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Exploiting horizontal pleiotropy to search for causal
pathways within a Mendelian randomization
framework
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In Mendelian randomization (MR) analysis, variants that exert horizontal pleiotropy are

typically treated as a nuisance. However, they could be valuable in identifying alternative

pathways to the traits under investigation. Here, we develop MR-TRYX, a framework that

exploits horizontal pleiotropy to discover putative risk factors for disease. We begin by

detecting outliers in a single exposure–outcome MR analysis, hypothesising they are due to

horizontal pleiotropy. We search across hundreds of complete GWAS summary datasets to

systematically identify other (candidate) traits that associate with the outliers. We develop a

multi-trait pleiotropy model of the heterogeneity in the exposure–outcome analysis due

to pathways through candidate traits. Through detailed investigation of several causal

relationships, many pleiotropic pathways are uncovered with already established causal

effects, validating the approach, but also alternative putative causal pathways. Adjustment for

pleiotropic pathways reduces the heterogeneity across the analyses.
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Mendelian randomisation (MR) is now widely used to
infer the causal influence of one trait (the exposure) on
another (the outcome)1,2. It generally uses genetic

instruments for an exposure, obtained from genome-wide asso-
ciation studies (GWAS). If the instruments are valid, in that they
are unconfounded and influence the outcome only through the
exposure (vertical pleiotropy), then they will each provide an
independent, unbiased estimate of the causal effect of the expo-
sure on the outcome3. Meta-analysing these estimates can provide
a more precise estimate of the effect of the exposure on the
outcome4,5. If, however, some of the instruments are invalid,
particularly because they additionally influence the outcome
through pathways that bypass the exposure (horizontal pleio-
tropy)3, then the effect estimate is liable to be biased. To date, MR
method development has viewed horizontal pleiotropy as a nui-
sance that needs to be factored out of the analysis6–9. Departing
from this viewpoint, here we exploit horizontal pleiotropy as an
opportunity to identify alternative traits that putatively influence
the outcome. We also explore how this knowledge can improve
the original exposure–outcome estimates.

A crucial feature of MR is that it can be performed using only
GWAS summary data, where the effect estimate can be obtained
solely from the association results of the instrumental single-
nucleotide polymorphisms (SNPs) on the exposure and on the
outcome5. This means that causal inference between two traits
can be made even if they have never been measured together in
the same sample of individuals. Complete GWAS summary
results have now been collected from thousands of complex trait
and common diseases10, meaning that one can search the data-
base for candidate traits that might be influenced by SNPs
exhibiting possible pleiotropic effects (outliers). In turn, the
causal influence of each of those candidate traits on the outcome
can be estimated using MR by identifying their instruments
(which are independent of the original outlier). Should any of
these candidate traits putatively influence the outcome then this
goes some way towards explaining the horizontal pleiotropic
effect that was exhibited by the outlier SNP in the initial
exposure–outcome analyses.

Several methods exist for identifying outliers in MR, each likely
to be sensitive to different patterns of horizontal pleiotropy.
Cook’s distance can be used to measure the influence of a par-
ticular SNP on the combined estimate from all SNPs11, identi-
fying SNPs with large influences as outliers. Steiger filtering
removes those SNPs that do not explain substantially more of the
variance in the exposure trait than in the outcome, attempting to
guard against using SNPs as instruments that are likely to be
associated with the outcome through a pathway other than the
exposure12. Finally, meta-analysis tools can be used to evaluate if
a particular SNP contributes disproportionately to the hetero-
geneity between the estimates obtained from the set of instru-
ments, and this has been adapted recently to detect outliers in MR
analysis13–15. A potential limitation of heterogeneity-based outlier
removal is that this practice could constitute a form of cherry
picking9,16. While outlier removal can certainly improve power
by reducing noise in estimation, it could also potentially induce
higher type 1 error rates, which we go on to explore through
simulations.

Recent large-scale MR scans have indicated that horizontal
pleiotropy is widespread based on systematic analysis of
heterogeneity14,17. This suggests that many SNPs used as
instruments are likely to associate with other traits, which in turn
might associate with the original outcome of interest—hence
giving rise to heterogeneity. As such we have an opportunity to
identify previously unreported pathways by making use of out-
lying instruments in an MR analysis. Equipped with automated
MR analysis software10, outlier detection methods and a database

of complete GWAS summary datasets, we develop MR-TRYX
(from the phrase ‘TReasure Your eXceptions’18, popularised by
William Bateson, an early pioneer in genetics). This framework is
designed to identify putative causal factors when performing a
simple exposure–outcome analysis.

In this paper, we describe how MR-TRYX can be implemented
in MR analyses and how to interpret its results. A wide range of
simulations is performed to show how knowledge of horizontal
pleiotropic pathways can be used to improve the power and
reliability of the original exposure–outcome association analysis.
Our simulations also show that outlier removal methods can
induce bias or increase type 1 error rates, but adjustment for
detected pleiotropic pathway can improve estimates by reducing
heterogeneity without sacrificing study power. We apply MR-
TRYX to four exemplar analyses to demonstrate its potential
utility, showing that horizontal pleiotropic pathways can be used
to discover putative causal factors for an outcome of interest.

Results
Overview of MR-TRYX. Figure 1 shows an overview of the
approach. MR-TRYX is applied to an exposure–outcome analysis in
a two-sample MR framework and it has two objectives. The first is
to use outliers in the original exposure–outcome analysis to identify
putative factors that influence the outcome independently of
the exposure. The second is to re-estimate the original
exposure–outcome association by adjusting outlier SNPs for the
horizontal pleiotropic pathways that might arise through the
putative associations. This outlier-adjustment method should be
treated as a new approach to be used in conjunction with other
methods that already exist in the MR sensitivity analysis toolkit. We
provide extensive discussion on the context, advantages and
potential pitfalls that come with trying to use a data-driven
approach to adjust for horizontal pleiotropy at the end of the paper.

Adjustment of pleiotropic pathways improves MR perfor-
mance. We performed a wide range of simulations (Fig. 2, Sup-
plementary Data 2) to evaluate how a variety of methods designed
to deal with pleiotropy fare under a set of different scenarios that
violate the exclusion restriction principle. Perhaps the most
striking result from these simulations is that no method is always
reliable, and several methods have similar overall reliability while
performing very differently from each other between specific
scenarios. Across 47 simulation scenarios, adjusting for detected
outliers using the MR-TRYX framework had the highest average
rank, and simply performing inverse-variance weighted (IVW)
random effects was most often the best performing method,
whereas removing detected outliers had the lowest average rank.
We note that generally we do not know which of the scenarios are
of relevance for any particular empirical analysis and so the
metric used to evaluate performance here reflects the methods
that are most generally performant. We found that as the pro-
portion of instruments exhibiting pleiotropic effects increased, all
methods typically worsened in their performance though there
were notable examples in which increasingly widespread pleio-
tropy does not have an adverse effect. For example, widespread
balanced horizontal pleiotropy or mediated pleiotropy does not
have a drastic adverse influence on IVW, and MVMR and outlier
adjustment is relatively impervious to confounding pleiotropy.

