the eigenstate thermalization hypothesis (ETH)22–24, which asserts
that single energy eigenstates of an (isolated) ergodic system
encode thermodynamic equilibrium properties. Developing the
capability to turn QND measurements on and off allows one to
alternate between time periods of free evolution of the unobserved
many-body quantum system and energy measurement. This
allows quantum feedback in a many-body system conditional to
measurement outcomes, and in particular provides a framework
to monitor non-equilibrium dynamics and processes in quantum
thermodynamics25, including measurement of work functions and
quantum fluctuation relations (QFRs)26–28. These relations
express fundamental constraints on, for example, the work per-
formed on a quantum system in an arbitrary non-equilibrium
process, imposed by the universal canonical form of thermal states
and the principle of microreversibility.

Our aim below is to develop QND measurement of Ĥ in
physical settings of analog quantum simulation, in particular
exploring the regime of mesoscopic system sizes. We will
demonstrate this in detail as an example of an analog trapped-ion
quantum simulator, realizing a long-range transverse Ising
Hamiltonian and the associated QND measurement. Our
implementation in an analog quantum device should be con-
trasted to QND measurement of Ĥ via a phase estimation algo-
rithm29, which however requires a universal (digital) quantum
computer.

Results
QND measurement of Ĥ. On a more formal level, we define
QND measurement of a many-body Hamiltonian Ĥ as an indirect
measurement by coupling the system of interest S, illustrated in
Fig. 1a, to an ancillary system M as meter. In a first step, the
system is entangled with the meter according to the time evolution

UðtÞ ¼ expð�iĤQNDtÞ generated by the QND Hamiltonian

ĤQND ¼ ϑĤ � P̂; ð1Þ
with coupling strength ϑ (ℏ = 1). To be specific and in light of
examples below, we consider here as meter a continuous variable
system with a pair of conjugated quadratures X̂ and P̂ obeying the
canonical commutation relation ½X̂; P̂� ¼ i. Consider now an
initial state of the joint system prepared as Ψj i ¼ ψj i � x0j i,
where ψj i �

P
‘c‘ ‘j i is a superposition of energy eigenstates,

Ĥ ‘j i ¼ E‘ ‘j i; and x0j i is an (improper) eigenstate of X̂ (or
squeezed state). We obtain for the time-evolved state
ΨðtÞj i ¼ ÛðtÞ ψj i � x0j i ¼

P
‘c‘ ‘j i � x0 þ ϑE‘tj i. Reading the

meter as xℓ ≡ x0+ ϑEℓt, and thus measuring the eigenvalue Eℓ, will
prepare the system in ‘j i (or in the relevant subspace in case of
degeneracies). The probability for obtaining the particular mea-
surement outcome Eℓ is Pℓ= ∣cℓ∣2. Repeating the QND mea-
surement will reproduce the particular Eℓ with certainty, with the
system remaining in ‘j i. The above discussion is readily extended
to mixed initial system states, and to initial meter states, for
example, as coherent states.

In an analog quantum simulator setting, QND measurement of
the many-body Hamiltonian Ĥ is incorporated by engineering
the extended system-meter Hamiltonian ĤSM ¼ Ĥ � Iþ
ϑĤ � P̂. In an interaction picture with respect to Ĥ � I, the
joint system then evolves according to the Hamiltonian Ĥ

int
SM �

ĤQND realizing the QND measurement discussed above and
illustrated in Fig. 1b. On the other hand, by allowing the system-
meter coupling ϑ(t) to be switched on and off in time, we can
alternate between the conventional free-evolution simulation and
QND measurement mode of the system. In an actual implemen-
tation, as discussed below for trapped ions, we will achieve
building the extended system-meter Hamiltonian

ĤSM ¼ Ĥ0 � Iþ ϑĤ � P̂; ð2Þ

where Ĥ0 and Ĥ may differ (slightly). We note that the QND
measurement of Ĥ is obtained by fine-tuning Ĥ0 ¼ Ĥ. A
mismatch Ĥ0 ≠ Ĥ will be visible as quantum jumps between
energy eigenstates in repeated measurements.

In the trapped-ion example discussed below the many-body
Hamiltonian Ĥ will be a long-range transverse Ising model30–33,

Ĥ ¼ �
XN
i<j

Jijσ̂
x
i σ̂

x
j � h

XN
j

σ̂zj ; ð3Þ

where Jij = J ∕ ∣i − j∣α with 0 < α < 3 and h the transverse field.
Remarkably, in our implementation, the Hamiltonian Ĥ0 will
differ from Ĥ just by the transverse field taking on the value h0.
We will be able to tune h ¼ h0, thus achieving the QND condition.

As the last step in our formal development, we wish to
formulate QND measurement of Ĥ as measurement continuous
in time34–37. Physically, this amounts to making frequent and,
in a continuum limit, continuous readouts X(t) of the meter
variable X̂, with the quantum many-body system evolving
according to (2). Following a well-established formalism of
quantum optics38,39, we write for the system under continuous
observation a stochastic master equation (SME) for a conditional
density matrix ρ̂cðtÞ of the many-body system. In our context this
SME reads

dρ̂cðtÞ ¼ � i½Ĥ0; ρ̂cðtÞ�dt þ γD½Ĥ=J�ρ̂cðtÞ dt
þ ffiffiffiffiffi

γϵ
p H½Ĥ=J�ρ̂cðtÞ dWðtÞ;

ð4Þ

dXðtÞ � IðtÞdt ¼ 2
ffiffiffiffiffi
γϵ

p hĤ=Jicdt þ dWðtÞ; ð5Þ
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with dW(t) a Wiener increment, to be interpreted as an Itô
stochastic differential equation. In a quantum optical setting, as in
the ion trap example below, I(t) is identified with photocurrent in
homodyne detection of scattered light38. Monitoring the photo-
current IðtÞ � hĤic thus provides continuous read-out of the
many-body Hamiltonian Ĥ with ¼h ic � Tr½¼ ρ̂cðtÞ� up to shot
noise. Thus, ρ̂cðtÞ describes the many-body quantum state
conditional to observing a particular photocurrent trajectory I
(t), as can be observed in a single run of an experiment. In (4) and
(5) γ is an effective measurement rate, and ϵ is a measurement
efficiency. Furthermore, we have defined a Lindblad super-
operator D½̂s�ρ̂c � ŝρ̂c ŝ

y � ð̂sy ŝρ̂c þH:c:Þ=2 describing decoher-
ence due to the quantum measurement backaction, and the
nonlinear superoperator H½̂s�ρ̂c � ð̂s� ĥsicÞρ̂c þH:c:, which
updates the density matrix conditioned on the observation of
the homodyne photocurrent. Finally, not reading the meter, that
is, averaging overall measurement outcomes I(t), the SME (4)
reduces to a master equation with Lindblad term �D½Ĥ�ρ̂, that is,
realizing a reservoir coupling with jump operator Ĥ, which erases
all off-diagonal terms of the averaged density matrix ρ̂ in the
energy eigenbasis.

Equations (4) and (5) allow us to simulate single measurement
runs corresponding to a stochastic trajectory I(t). Figure 1c
illustrates ideal QND measurement, Ĥ0 ¼ Ĥ, of the Hamiltonian
(3) by plotting a sample trajectory of a filtered photocurrent,
obtained by averaging I(t) over a time window τ, I τðtÞ ¼
ð2N ffiffiffiffiffi

γϵ
p

τÞ�1R1
0 dt0Iðt � t0Þe�t0=τ . As initial condition we take all

spins pointing against the transverse field. As seen in Fig. 1c the
trajectory I τðtÞ (red curve) stabilizes on a time scale ~γ−1 on a
particular energy eigenvalue Eℓ of (3) (up to fluctuations from
shot noise). In this figure we consider and show only the
eigenstates and eigenenergies (thin horizontal lines) within the
symmetry sector containing the ground state of the Ising model
with J, h > 0, see Methods. The collapse, and thus preparation of

the many-body wavefunction in the corresponding energy
eigenstate, is indicated by plotting the populations P‘ðtÞ �
‘h jρ̂cðtÞ ‘j i (blue shadings in Fig. 1c). Figure 1d shows quantum
jumps between energy eigenstates induced by Ĥ0 ≠ Ĥ. For weak
perturbation (j½Ĥ0; Ĥ�j � jĤj2) there are rare jumps between the
energy eigenstates, indicated as t1 and t2 for the trajectory in
Fig. 1d. Finally, Fig. 1e plots the integrated current I τ ¼
ð2N ffiffiffiffiffi

γϵ
p

τÞ�1R τ
0IðtÞdt and its fluctuations as a function of total

integration time τ. For N= 8 spins starting in a thermal state, the
integrated current I τ (red curve) exhibits a collapse at a rate ~γ
to a particular energy eigenstate. The insets shows the
probabilities Pℓ for various times, and the narrowing of the
energy resolution as ΔE=J � 1=

ffiffiffiffiffiffiffi
γϵτ

p
with growing τ

(see Methods); first to small energy window containing a few
eigenstates as in a microcanonical ensemble, and eventually to a
single energy eigenstate.