It is an obvious conceptual disadvantage in these simulations
for IVW and outlier removal, which use only the exposure and
outcome data, when compared against MVMR and MR-TRYX
which draw on information from other sources. However, we
note that the MR-TRYX adjustment approach depends on
detecting candidate traits that explain the pleiotropic effect and
if the relevant candidate traits are not available, there is no
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adjustment and the method becomes identical to random effects
IVW which generally performs better than outlier removal. We
also note that if we use association with candidate traits to
determine whether or not to remove an outlier, then improve-
ments can be made over simple outlier removal. What we observe
here is intuitive because the potential drawback of outlier removal
is that the outliers could be the only valid instruments, or false
discovery rates increase due to overly precise confidence intervals.
Thus, adding an extra barrier to the removal of outliers can
mitigate these problems.

Multivariable MR targets a different estimand than univariable
MR—it is estimating the direct effect rather than the total effect of

the exposure on the outcome. This strategy performs generally
well across the range of simulations except in the case when the
candidate trait is a mediator of the x–y association in which case
there is a strongly attenuated direct effect. The problem here is
that it is hard for MVMR to distinguish between a model where
the exposure’s influence on the outcome is mediated by a
candidate trait (the exposure is causal), vs. where the exposure’s
apparent effect on the outcome is simply due to pleiotropy
through the candidate trait (the exposure is not causal)19. Here,
MVMR performs worse than other methods when the candidate
trait is a mediator, as MVMR estimates the direct effect of x on y
adjusting for the entirety of x's signal on y. Adjusting for outliers
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Fig. 1 Conceptual framework of the study. Illustration of identifying putative factors that influence the original observations. a Where (gx) is the
SNP–exposure effect, (xy) is the exposure–outcome effect as estimated through MR analysis from the non-outlier SNPs, (gp) is the SNP–candidate trait
effect and (py) is the causal effect of the candidate trait on the outcome. b The open circles represent valid instruments and the slope of the dotted line
represents the causal effect estimate of the exposure on the outcome. The closed red circle represents an outlier SNP which influences the outcome
through two independent pathways, P and X. c One way in which the red SNP can exhibit a larger influence on the outcome than expected given its effect
on the exposure is if it influences the outcome additionally through another pathway (horizontal pleiotropy). d Using the MR-Base database of GWAS
summary data for hundreds of traits we can search for ‘candidate traits’ with which the outlier SNP has an association. e Instruments excluding the original
outlier SNP are obtained for each candidate trait, LASSO-based multivariable MR is used to prune the candidate traits to avoid redundancy, and the causal
influence of each of those independent candidate traits on the outcome can subsequently be estimated. This allows us to identify alternative traits that
putatively influence the outcome and adjust the SNP–outcome associations for pleiotropic pathways in the original exposure–outcome model.
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escapes this problem to some extent because it only adjusts some
proportion of the instruments for x that are most likely to be
pleiotropic, allowing some signal of x on y to persist due to the
unadjusted variants.

Empirical MR-TRYX analyses. To examine the performance of
MR-TRYX analysis, we tested four independent exposure–outcome
hypotheses: (i) systolic blood pressure (SBP) and coronary heart
disease (CHD); (ii) urate and CHD; (iii) sleep duration and schi-
zophrenia; and (iv) education level (years of schooling) and body
mass index (BMI). For each analysis we: (a) obtain MR estimates of
the exposure–outcome causal relationship and detect outlier
instruments; (b) identify putative causal influences (candidate traits)
on the outcome trait based on their associations with outlier var-
iants (Table 1, Supplementary Data 1); (c) adjust the original
SNP–outcome estimates for the putative influences operating
through the candidate traits (Table 2); and (d) compare the changes
in heterogeneity in the MR estimates of the adjusted SNP–outcome
effects to standard outlier removal methods.

Example 1: Systolic blood pressure and coronary heart disease:
Blood pressure is a well-established risk factor for CHD. Random
effects IVW estimates indicated that higher SBP is causally
associated with higher risk of CHD (odds ratio [OR] per 1 SD:
1.76; 95% CI: 1.47, 2.10). While there was substantial heterogeneity
in this estimate (Q= 682.7 on 157 SNPs, p= 5.74 × 10−67), the
estimates from MR-Egger, weighted median and weighted mode
methods were consistent (Table 2). Seven of the 157 SNPs were
detected as strong outliers based on Q statistics. We identified
69 candidate traits that were associated with these outliers (p < 5 ×
10−8). We manually removed redundant traits and traits that are
similar to the exposure and the outcome (e.g. hypertension).
Among the remaining candidate traits, 15 were putatively causal
for CHD (Fig. 3a). After we applied LASSO regression, six traits
remained (Table 1): anthropometric measures (e.g. height), lipid
levels (e.g. cholesterol level) and self-reported ibuprofen use were
among the candidate traits that associated with CHD, which were
all uncovered due to two outliers (rs3184504 near SH2B3 and
rs9349279 near PHACTR).
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Fig. 2 Simulations comparing methods across different scenarios. We evaluated three scenarios: confounding pleiotropy, horizontal pleiotropy and mediated
pleiotropy (columns of graphs, with DAGs illustrating the scenarios. See Methods for full details). The x-axis of each graph represents the proportion of variants
used to instrument x that were similated to exhibit pleiotropic effects. Typically, 30 instruments were simulated directly for x but this varies across scenarios
where necessary. The y-axis of the first row of graphs represents the proportion of simulations that lead to unbiased effect estimates of x on y. The y-axis of the
second row of graphs represents the sensitivity and specificity of the analysis across the simulations, where the area under the receiving operating curve
(AUROC) represents the ability of the method to distinguish between simulations in which the causal effect of x on y is either null or not null. For all graphs,
higher y-axis values are better. Seven methods are evaluated at each simulation. Raw= IVW random effects estimates applied to all detected instruments;
Removed= either all outliers are removed, or only outliers detected to associate with a candidate trait; MVMR=multivariable MR using either candidate traits
detected to associate with any instrument or using only candidate traits associated with outlier instruments; Adjusted= adjusting SNP–outcome associations
for candidate traits applied either only to variants detected to be outliers, or all variants regardless of outlier status.
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We next adjusted the exposure–outcome association for the
detected pleiotropic pathways and obtained an adjusted IVW
estimate. The total heterogeneity, based on adjusting only these
two of 157 SNP effects, was reduced by 17% (Q= 567.6). The
effect estimate remained consistent with the original estimate, as
did the IVW estimates when removing all outliers, or just outliers
known to associate with candidate traits that associated with the
outcome (Fig. 4a). However, the width of the confidence interval
was substantially larger (including the null) after removing
outliers known to associate with candidate traits (1 OR per SD:
1.80; 95% CI: 0.56, 5.79).