Implementation with trapped ions. We now provide a trapped-
ion implementation of the system-meter Hamiltonian ĤSM (2).
As shown in Fig. 2a, we consider a string of N ions in a linear Paul
trap representing spin-1/2 #j ii; "j ii

� �
. These two-level ions can

be driven by laser light #j i ! "j i, where the recoil associated with
absorption and emission of photons provides a coupling to
vibrational eigenmodes of the ion chain. This includes in parti-
cular the center-of-mass motion (COM) with X̂ and P̂ position
and momentum operators, respectively, which play the role of
meter variables.

To generate in ĤSM both the Ising interaction
�
P

i<j J ijσ̂
x
i σ̂

x
j � I, as well as the Ising term coupled to COM,

�ϑ
P

i<j J ijσ̂
x
i σ̂

x
j � P̂, we choose a laser configuration consisting

of two pairs of counterpropagating laser beams (cf. Fig. 2a). In
generalization of refs. 40,41, we call this a double Mølmer–Sørensen
configuration. The first pair of MS beams (shown as amber in
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Fig. 1 QND measurement of a many-body Hamiltonian Ĥ in a quantum simulator setting. The many-body spin system S, shown in a, is entangled with an
ancillary system M (meter) by the unitary ÛSMðtÞ ¼ expf�i

R t
0dt

0½Ĥ� Iþ ϑðt0ÞĤ� P̂�g. b Subsequent reading of a meter value x‘ � x0 þ E‘
R t
0 dt

0ϑðt0Þ
prepares the many-body system in an energy eigenstate ‘j i with the eigenvalue Eℓ. c Single trajectory simulation (4) and (5) of an ideal QND measurement
for the Ising Hamiltonian (3) for N= 5 spins, α= 1.5, h∕J= 1.5. The window-filtered homodyne current I τðtÞ (red curve) fluctuates around a value
corresponding to the eigenenergy prepared by the measurement of Ĥ. The thin horizontal lines show the system eigenenergies Eℓ and the blue color
indicates the conditional populations Pℓ(t) of the corresponding eigenstates. d Observation of quantum jumps due to the mismatch of the transverse fields
Ĥ
0 ¼ Ĥþ δ~h

P
jσ̂

z
j with δ~h=J ¼ �0:2. The filtered photocurrent (red) clearly shows sudden jumps between eigenstates at times t1 and t2. e Preparation of

energy eigenstates or microcanonical ensembles by the ideal QND measurement for N= 8 spins, α= 1.5, h/J= 0.8. The estimate of the system energy
given by the cumulative time average of the homodyne current I τ (red line) gradually converges to a single eigenenergy (gray lines) as averaging time τ
increases. The corresponding uncertainty (red area) due to shot noise decreases as �1=

ffiffiffiffiffiffiffi
γϵτ

p
. Inset: conditional population of the energy eigenstates (gray

points) at times t�1 , t
�
2, and t�3 is well captured by gaussian distributions of widths J=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4γϵt�1;2;3

p
describing the fluctuations of the shot noise averaged over

τ ¼ t�1;2;3 (red curve). The SME is solved using the open-source QuTiP package54.
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Fig. 2) is detuned by ±Δ from ionic resonance, while the second
pair (blue) is detuned by ±Δ0. Furthermore, we choose Δ0 � Δ ¼
ω0 with ω0 the COM frequency. These four laser beams give rise to
laser-induced two-photon processes involving pairs of ions, which
are depicted in Fig. 2b, c).

First, as shown in Fig. 2b, absorption of a photon from the one
of the amber MS laser beam followed by an absorption from the
counterpropagating amber beam gives rise to a two-photon
excitation ##j i ! ""j i, which is resonant with twice the (bare)
ionic transition frequency of the two-level ion. We emphasize that
this process leaves the motional state of the ion chain unchanged,
as illustrated by nj i ! nj i for the COM mode, with n the phonon
occupation number. This process will thus contribute a term
� σ̂þi σ̂

þ
j to the effective spin–spin interaction. The second pair of

MS beams (blue) will again contribute a resonant two-photon
excitation, which adds coherently to the first contribution. By
considering all possible processes, we obtain the effective Ising
interaction �

P
i<jJ ijσ̂

x
i σ̂

x
j � I in ĤSM. An explicit expression for

Jij is given in Methods in second-order perturbation theory in the
Lamb–Dicke parameter η ¼ k=

ffiffiffiffiffiffiffiffiffiffiffi
2mω0

p � 1, where m is the ion
mass and k is the magnitude of the laser wavevector.