Example 2: Urate and coronary heart disease: Here we show an
example with mixed findings from previous studies. The influence
of circulating urate levels on risk of coronary heart disease has
been under debate. Several MR studies have investigated the
inflated effect of urate on CHD, which appeared to be influenced
by pleiotropy20,21 . We re-estimated the associations here using a
range of MR methods. As has been previously reported the
estimate from IVW suggested a weak association between urate
and the risk of CHD using all variants (OR per 1 SD: 1.08; 95%
CI: 1.00, 1.17), while there was a large intercept in the MR-Egger
analysis (intercept= 1.02; 95% CI: 1.00, 1.03) with a much-
attenuated causal effect estimate (Table 2). The median and
mode-based estimates were also consistent with the MR-Egger
estimate, indicating weak support for urate having a causal
influence on CHD. Here, three variants were detected as outliers,

which associated with 61 candidate traits (p < 5 × 10−8). Among
those outliers, rs653178 and rs642803 were associated with 14
traits that had conditionally independent influences on the
outcome (Fig. 3b), including anthropometric measures (e.g. hip
circumference), cholesterol levels, diagnosis of thyroid disease
and smoking status.

Removing the outliers in the IVW analysis led to a more
precise (though slightly attenuated) estimate of the influence of
higher urate levels on CHD risk (OR per 1 SD: 1.05; 95% CI: 1.01,
1.10 and OR per 1 SD: 1.06; 95% CIs: 1.06, 1.12, respectively,
Table 2). The adjustment model indicated an attenuated IVW
estimate in comparison to the ‘raw’ approach, with confidence
intervals spanning the null (OR per 1 SD: 1.07; 95% CI: 0.99,
1.16) while the degree of heterogeneity was reduced by half by
accounting for the pleiotropic pathways through two outlier
SNPs. The adjusted scatter plot showed that outliers moved
towards the fitted line after controlling for the SNP effect on the
candidate traits (Fig. 4b). The results in this analysis suggest that
it is unlikely that urate has a strong causal influence on CHD.
Here, outlier removal appears to strengthen evidence that may
lead to a wrong conclusion.

Example 3: Sleep duration and schizophrenia: previous studies
have shown that sleep disorder is associated with schizophrenia22.
However, none of them confirmed the causality between sleep
disorder and schizophrenia. We observed weak evidence for any
association between sleep duration and schizophrenia (OR per 1

Table 1 Candidate traits associated with both exposure and outcome.

Outlier SNPs Nearest gene Category Phenotypesa N SNPsb Beta (95% CI)c

Empirical analysis 1: systolic blood pressure (mmHg) on coronary heart disease (Odds ratio)
rs3184504 SH2B3 Early development Birth weight of first child 40 −0.312 (−0.498, −0.126)

Anthropometric measures Standing height 577 −0.208 (−0.264, −0.152)
Lipid LDL cholesterol 78 0.393 (0.290, 0.497)

HDL cholesterol 86 −0.172 (−0.288, −0.055)
Total cholesterol 86 0.378 (0.271, 0.484)

rs9349379 PHACTR Medications Self-reported status of ibuprofen intake 2 −16.726 (−37.262, −3.811)
Empirical analysis 2: urate (mg/dl) and coronary heart disease (Odds ratio)
rs653178 ATXN2 Early development Birth weight of first child 31 0.347 (0.065, 0.628)

Birth weight 40 −0.312 (−0.498, −0.126)
Anthropometric measures Comparative height size at age 10 357 −0.248 (−0.342, −0.154)

Hip circumference 275 0.131 (0.030, 0.231)
Impedance of arm (left) 305 −0.263 (−0.380, −0.145)
Standing height 577 −0.208 (−0.264, −0.152)

Lipid HDL cholesterol 78 0.393 (0.290, 0.497)
LDL cholesterol 86 −0.172 (−0.288, −0.055)
Total cholesterol 86 0.378 (0.271, 0.484)

Disease hypothyroidism/myxoedema (Self-reported) 77 0.847 (0.211, 1.483)
Smoking Past tobacco smoking 41 −0.265 (−0.500, −0.029)
Medications Treatment/medication: levothyroxine sodium 51 1.231 (0.270, 2.191)

rs642803 OVOL1 Anthropometric measures Waist circumference 218 0.458 (0.352, 0.563)
Empirical analysis 3: sleep duration (hour/night) and schizophrenia (Odds ratio)
rs7764984 HIST1H2BJ Disease Malabsorption/coeliac disease (self-reported) 11 −8.401 (−12.842, −3.961)
rs13107325 SLC39A8 Anthropometric measures Impedance of leg (left) 282 0.179 (0.047, 0.311)

Memory Prospective memory result 2 4.493 (1.851, 7.135)
Empirical analysis 4: years of schooling (years) and body mass index (kg/m2)
rs6882046 LINC00461 Drinking Alcohol intake frequency 31 0.347 (0.065, 0.628)
rs4800490 NPC1 Drinking Alcohol intake frequency 31 0.347 (0.065, 0.628)

Exercise Usual walking pace 22 −1.595 (−2.364, −0.825)
rs8049439 ATXN2L Drinking Alcohol intake frequency 31 0.347 (0.065, 0.628)

SNP single-nucleotide polymorphism, VLDL very low-density lipoprotein, HDLC high-density lipoprotein cholesterol, LDLC low-density lipoprotein cholesterol, N SNPs number of SNPs, CI confidence
interval.
aCandidate traits that are associated with outliers (p < 5 × 10−8) and both exposure and outcome are listed. The listed traits were used in the adjusted model to investigate whether they are associated
with the hypothesised outcome.
bThe number of SNPs used for two-sample MR analysis of candidate traits on the outcome.
cThe results were presented as IVW beta coefficient (95% CI), derived from two-sample MR analyses. Empirical analysis 1: systolic blood pressure (mmHg) and coronary heart disease (log odds);
Empirical analysis 2: urate (mg/dl) and coronary heart disease (log odds); Empirical analysis 3: sleep duration (hour/night) and schizophrenia (log odds); Empirical analysis 4: years of schooling (years)
and body mass index (kg/m2).
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SD: 1.18; 95% CIs: 0.57, 2.45), but there was substantial
heterogeneity when all SNPs were used (Q= 204.8; p= 6.9 ×
10−26). Six outlier instruments were detected, which associated with
46 candidate traits (p < 5 × 10−8). Among those outliers, the SNPs
rs7764984 (near HIST1H2BJ) and rs13107325 (near SLC39A8) were
associated with three traits that putatively influenced the outcome:
self-reported coeliac disease, body composition (impedance of leg)
and memory function (Fig. 4c).

We re-estimated the original association accounting for the
detected outliers. The degree of heterogeneity was reduced
by 74% (Q= 54.1) when removing all six outliers and by 46%
(Q= 147.7) when adjusting for the two SNP effects that had
putative pleiotropic pathways. Both methods of outlier removal
and adjustment provide similar estimates in terms of direction,
while the magnitude of estimates differed. After removing
outliers, MR-Egger causal estimates were substantially larger
(OR per 1 SD= 2.43; 95% CI: 0.49, 12.16 and OR per 1 SD=
2.36; 95% CI: 0.25, 21.96, respectively) than those from the
method using all variants. IVW causal estimates from the
adjustment method were virtually identical with the original
estimates, with narrower CIs (OR per 1 SD= 1.18; 95% CI:
0.63, 2.20). While all methods indicate that sleep duration is
unlikely to be a major causal risk factor for schizophrenia,
pursuing outliers in the analysis provided putative indications
that coeliac disease and memory function may be risk factors
for schizophrenia (Fig. 4d).

Example 4: Years of schooling and body mass index: The
association of education and health outcome is well established in
social science23. Higher socioeconomic position is generally thought

to lead to a lower risk of obesity in high-income countries24,25. We
used 59 independent genetic instruments26 to estimate the influence
of years of schooling on BMI27 (Table 2). All MR methods
indicated that years of schooling has a causal beneficial effect on
BMI (e.g. IVW beta: −0.27; 95% CI: −0.39, −0.16), except the
estimate from MR Egger which had a very imprecise estimate (beta:
0.01; 95% CI: −0.67, 0.70), but the degree of heterogeneity was large
(Q= 211.9 on 59 SNPs; p= 2.20 × 10−8). Three outliers (rs6882046
near LINC00461, rs4800490 near NPC1, rs8049439 near ATXN2L)
were identified as contributors to heterogeneity, and they showed
associations (p < 5 × 10−8) with 48 candidate traits. Among those
candidate traits, two were associated with BMI (Fig. 3b): alcohol
intake frequency (which associated with all three outliers) and usual
walking pace.

We next re-estimated the influence of years of schooling on
BMI by accounting for outliers. Adjusting the outliers for
candidate trait pathways such as alcohol intake and usual walking
pace reduced heterogeneity by 15% and had a small reduction in
the confidence intervals while the point estimate remained
consistent (Table 1). By contrast, there was a 48% reduction in
heterogeneity when removing outliers. Point estimates remained
largely consistent across all outlier removal methods. However,
we note that Fig. 4b shows that one of the outliers (rs4800490,
near gene NPC1) on the scatter plot moved away from the fitted
line after adjusting for the pleiotropic pathway, indicating that if
this outlier is due to a pleiotropic pathway we have estimated its
indirect effect inaccurately or partially (e.g. where GWAS
summary statistics are not available to identify other influential
pleiotropic pathways).

Table 2 Results of empirical analyses with different IV estimators derived from various MR methods.

Methods All variants Estimates (95% CIs)

Removing outliers Removing candidate outliers Adjustment for candidate
outliers

Empirical analysis 1: systolic blood pressure (mmHg) on coronary heart disease (Odds ratio)
Heterogeneity (Q)a 682.7 (N SNPs= 157) 312.1 (N SNPs= 150) 448.7 (N SNPs= 155) 567.6 (N SNPs= 157)
IVW random effects 1.761 (1.474, 2.104) 1.876 (1.655, 2.125) 1.797 (0.558, 5.789) 1.706 (1.449, 2.008)
Egger random effects 2.641 (1.490, 4.679) 2.951 (1.970, 4.419) 2.206 (0.314, 15.472) –
Intercept 0.980 (0.969, 0.992) 0.990 (0.982, 0.998) 0.996 (0.988, 1.004) –
Weighted median 1.770 (1.528, 2.050) 1.782 (1.539, 2.065) 1.765 (0.576, 5.403) –
Weighted mode 1.770 (1.264, 2.479) 1.726 (1.218, 2.447) 1.740 (0.600, 5.043) –
Empirical analysis 2: urate (mg/dl) and coronary heart disease (Odds ratio)
Heterogeneity (Q) 81.6 (N SNPs= 24) 20.7 (N SNPs= 21) 33.4 (N SNPs= 22) 44.1 (N SNPs= 24)
IVW random effects 1.081 (0.996, 1.174) 1.054 (1.008, 1.103) 1.062 (1.057, 1.122) 1.070 (0.992, 1.155)
Egger random effects 0.952 (0.846, 1.071) 1.008 (0.937, 1.084) 0.990 (0.910, 1.077) –
Intercept 1.015 (1.003, 1.027) 1.006 (0.998, 1.014) 0.992 (0.984, 1.000) –
Weighted median 1.019 (0.961, 1.081) 1.016 (0.958, 1.078) 1.017 (0.961, 1.077) –
Weighted mode 1.028 (0.975, 1.084) 1.022 (0.966, 1.082) 1.025 (0.970, 1.083) –
Empirical analysis 3: sleep duration (hour/night) and schizophrenia (Odds ratio)
Heterogeneity (Q) 204.8 (N SNPs= 36) 54.1 (N SNPs= 30) 121.4 (N SNPs= 34) 147.7 (N SNPs= 36)
IVW random effects 1.184 (0.573, 2.445) 1.289 (0.828, 2.008) 1.215 (0.674, 2.192) 1.181 (0.634, 2.197)
Egger random effects 0.866 (0.056, 13.383) 2.428 (0.485, 12.158) 2.363 (0.254, 21.955) –
Intercept 1.004 (0.968, 1.042) 0.991 (0.969, 1.013) 0.991 (0.963, 1.020) –
Weighted median 1.276 (0.774, 2.104) 1.249 (0.746, 2.090) 1.250 (0.761, 2.052) –
Weighted mode 1.327 (0.679, 2.593) 1.504 (0.728, 3.105) 1.428 (0.702, 2.904) –
Empirical analysis 4: years of schooling (years) and body mass index (kg/m2)
Heterogeneity (Q) 211.9 (N SNPs= 59) 101.9 (N SNPs= 56) 101.9 (N SNPs= 56) 197.8 (N SNPs= 59)
IVW random effects −0.272 (−0.386, −0.158) −0.232 (−0.314, −0.150) −0.232 (−0.314, −0.150) −0.265 (−0.377, −0.153)
Egger random effects 0.013 (−0.677, 0.703) −0.404 (−0.910, 0.102) −0.404 (−0.910, 0.102) –
Intercept −0.005 (−0.017, 0.007) 0.003 (−0.005, 0.011) 0.003 (−0.005, 0.011) –
Weighted median −0.209 (−0.307, −0.111) −0.217 (−0.315, −0.119) −0.217 (−0.315, −0.119) –
Weighted mode −0.141 (−0.413, 0.131) −0.127 (−0.405, 0.151) −0.127 (−0.405, 0.151) –