Second, with the choice Δ0 � Δ ¼ ω0 two-photon processes
involving absorption from an amber MS beam and a blue MS
beam will be detuned by the COM frequency from two-photon
resonance, that is, be resonant with the motional sidebands ±ω0

(cf. Fig. 2c). These processes will change the phonon number by
one, and by considering all possible processes contribute a term
�ϑ

P
i<jJ ijσ̂

x
i σ̂

x
j � P̂ to ĤSM. Here ϑ ’ �η

ffiffiffiffiffiffiffiffiffi
2=N

p
, and Jij is

identical to the couplings obtained above. We note that this term
is of order η3 (for details see Methods).

By considering a (small) imbalance of Rabi frequencies in MS
laser configurations, we can create in ĤSM a transverse-field term
�h

P
jσ̂

z
j � I, and in addition a term þϑh

P
jσ̂

z
j � P̂ (see Methods

and Supplementary Note I). Thus, our laser configuration
generates Ĥ and Ĥ0 with the same Ising term, but opposite
transverse field ±h. To rectify the transverse-field mismatch, we
can offset the detuning of the four lasers by a small amount
±Δð0Þ ! ±Δð0Þ � 2B. We obtain Ĥ as in Eq. (3) and

Ĥ0 ¼ �
XN
i<j

Jijσ̂
x
i σ̂

x
j � ðB� hÞ

XN
j

σ̂zj : ð6Þ

The choice B= 2h thus allows us to tune to the QND sweetspot

Ĥ0 ¼ Ĥ as in Fig. 1c, e, while away from this point we obtain
Ĥ0 ≠ Ĥ as considered in Fig. 1d.

Finally, the homodyne current (5) corresponding to a
continuous measurement of the COM quadrature X̂, and thus
of the Hamiltonian Ĥ, can be measured via homodyne detection
of the scattered light from an ancillary ion driven by a laser on the
red motional COM sideband (cf. Fig. 2a and Methods).

QND measurement protocols. Implementation of ĤSM with
time-dependent system-meter coupling ϑ(t) allows protocols
where we switch between time windows of unobserved quantum
simulation, and measurement of energy, and thus preparation of
energy eigenstates, which is verified by observing convergence of
the filtered photocurrent. In addition, the Hamiltonians (3) and
(6) can be made time dependent, for example, with a time-
dependent magnetic field. This allows us to perform work on the
system, and measure work distribution functions via measure-
ment of energy25. Our QND toolbox thus opens up the door to
address experimentally fundamental problems of (non-equili-
brium) statistical mechanics in analog quantum simulation.
We apply the QND toolbox below first to ETH42,43 and then we
consider testing QFRs25 in interacting many-body systems. We
emphasize that our setting explores naturally the interesting
regime of mesoscopic particle numbers from a few to tens
of spins.

Thermal properties of energy eigenstates. Single energy eigen-
states ‘j i can encode thermal properties, which we typically
associate with a microcanonical or canonical ensemble describing
systems in thermodynamic equilibrium. This eigenstate therma-
lization concerns, on the one hand, expectation values of few-body
observables, leading to the remarkable prediction of the ETH that
diagonal matrix elements ‘jÔj‘

� �
have to agree with the micro-

canonical average at energy Eℓ, ‘jÔj‘
� �

¼ OðE‘Þ ¼ trðÔρ̂mc
E‘
Þ. Here

ρ̂mc
E‘

is the microcanonical density operator as a mixture of energy
eigenstates within a narrow range centered around Eℓ. On the
other hand, ETH imposes constraints on dynamical properties for
diagonal and off-diagonal matrix elements ‘0jÔj‘

� �
; for example,

two-time correlation functions and dynamical susceptibilities
have to be related by the fluctuation-dissipation theorem42. To
be more specific, ETH suggests a structure44 ‘0jÔj‘

� �
¼

OðEÞδ‘0‘ þ e�SðEÞ=2f ÔðE;ωÞR‘0‘, where diagonal and off-diagonal
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Fig. 2 Trapped-ion implementation of the system-meter Hamiltonian ĤSM. a Ion string with N system ions (white) illuminated by four laser beams in a
double Mølmer–Sørensen configuration. As described in the text this generates ĤSM [see Eq. (2)] with transverse Ising Hamiltonians Ĥ0 (6) and Ĥ (3), and
the meter variable P̂ representing the COM motion. The meter variable X̂ is read by driving one, or potentially several ancilla ions (red) with a laser (red
beam) tuned to the red motional COM sideband (see text). Homodyne detection of the scattered light to read X̂, and thus revealing Ĥ in the photocurrent
IðtÞ � hĤic [see Eq. (5)]. b Level scheme of a pair of ions sharing the COM phonon mode, illustrating one of the elementary processes contributing to the
Ising term �

P
i<jJijσ̂

x
i σ̂

x
j � I in second order in η. c Level scheme showing the corresponding third-order processes contributing to �ϑ

P
i<jJijσ̂

x
i σ̂

x
j � P̂

(see text).
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matrix elements are determined by the functions OðEÞ and
f ÔðE;ωÞ, respectively, which depend smoothly on their arguments
E ¼ ðE‘ þ E‘0 Þ=2 and ω ¼ E‘0 � E‘. SðEÞ is the thermodynamic
entropy at the mean energy E, and R‘0‘ is a random number with
zero mean and unit variance. An experimental test of ETH,
therefore, requires the ability to measure both diagonal and off-
diagonal elements, something that is provided by our ion toolbox.

The transverse Ising model (3), as realized with ions, provides a
rich testbed for ETH45. For 1 < α ≤ 2, this model features a
ferromagnetic transition at finite temperature or energy density,
in a canonical or microcanonical description, respectively. As
illustrated above in Fig. 1, our trapped-ion QND toolbox enables
the preparation of microcanonical ensembles of variable width
ΔE. According to ETH, the ferromagnetic transition persists even
in the limit of vanishing ΔE, which corresponds to the
preparation of a single energy eigenstate.

For reference, the microcanonical phase diagram at finite ΔE is
shown in Fig. 3a for an experimentally accessible system size of N
= 14 spins and α= 1.5 (see Supplementary Note I for experi-
mental parameters, we use QuSpin for the exact diagonaliza-
tion46). The ferromagnetic transition is clearly manifest in the
distribution P(mx) of the magnetization m̂x ¼ N�1P

jσ̂
x
j , which is

bi-modal in the ferromagnetic phase, see the inset in Fig. 3a.
Consequently, fluctuations m̂2

x

� �
are finite (vanish) in the

ferromagnetic (paramagnetic) phase, and indicate order even in
the absence of symmetry-breaking fields. A trapped-ion quantum
simulator provides the ability to perform single-site resolved
read-out of spins, thus giving direct access to the distribution
P(mx) and, consequently, the fluctuations m̂2

x

� �
. Due to the quasi-

diagonal structure of ‘0jÔj‘
� �

for ETH-satisfying observables Ô,
the hypothesis is expected to hold for any power of such
observables and, in particular, also for the full probability
distribution function P(mx)44. Indeed, as we show in Fig. 3b–d,
respectively, we find clear signatures of the transition in P(mx) for
individual energy eigenstates both for N = 14 and even much
smaller system of only N= 5 spins, in which single eigenenergies
can be resolved with current experimental technology (see
Supplementary Note I).

The observation of the Ising transition in single eigenstates
gives a qualitative indication of eigenstate thermalization in

diagonal matrix elements. A stringent quantitative assessment
requires to show that fluctuations of single-eigenstate expectation
values ‘jÔj‘

� �
around the microcanonical average trðÔρ̂mc

E‘
Þ are

suppressed with increasing system size42. We discuss experi-
mental requirements for such a test, along with a protocol to
measure off-diagonal matrix elements, in Supplementary Note III.

Work distribution function and QFRs. Projective measurements
in the energy eigenbasis are the key ingredient for the long-sought
experimental verification of QFRs25. The challenging requirement
to measure changes in the energy of the system on the level of
single energy eigenstates has been achieved only recently in
single-particle systems47,48. Our QND measurement scheme
opens up the possibility to probe QFRs in a true many-body
setting.

As an illustration we consider the celebrated Jarzynski equality,
which describes the mean value of the exponentiated work
performed on a system in an arbitrary non-equilibrium process
defined by a time-dependent Hamiltonian ĤðtÞ25. The equality
relates the work to the difference between the free energies ΔF of
equilibrium systems described by the Hamiltonian at the initial t0
and the final t1 times:

e�βW
� �

¼ e�βΔF : ð7Þ

Here β is the inverse temperature specifying an initial canonical
thermal state of the system ρ̂β ¼ e�βĤðt0Þ=Zt0

with Zt0
¼

tr½e�βĤðt0Þ� and ΔF ¼ Ft1
� Ft0

¼ �lnðZt1
=Zt0

Þ=β. The average
on the left-hand side of Eq. (7) is performed with respect to the
distribution of work PðWÞ (see Methods). The work itself is
determined as the difference between the outcomes of two energy
measurements before and after the time-dependent protocol
W � Et1

‘0 � Et0
‘ . Remarkably, while the work distribution does

depend on details of the time evolution given by ĤðtÞ, the average
is defined only by the initial and final Hamiltonians. Therefore,
the QFR enables experimental measurements of the equilibrium
property ΔF via measurement of work in a non-equilibrium
process.