N SNPs number of single nucleotide polymorphisms, 95% CIs 95% confidence intervals, IVW inverse variance weighted. Empirical analysis 1: systolic blood pressure (mmHg) and coronary heart disease
(log odds); Empirical analysis 2: urate (mg/dl) and coronary heart disease (log odds); Empirical analysis 3: sleep duration (hour/night) and schizophrenia (log odds); Empirical analysis 4: years of
schooling (years) and body mass index (kg/m2).
aHeterogeneity amongst the estimates were assessed based on contribution of individual variant to Cochran’s statistic.
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Discussion
The problem of instrumental variables being invalid due to
horizontal pleiotropy has received much attention in MR analysis.
Detecting and excluding such invalid instruments, based on

whether they appear to be outliers in the analysis, is now a
common strategy that exists in various forms7,8,14,15,28. We have
shown here that outlier removal could, in some circumstances,
compound rather than reduce bias, and misses an opportunity to
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Fig. 3 Causal associations between candidate exposures and hypothesised outcome. Each candidate trait related to an outlier from an analysis is represented
by a point in these plots. Along the x-axis, different phenotype groups are shown in different colours. The y-axis presents log transformed P value for each trait,
multipled by the sign of the causal effect estimate on the outcome. Filled circles in each category indicate the evidence of association between candidate traits
and exposure or outcome (using an FDR < 0.05 threshold; see Methods for discussion of this). a Empirical analysis 1: systolic blood pressure (mmHg) and
coronary heart disease (log odds). b Empirical analysis 2: urate (mg/dl) and coronary heart disease (log odds). c Empirical analysis 3: sleep duration (hour/
night) and schizophrenia (log odds). d Empirical analysis 4: years of schooling (years) and body mass index (kg/m2).
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better understand the traits under study. We developed the MR-
TRYX framework, which utilises the MR-Base database10 of
GWAS summary data to identify potential explanations for
outlying SNP instruments, and to improve estimates by
accounting for the pleiotropic pathways that give rise to them. We
have also demonstrated the use and interpretation of MR-TRYX
in four sets of empirical analyses.

To be effective, MR-TRYX depends upon the performance of
three methodological components: (i) detecting instruments that
exhibit horizontal pleiotropy; (ii) identifying the candidate traits
on the alternative pathways from the variant to the outcome; and
(iii) adequately estimating the effects of the candidate traits on the
outcome. Each of these components present difficult problems,

but they are all modular and build upon existing methods and
resources, and the MR-TRYX framework will naturally improve
as those methods and resources themselves improve. We will now
discuss the consequences of underperformance of each of these
components on the TRYX analysis.

First it is important to notice that a major motivation for
development of MR is that observational associations are often
deemed unreliable because it is impossible to prove that there is no
residual or unmeasured confounding biasing the effect estimate.
But somewhat ironically, we find ourselves in a situation now
where horizontal pleiotropy poses a similar challenge, in that
proving that it is either absent or perfectly balanced is impossible.
While several ‘pleiotropy-robust’ methods attempt to model out
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pleiotropic effects by assuming a particular model of genetic
architecture, another strategy is to adjust for horizontal pleiotropy,
by including in the same model the genetic effects on one or more
traits that are hypothesised to mediate the horizontal pleiotropic
pathways (e.g. MVMR29). The adjustment approach depends
upon those pathways being identified, which leaves it in a similar
predicament to observational associations in that we cannot easily
prove that all biasing pathways have been included in the model.
The MR-TRYX approach falls within this category also, but we
note that as fewer and fewer of the biasing pathways are identified
and available to the adjustment model, the adjusted estimate will
tend towards the IVW random effects estimate, which our
simulations indicate can have good performance compared to, e.g.,
outlier removal methods. So, while clearly not a panacea for causal
inference analysis, it is a valuable method within the MR toolkit,
and its efficacy has been demonstrated. There is also an important
contrast between outlier adjustment and multivariable MR in that
the formulation of the latter is to estimate the direct effect of each
exposure conditional on the others, whereas the former is to
obtain an unbiased estimate of the total effect. MVMR may fail to
distinguish between a pleiotropic model where the exposure (X)
does not influence the outcome (Y) but has instruments that
associate with another trait (A) which does influence Y, vs. a
causal model in which trait A mediates the causal effect of X on Y.
In both situations X will be deemed to be non-causal, despite it
being indirectly causal in the latter case. This issue is discussed in
detail elsewhere19. Here, outlier adjustment improves on the
matter because MVMR will nullify all instruments for the expo-
sure after adjusting for the mediator, leading to the exposure being
dropped. When only the outlier variants are adjusted, the risk of
erroneously removing the entire exposure signal is replaced by the
lesser risk of incorrectly nullifying the effects of the outliers only.
This will introduce heterogeneity and slight bias but is unlikely to
remove the exposure’s entire signal.

The classification of an outlier in MR analysis can be based on
the statistical estimates of how a SNP being included as an
instrument is due to being reverse causal (Steiger filtering)12,17,
the extent to which a single SNP disproportionately influences the
overall result (e.g. Cook’s distance), or most commonly the extent
to which an SNP contributes to heterogeneity (e.g. Cochran’s Q
statistic, MR-PRESSO, and implicitly in median- and mode-based
estimators)7,8,14,15. The philosophy of the latter two approaches is
that proving horizontal pleiotropy is impossible, but that it should
lead to outliers9. While a useful approximation, these approaches
have two main limitations. First, determining whether a SNP is an
outlier depends on the use of arbitrary thresholds, and this entails
a trade-off between specificity and sensitivity. Second, if most
variants are pleiotropic, then it is possible that the outlier SNPs
are the valid instruments. Such a scenario can arise for complex
traits such as gene expression or protein levels that have a few
large effects and many small effects. For example, for C-reactive
protein (CRP) levels, the SNP in the CRP gene region is likely the
only valid instrument in some analyses30. In this context, bias due
to horizontal pleiotropy cannot be avoided by selection of
instruments since this approach may generate more bias31. This is
supported by our simulation which demonstrates that in the
presence of extensive pleiotropy removing outliers increased FDR
and bias.

MR-TRYX should, in principle, avoid the problem of outlier
removal because instead of removing outliers in their entirety, it
attempts to eliminate the component of the SNP–outcome effect
that is due to horizontal pleiotropy. Hence, we avoid implicitly
cherry picking from among the SNPs to be used in the analysis,
and if we have low sensitivity (i.e. a more relaxed threshold for
outlier detection) it does not mean that there will be an unne-
cessary loss of power in the overall analysis. Previous work has

adjusted for the effect of pleiotropic phenotypes, but they treated
pleiotropic phenotypes as exogenous variables that are not asso-
ciated with the causal pathways of interest32. In MR-TRYX,
candidate traits are treated as endogenous variables to account for
the effect of the traits on the original association. Moreover, our
method is applicable in the two-sample context, whereas the
previous method requires individual level data. The problem of
outlier detection which remains in MR-TRYX could be side-
stepped by applying the adjustment approach to all SNPs irre-
spective of their contributions to heterogeneity.