Our scheme provides the required ingredients for probing the
QFR in the interesting regime of intermediate system sizes, which

5 spins
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Fig. 3 Excited-state phase transition in the Ising model (3) with α= 1.5. a Ferro-paramagnet crossover in the Ising model of N= 14 spins prepared by the
energy measurements in microcanonical ensembles of width ΔE∕(JN)= 0.1. The transition between magnetically ordered phase hm̂2

x imc 	 1 (dark blue) to
disordered phase hm̂2

x imc 	 0 (light blue) is shown as function of the mean energy density ε ¼ hĤimc=ðJNÞ and the transverse field h. An estimate of the
critical energy density in the thermodynamic limit, obtained with Monte-Carlo simulation (we use the ALPS code55) of canonical ensembles of 512 spins
with rescaled interactions (see Methods and Supplementary Note II), is shown as black dashed line. The inset shows the order parameter distribution
P mxð Þ for h∕J= 1 and ε= 0.1, 0.8, and 1.8 in blue, orange, and green, respectively. Test of ETH (within the symmetry sector þ1;�1f g see Methods):
b order–disorder transition is seen as crossover from bi-modal distribution of P mxð Þ at low energies to a single-peak distribution at high energies, shown on
the level individual eigenstates. Color intensity and the dot size indicate the corresponding probability. c, d Qualitatively similar energy dependence of
P mxð Þ shown for a system of just five spins. d Signatures of the phase transition visible for representative sample of eigenstates.
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is dominated by quantum fluctuations: as presented above, the
scheme allows for independent temporal control of parameters of
the spin Hamiltonian as well as the system-meter coupling in Eq.
(2). Further, single energy levels are well resolved for a system of
five interacting spins as we consider in the following (see
Supplementary Note I for experimental parameters).

This enables the protocol shown in Fig. 4a–c, in which a first
measurement of the energy is carried out while the magnetic field
h in Eq. (3) is kept constant at a value ht0 . Then, the system-meter
coupling is switched off, and the magnetic field is linearly ramped
to a final value ht1 , followed by another measurement. The

statistics of corresponding measurement outcomes, Et0
‘ and Et1

‘0 ,
determines the distribution of work PðWÞ performed on the
system during the magnetic field ramp. Initialization of the
system at arbitrary temperatures can be emulated by weighting
different runs of the protocol according to the Gibbs distribution

e�βEt0
‘ =Zt0

with the initial energy Et0
‘ .

The resulting work distributions PðWÞ for various quench
durations tQ are shown in Fig. 4d–f. While the probability
distribution for fast (blue dots) and slow (green dots) quenches
differs significantly the estimated free energy difference ΔFest ¼
�lnhe�βWi=β approximately (due to the finite number of
simulated experimental runs) matches the true value of ΔF for
all three quench speeds; thus, verifying the equality (7).

Discussion
We have developed a QND toolbox in analog quantum simula-
tion realizing single-shot measurement of the energy of an iso-
lated quantum many-body system, as a key element towards
experimental studies in non-equilibrium quantum statistical
mechanics. This comprises ETH and quantum thermodynamics,
including quantum work distribution, and Jarzynski and Crooks
fluctuations relations25 in mesoscopic quantum many-body sys-
tems. The present work outlines an ion-trap implementation with
COM phonons as meter. However, the concepts and techniques
carry over to other platforms including CQED with atoms49 and
superconducting qubits50, where the role of the meter can be
represented by cavity photons read with homodyne detection,
and Rydberg tweezer arrays8–12 by coupling to a small atomic
ensemble encoding the continuous meter variables51, respectively.
Finally, while the present work considers QND measurement of

the total Hamiltonian Ĥ of an isolated system, our approach
generalizes to measuring Hamiltonians ĤA of subsystems, as is of
interested in quantum transport of energy, or energy exchange in
coupling the many-body system of interest to a bath.

Methods
System-meter coupling Hamiltonian. We choose for the four lasers in our double
MS configuration the detuning and the Rabi frequency as (Δ, Ω), (− Δ, Ω+ δΩ),
Δ0;Ωð Þ, �Δ0;Ωþ δΩð Þ, where δΩ∝ η2Ω is a small imbalance we use to generate
the transverse-field term in the spin model. We are interested in the regime
of sufficiently large detunings compared to the Rabi frequency Ω, such that
single lasers only virtually excite the ions and the phonon modes, Ω � Δð0Þ ,
ηqΩ � jΔð0Þ � ωqj, where ωq is the oscillation frequency of the qth phonon mode

and ηq � η
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ω0=ωq

q
. On large timescales t 
 1=Δð0Þ; 1=ω0, we obtain an effective

Hamiltonian ĤSM describing the coupled dynamics of the system and the meter,
that is, the spins and the COM phonon mode, by performing the Magnus
expansion52 to the time evolution operator in the interaction picture (see Sup-
plementary Note I). We further expand ĤSM in terms of η. In second order in η we
recover the transverse-field Ising Hamiltonian30–32,