Upon identification of potentially pleiotropic SNPs, MR-TRYX
can only account for these if the pathways through which
pleiotropy is acting can be identified. Detecting the pathways
depends on the density and coverage of the human phenome
available for the analysis. We use the MR-Base database of GWAS
summary results, which comprises several hundred independent
traits (we selected 605 traits from UK Biobank and 342 other
complex traits and diseases obtained from previous GWA stu-
dies). While being the largest available resource, it is certainly not
covering the whole human phenome. Therefore, even if a pleio-
tropic variant is detected correctly, it may not be possible to
adjust it away if the phenotype associated with the variant cannot
be identified. In the empirical analyses, often fewer than half of
the candidate traits were inferred to be associated with the out-
come. Yet, as we illustrated, MR-TRYX allows for an informative
analysis that could routinely be applied in MR analyses. Broad-
ening phenotype coverage is an on-going pursuit that will con-
tinually improve MR-TRYX analysis33. It is also important to
note that in estimating the adjusted effect, the SNP–outcome
standard error is liable to increase, which is one avenue through
which heterogeneity is reduced as its outlying contribution will be
down-weighted in the subsequent IVW analysis. We used radial
MR plots to illustrate this explicitly in Fig. 4.

MR-TRYX is an automated framework, and this comes
with several limitations in addition to those discussed already.
First, our LASSO extension to multivariable MR is used to
automate the selection of exposures that will be used for adjust-
ment. A shrinkage step of LASSO may increase the
SNP–exposure effect heterogeneity, which is necessary to assess
the power of multivariable MR34. Multivariable MR is adept at
establishing conditionally independent exposures but the reason
that some exposures have attenuated effects in comparison to
their total effects could be because (a) their total effects were
biased by pleiotropy or (b) they are mediated by the exposures
that are included in the model. Interpretations of (a) and (b) are
very different, because in the case of mediation the exposure is a
causal factor for the outcome. Second, we were primarily using
the multivariable approach for practical purposes to avoid having
multiple highly related exposures taken forward to the adjustment
step (e.g. multiple different measures of body composition such as
body weight and BMI). This approach worked effectively,
although a problem remains unsolved in automating the removal
of traits that are similar to the outcome. For example, if a trait
similar to the outcome CHD associates with an outlier and is
included in the multivariable analysis of multiple exposures
against CHD, then all the other putative exposures will be
dropped from the model. In the analyses presented we manually
removed traits that came up as candidate pleiotropic pathways
but were, in fact, synonymous with or closely related to the
outcome. Third, we note that heterogeneity does not necessarily
arise only because of pleiotropy, for example the non-
collapsibility of odds ratios will introduce heterogeneity auto-
matically which cannot be adjusted away through the TRYX
approach. Many other mechanisms exist that can lead to bias in
MR, as has been described in detail elsewhere. Fourth, SNPs can
appear to be outliers not through being pleiotropic, but through
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other mechanisms, such as population stratification (association
of alleles with phenotypes being confounded by ancestral popu-
lation), canalisation (developmental compensation to a genetic
change)2,35, or the influence on phenotype being changeable
across the life course36. Fifth, since MR-TRYX uses the resource
from MR-Base, it is recommended that the user acknowledge the
limitation and restriction of MR-Base10. For example, the popu-
lation should be the same for the exposure (or the candidate
traits) and the outcome traits to avoid mis-estimation of the
magnitude of the association. Also, sample overlap should be
recognised between the GWAS studies for the SNP–exposure and
SNP–outcome association to prevent effect estimates being
biased37. Users should consider modifying their analyses when
the limitations indicated above are avoidable. Sixth, in the case of
a binary outcome, there may be parametric restrictions on the
conditional causal odds ratio in our multivariable MR model
where the exposure effect is linear in the exposure on the log odds
ratio scale38. However, the two-stage estimator with a logistic
second-stage model still yields a valid test of the causal null
hypothesis38. Finally, it is necessary for the effects through the
identified pleiotropic pathways to be accurately estimated. This is
a recursive problem—MR-TRYX adjusts the SNP–outcome
effects based on the pleiotropic effect through the outlier SNP, but
it does this by introducing more SNPs into the analysis that
instrument the candidate traits. These new SNPs may themselves
exhibit pleiotropic effects that could lead to bias in the estimates
of the candidate traits on the outcome, requiring a second round
of TRYX-style candidate trait searches, and so on. In the example
of education level and BMI, adjustment for the pleiotropic
pathway failed to substantially reduce the degree of heterogeneity.
Further developments could involve recursively analysing alter-
native pathways. For example, Steiger filtering could be applied at
all stages of MR estimation to attempt to automatically remove
reverse causal instruments or those that arise due to confounding
pleiotropy17.

In this study, we demonstrated the use of MR-TRYX through
four examples of identifying putative pathways. In the first
empirical example (SBP on CHD), we illustrated the validity of
MR-TRYX to detect the traits that possibly influence the disease
outcome. Apart from SBP, MR-TRYX also detected well-
established risk factors for CHD including adiposity, cholesterol
levels, and standing height. An interesting finding from this
example is that headache-related traits (e.g. experience of pain
due to headache and self-reported status of ibuprofen intake)
were identified as candidate traits, which may influence the ori-
ginal association. In support of the putative finding for self-
reported ibuprofen use associating with CHD, we also found that
pain experienced in the last month (headache) and self-reported
migraine were associated with lower risk of CHD (OR per 1 SD:
0.33; 95% CI: 0.12, 0.89 and beta= 0.02; 95% CI: 0.0004, 0.65,
respectively). A previous study reported shared genetic risk
between headache (migraine) and CHD, suggesting a potential
role of migraine in vascular mechanisms39. An alternative
mechanism that could give rise to this association is that the effect
of pain on lower CHD risk is mediated through the use of
medications such as aspirin that have known protective effects
on CHD.

The example of urate and CHD demonstrated the benefit of the
adjustment method showing that the noise due to pleiotropy was
substantially reduced after correcting for the effect of candidate
traits. The presence of hypothyroidism and self-reported levo-
thyroxine sodium intake status were identified as putative risk
factors for risk of CHD, which is consistent with previous clinical
trials: thyroid dysfunction is associated with overall coronary
risk40, which can be reversed by levothyroxine therapy41. In the
education–BMI example, we showed that increased alcohol intake

and slower usual walking pace may influence obesity. These
identified traits have been reported as possible risk factors for
higher BMI and obesity42,43. Additionally, the example of sleep
duration and risk of schizophrenia suggested coeliac disease and
body composition as putative risk factors for schizophrenia. A
number of observational studies suggested that schizophrenia is
linked with body composition44 and coeliac disease45. MR of
binary exposures is often difficult to interpret because the
instrument effects are on liability to disease, not the presence or
absence of the disease. Hence, the association between coeliac
disease and schizophrenia may be better interpreted as an indi-
cation of shared disease aetiology. Nevertheless, this is a valuable
finding since the causal effect of those putative risk factors on risk
of schizophrenia has not been investigated using an MR
approach. Therefore, our example illustrates how outliers can be
used to identify alternative pathways, opening the door for
hypothesis-free MR approaches and a network-based approach to
disease.