Ĥ
2ð Þ
SM ¼ ð�

P
i<j J ijσ̂

x
i σ̂

x
j þ h

P
j σ̂

z
j Þ � I � Ĥ0 � I, where the spin–spin couplings

Jij ¼ �η2ω0

X
q

MiqMjq
Ω2

Δ2 � ω2
q

þ Ω2

ðΔ0Þ2 � ω2
q

" #
ð8Þ

include contributions from the two MS configurations independently with Miq

denoting the distribution matrix element of the qth phonon mode. The transverse-
field strength is h ¼ ΩδΩ 1=Δþ 1=Δ0ð Þ=2.

Crucially, under the condition Δ0 � Δ ¼ ω0, the crosstalk between the two MS
configurations leads to an extra resonant processes as exemplified by Fig. 2c. These
are described by expanding the effective Hamiltonian ĤSM to third order in η,

Ĥ
3ð Þ
SM ¼ ð�η

ffiffiffi
2

p
Mi0Þð�

P
i<jJ ijσ̂

x
i σ̂

x
j � h

P
jσ̂

z
j Þ � P̂ � ϑĤ � P̂, where Mi0 ’ 1=

ffiffiffiffi
N

p

is the (equal) distribution matrix element of the COM mode. Combining Ĥ
2ð Þ
SM and

Ĥ
3ð Þ
SM gives the desired system-meter Hamiltonian (2). The transverse field in Ĥ

2ð Þ
SM

and Ĥ
3ð Þ
SM can be independently tuned with the method discussed in the main text.

Higher order terms beyond Ĥ
3ð Þ
SM have negligible effects, for details see

Supplementary Note I.
Our double MS configuration can be implemented with both axial and

transverse phonon modes. The implementation with transverse modes gives rise to
power-law spin interactions Jij= J ∕ ∣i− j∣α with 0 ≤ α ≤ 3, which are considered in
the rest of this paper. Experimental considerations and scalability are discussed in
the Supplementary Note I.

Continuous read-out of X̂. We assume that in Fig. 2 the ancillary ion does not see
the four MS lasers (amber and blue) and, similarly, the system ions do not couple
to the read-out laser (red), that is, we assume single-ion addressability53 or with
mixed species5. The read-out laser is tuned in resonance with the red sideband of
the COM mode, Δe= ω0, under the resolved-sideband condition ω0≫ Γe, Ω0,

1
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Fig. 4 Verification of Jarzynski equality (7) for the transverse-field Ising model with five spins. A single realization of the proposed protocol consists of
a the projection of the initial thermal state of spins to an eigenstate Et0‘ of the initial Hamiltonian with transverse-field value ht0 , b the free evolution under a
linear change of the transverse field h during time tQ= t1− t0 (probabilities Pℓ(t) to populate the instantaneous energy eigenstates are shown in shades of
blue), c The final energy read-out Et1‘ of the system at transverse-field ht1 (photocurrent realizations for simulated experimental runs are shown in red),
resulting in the work W (see text) performed during the non-equilibrium process. d–f The resulting work probability distribution PðWÞ for ht0 ¼ 2J,
ht1 ¼ 0:5J, α= 2, β= 0.5∕J, and various quench times tQ. The gray bars show theoretical probability as a function of work W. The color dots with the
corresponding vertical error bars (one standard deviation) show the estimated probabilities for 1000 simulated experimental runs. Independent of the
quench duration the Jarzynski relation (7) yields similar estimations of the free energy difference ΔFest (fluctuating due to the finite number of runs) with
the true value given by ΔF≈ 4.35.
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where Γe is the spontaneous emission rate of the cooling transition ej i ! gj i, while
Ω0 and Δe are the Rabi frequency and the detuning of the cooling laser, respec-
tively. In this regime, the emitted electric field is proportional to hâ0i with â0 the
annihilation operator of the COM mode. Homodyne detection then directly reveals
the quadrature of the COM phonon (the meter). The homodyne current can be
written as (see Supplementary Note I)

dXðtÞ � IðtÞdt ¼
ffiffiffiffiffiffiffiffiffi
2ϵγs

p
hX̂ic þ dWðtÞ; ð9Þ

where ϵ is the photon detection efficiency, γs ’ k20Ω
2
0=ð2ΓeNm0ω0Þ is the mea-

surement rate with k0 the cooling laser wavevector and m0 the ancillary ion mass,
and we have chosen the frequency and phase of the homodyne local oscillator to
maximize the homodyne current. Correspondingly, the evolution of the condi-
tional state ρSMc ðtÞ of spin system plus the meter is described by a SME

dρ̂SMc ðtÞ ¼ � i½ĤSM; ρ̂SMc ðtÞ�dt þ γsD â0½ �ρ̂SMc ðtÞdt
þ ffiffiffiffiffiffi

ϵγs
p H â0½ �ρ̂SMc ðtÞdWðtÞ;