In conclusion, we have introduced a framework to deal with
the bias from horizontal pleiotropy, and to identify putative risk
factors for outcomes in a more directed manner than typical
hypothesis-free analyses, by exploiting outliers. Heterogeneity is
widespread across MR analyses and so we are tapping into a
potential new reservoir of information for understanding the
aetiology of disease. The strategy is a departure from previous
ones dealing with pleiotropy—enlarging the problem by searching
across all traits for a better understanding of a specific
exposure–outcome hypothesis can be fruitful.

Methods
Outlier detection. Several outlier detection methods now exist that are based on
the contribution of each SNP to overall heterogeneity in an IVW meta-analysis46.
In order to estimate heterogeneity accurately, it is important to appropriately
weight the contribution of each SNP to the overall estimate. We used the approach
implemented in the RadialMR R package (https://github.com/WSpiller/RadialMR)
to detect outliers. Full details are provided elsewhere15, but briefly, we used the so-
called ‘modified 2nd order weighting’ approach to estimate total Cochran’s Q
statistic as a measure of heterogeneity, as well as the individual contributions of
each SNP, qi15. This has been shown to be comparable to the simulation-based
approach in MR-PRESSO, providing a well-calibrated test statistic for outlier status
whilst being computationally more efficient14,47. The probability of a SNP being an
outlier is calculated based on qi being chi-square distributed with one degree of
freedom. For demonstration purposes we adopted a p value threshold that was
Bonferroni corrected for the number of SNPs tested in analysis (p < 0.05/number of
SNPs). We are not, however, suggesting that this arbitrary threshold will neces-
sarily be optimal for identifying outliers, and users can apply other approaches or
thresholds through the MR-TRYX software.

Candidate trait detection. Traits associated with the detected outliers could
causally influence the outcome. MR-TRYX searches the MR-Base database to
identify the traits that have associations with the detected outliers. By default, we
limit the search to traits for which the GWAS results registered at MR-Base have
more than 500,000 SNPs and sample sizes exceeding 5000. Traits that have an
association with outlier SNPs at genome-wide p value threshold (p < 5 × 10−8; in
keeping with traditional GWAS thresholds used for instrument selection) are
regarded as potential risk factors for the outcome and defined as candidate traits.
Each candidate trait is tested for its influence on the original exposure (X) and
outcome (Y) traits (Fig. 1) using the IVW random effects model. We take forward
putative associations based on false discovery rate (FDR) < 0.05, where the null
hypothesis is true, but we note that the use of arbitrary thresholds is
problematic48,49, and we use them here to make high dimensional investigations
more manageable.

Assessing effect of the candidate traits on the outcome. Once candidate traits
are detected, we can identify instruments specifically for the candidate traits and
model how the exposure and candidate traits together associate with the outcome.
This involves the following process, which we go on to describe in full detail below:

1. Identify instruments for the candidate traits.
2. Estimate the influence of the candidate traits on y conditioning on x using

multivariable MR.

Suppose we have g0, gx1,…,gxE instruments for the exposure x where g0 is an
outlier in the x–y MR analysis due to an association with candidate trait P,
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and where E indicates the number of genetic variants for the exposure. Also, P has
g0, gP1,…,gPM genetic instruments, where M is the number of genetic variants for P.
To obtain the estimate of (py) uncontaminated by shared genetic effects between P
and x (Fig. 1a), we perform multivariable MR analysis34. We generate a combined
list of instruments for both x and P and clump them to obtain a set of independent
SNPs. The original outlier is removed from amongst these SNPs. We then obtain
the genetic effects of each of these SNPs on the exposure (gx), candidate trait (gp),
and outcome (gy). Finally, we estimate the causal influence of P on y conditioning
on x by regressing (gy) ~ (gx)+ (gp) weighted by the inverse of the variance of the
(gy) estimates. The whole process is automated within the TwoSampleMR R
package which connects to the MR-Base database.

In the case of an outlier SNP associating with many candidate traits we first
apply a modified form of multivariable MR, involving LASSO regression of (gy) ~
(gx)+ (gpi)+…+(gpp) and use cross-validation to obtain the shrinkage parameter
that minimises the mean squared error. We retain only the candidate traits that are
putatively associated with the outcome and have non-zero effects after shrinkage.
Then we apply remaining traits in a multivariable model with x against the
outcome, as described above34. We perform the LASSO step because many traits in
the MR-Base database have considerable overlap and redundancy, and the
statistical power of multivariable analysis depends on the heterogeneity between
the genetic effects on the exposure variables34. Using LASSO therefore automates
the removal of redundant traits (Supplementary Fig. 1, Supplementary Tables 2
and 3). We then obtain estimates of (py) that are conditionally independent of x
and jointly estimated using all remaining P traits by combining them in a
multivariable analysis on the outcome y. A detailed discussion of dealing with
multiple candidate traits per outlier SNP is presented in Supplementary Note 1.

Adjusting causal estimates for candidate-trait associations. An illustration of
how outliers arise in MR analyses is shown in Fig. 1. If a SNP g has some influence
on exposure x, and x has some influence on outcome y, the SNP effect on y is
expected to be (gy)= (gx)(xy), where (gx) is the SNP effect on x and (xy) is the
causal effect of x on y. Any substantive difference between (gy) and (gx)(xy) could
be due to an additional influence on y arising from the SNP’s effect through an
alternative pathway.

If a SNP influences a ‘candidate trait’, P, which in turn influences the outcome
(or the exposure and the outcome), then the SNP’s influence on the exposure and
the outcome will be a combination of its direct effects through x and indirect effects
through P34. If we have estimates of how the candidate trait influences the
outcome, then we can adjust the original SNP–outcome estimate to the effect that it
would have exhibited had it not been influencing the candidate trait. In other
words, we can obtain an adjusted SNP–outcome effect conditional on the
‘candidate-trait–exposure’ and ‘candidate-trait–outcome’ effects. If the SNP
influences P independent candidate traits (as selected from the LASSO step), then
the expected effect of the SNP on y is

gyð Þ ¼ gxð Þdxyð Þ þ
X
P

i¼1

gpið Þ dpiyð Þ: ð1Þ

Hence, the effect of the SNP on the outcome adjusted for alternative pathways
p1,…, pp is

gyð Þ�¼ dgyð Þ �
X
P

i¼1

gpið Þ piyð Þ: ð2Þ

We use parametric bootstraps to estimate the standard error of the gyð Þ�
estimate, where 1000 resamples of (gy), (gp), and (py) are obtained based on their

respective standard errors and the standard deviation of the resultant dgyð Þ�
estimate represents its standard error. Finally, an adjusted effect estimate of (xy)
due to SNP g is obtained through the Wald ratio.

dxyð Þ ¼ gyð Þ�
ðgxÞ : ð3Þ

Occasionally it might be possible that a candidate trait P is a redundant trait for
y, for example if the outcome is coronary heart disease, the outliers might detect
traits such as ‘medication for heart disease’ as a potential candidate trait. It would
make no sense to attempt to adjust the SNP–outcome association for a trait that is
essentially the same as the outcome, it would just nullify the association. We have
not yet developed an automated method to remove such traits, but we recommend
manually checking any traits that are selected for automated outlier adjustment.