ð10Þ

Eliminating the meter under the condition γs ≫ ∣ϑJ∣, we realize continuous QND
read-out of the spin Hamiltonian as described by Eqs. (4) and (5) with γ = 2(ϑJ)
2∕γs.

We further emphasize that the read-out laser, which is tuned to the red
sideband, also acts as cooling of the COM mode. Furthermore, the read-out signal
can be enhanced with several ancilla ions.

Energy measurement resolution. Here we estimate the signal-to-noise ratio
(SNR), which allows us to distinguish two adjacent energy levels separated by ΔE.
The difference of photocurrents (5) corresponding to the two energy levels inte-
grated over time τ readsZ τ

0
½I1ðtÞ � I2ðtÞ�dt ¼ 2

ffiffiffiffiffi
γϵ

p ðΔE=JÞτ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
Signal

þ
Z τ

0
½dW1ðtÞ � dW2ðtÞ�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Noise

:

Considering the shot noises W1,2(t) of two measurements as uncorrelated and using
the Wiener increment property dW2

1;2ðtÞ ¼ dt we obtain SNR = 2γϵ(ΔE/J)2τ. For a
given averaging time τ, the condition SNR ≫1 provides us with the minimal energy
difference we can distinguish ΔE=J 
 1=

ffiffiffiffiffiffiffiffiffi
2γϵτ

p
.

Symmetries of the long-range transverse-field Ising model. The transverse-
field Ising model (3) is invariant under the reflection and spin inversion symmetry
transformations. We now provide an operational definition of these symmetries
and the corresponding symmetry sectors.

Consider a product state vector in the σx basis ϕj i ¼ sx1; ¼ ; sxN
�� �

. The reflection
operator can be defined by its action on the ϕj i state as R sx1; ¼ ; sxN

�� �
�

sxN ; ¼ ; sx1
�� �

. Analogously, the spin inversion operator can be defined as
P sx1; ¼ ; sxN
�� �

� �sx1; ¼ ;�sxN
�� �

. Both operators have two eigenvalues ± and
commute with each other and the Hamiltonian Eq. (3), thus representing QND
observables, which can also be measured in the non-destructive way as presented in
the paper.

The Hamiltonian can be independently diagonalized in each of the subspaces
corresponding to eigenvalues of the R and P operators. The ground state of the
Ising model with J, h > 0 belongs to the þ1;þ1f g symmetry sector. For the test of
ETH in Fig. 3 we consider the symmetry sector with eigenvalues of R and P given
by þ1;�1f g, respectively. The subspace can be reached from the þ1;þ1f g sector
by flipping odd number of spins (along the σz direction) in the limit of strong
transverse field.

Interaction renormalization. In numerical simulations in Fig. 3, we renormalize
the interaction strength coefficient J such that the average interaction strength
matches its value in thermodynamic limit. More precisely, for the N-spin Ising
model (3) we rescale J → JN≡ J ⋅ SN ∕ S∞, with SN � 1

N

PN
i;j¼11= i� jj jα . The results

are then expressed in units of J14.

Work distribution function. The work distribution of a process defined by a time-
dependent Hamiltonian ĤðtÞ (with the corresponding instantaneous energy
eigenvalues and eigenstates Et

‘ and eigenstates ψt
‘) is defined as follows25:

PðWÞ ¼
X
‘‘0

δ½W � ðEt
‘0 � E0

‘ Þ�Pt
‘0‘P

0
‘ ; ð11Þ

where P0
‘ ¼ ψ0

‘

� ��ρin ψ0
‘

�� �
is the occupation probabilities of the initial state and

Pt
‘0‘

¼ ψt
‘0 Uðt; 0Þj jψ0

‘

� ��� ��2 is the transition probabilities between initial ℓ and final

‘0 states with Uðt; 0Þ � T e�i
R t

0
Ĥðt0 Þdt0 the evolution operator. The average of the

exponentiated work in Eq. (7) is readily defined as an integral with the work
distribution function Eq. (11): he�βWi �

R
dWe�βWPðWÞ.
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