Simulations. IVW effect estimates are liable to be biased when at least some of the
instrumenting SNPs exhibit horizontal pleiotropy, and those SNPs tend to con-
tribute disproportionately towards the heterogeneity in the effect estimate. We
conducted simulations to evaluate how different methods perform at estimating the
causal effect of x on y under different circumstances. The simulations are princi-
pally designed to evaluate the potential value of adjusting outliers for putative
explanatory pathways. Other aspects of the MR-TRYX framework, for example,
dealing with redundant traits in the GWAS database are dealt with separately
(Supplementary Note 1). In all circumstances there are 30 independent genetic
effects on x (Gx), and x either has no direct influence on y, or has a direct effect of
0.1 on y. For all simulations, we used 10,000 individuals, and repeated each

circumstance 1000 times. We summarised each scenario in two ways: (a) We
estimated the proportion of simulations that gave a biased estimate of the causal
effect of x on y (bxy). For each simulation we calculated the probability of the effect
estimate being substantially different from the true simulated effect based on
whether the true effect fell outside the 95% confidence interval of the estimate.
Then for the set of 1000 simulations, we calculated the proportion of estimates that
were ‘unbiased’. (b) We summarised the power and FDR by estimating the area
under the receiver operator curve, characterising the sensitivity and specificity of
each method at determining whether the true causal effect estimate was null or
non-null. Each simulation is conducted by first simulating data to satisfy the
parameters described below. We then search for instruments for x across all
simulated genetic variants and retain those that are significant after Bonferroni
correction, and applying the summary data-based methods based on the genetic
associations for the instruments on x and y. All genetic variants are simulated to be
Hardy Weinberg equilibrium with an allele frequency of 0.5.

We investigated three scenarios that could give rise to invalid instruments
(Fig. 2).

In the confounding pleiotropy scenario, there are instruments detected for x
that primarily influence a confounder variable (e.g. u1 that influences both x and y).
Therefore, the term ‘confounding pleiotropy’ indicates that the instrument’s
horizontal pleiotropic effect arises because it primarily influences a confounder of x
and y. See Fig. 2 (column 1) for a DAG describing the model. The confounder u1
has a set of independent genetic influences, Gu1, which may be detected as
instruments for x.

u1 ¼
X

mu1

j

Gu1;jbgu1;j þ eu1; ð4Þ

x ¼ u1bu1x þ
X

mx

j

Gx;jbgx;j þ ex ; ð5Þ

y ¼ u1bu1y þ xbxy þ ey : ð6Þ
Parameters: bgu1,j values are sampled for each SNP mu1 from a normal

distribution such that they explain 60% of the variance in u1. The value of bu1x is
chosen such that u1 explains 60% of the variance in x and 40% of the variance in y.
The values of bgx,j are sampled from a normal distribution for each of mx SNPs
such that they explain 20% of the variance in x. The causal effect bxy is set to either
0, or some value such that x explains 10% of the variance in y. Values for eu1,ex, and
ey are sampled from normal distributions with mean 0 and variances that are scaled
to satisfy the variances of all other parameters described for the model. Different
sets of simulations are run with different proportions of invalid instruments by
simulating different numbers of genetic variants directly influencing u1 or x:

mu1 2 f5; 10; 15; 20; 30g;

mx 2 f5; 10; 15; 20; 25; 30g:
In the case of horizontal pleiotropy, at least some of the instruments for x have

an independent effect on y that is mediated through some other pathway that does
not include x. In these simulations, the pleiotropic influence of each instrument, Gx,

i, is mediated by a different trait, u2,i

x ¼
X

mx

j

Gx;jbgx;j þ ex ; ð7Þ

u2;i ¼
X

mu2;i

j

Gu2;i;jbgu2;i;j þ Gx;ibplei;i þ eu2;i; ð8Þ

y ¼
X

mplei

i

u2;ibu2;i;y þ xbxy þ ey : ð9Þ

Parameters: Some number mplei 2 f5; 10; 15; 20; 25; 30g of 30 Gx instruments
for x are selected to have pleiotropic effects, such that they influence y each
mediated by an independent trait u2,i which itself has its own set of 30 direct
genetic influences Gu2,i. The bgu2,i,j values for the genetic effects on u2,i are sampled
from a normal distribution such that they explain 20% of the variance in u2,i. Each
pleiotropic Gx,i instrument has an influence on u2,i that explains 20% of its variance
(bplei,i). The influence of each u2,i on y is such that bu2,i,y is normally distributed
with mean 0 and variance 0.4. The outcome y is also influenced by x where the
causal effect bxy is set to either 0, or some value such that x explains 10% of the
variance in y. Values for eu2,i, ex, and ey are sampled from normal distributions with
mean 0 and variances that are scaled to satisfy the variances of all other parameters
described for the model.

Mediation pleiotropy is treated as in ‘confounding pleiotropy’, except the
pleiotropic relationships arise due to a trait that is mediating the path from x to y,
rather than confounding it (Fig. 2, column 3). Specifically, the influence of x on y is
at least partially mediated by another trait u3, and at least some of the instruments

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-14452-4 ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:1010 | https://doi.org/10.1038/s41467-020-14452-4 | www.nature.com/naturecommunications 11

www.nature.com/naturecommunications
www.nature.com/naturecommunications


for x have an independent pleiotropic influence on u3.

x ¼
X

mx

j

Gx;jbgx;j þ ex ; ð10Þ

u3 ¼
X

mu3

j

Gu3bgu3;j þ
X

mplei

i

Gx;ibplei;i þ xbx;u3 þ eu3; ð11Þ

y ¼ u3bu3;y þ xbxy þ ey : ð12Þ
Parameters: Some number mplei 2 f5; 10; 15; 20; 25; 30g of 30 Gx instruments

for x are selected to have pleiotropic effects, such that they influence u3 which itself
mediates an effect from x to y, and has its own set of 30 direct genetic influences
Gu3. The bgu3,j values for the genetic effects on u3 are sampled from a normal
distribution such that they explain 20% of the variance in u3. Each pleiotropic Gx,i
instrument has an influence on u3 such that bplei,i are sampled from a normal
distribution explaining 20% of the variance in u3 in total. The indirect influence of
x on y is generated such that x explains 30% of the variance in u3, and u3 explains
40% of the variance of y. The outcome y may also be influenced directly by x where
the causal effect bxy is set to either 0, or some value such that x explains 10% of the
variance in y. Values for eu3, ex, and ey are sampled from normal distributions with
mean 0 and variances that are scaled to satisfy the variances of all other parameters
described for the model.

In these simulations we ask: if we can identify the pathway through which an
outlier SNP has a horizontal pleiotropic effect, can adjustment for that pathway
improve the original exposure–outcome analysis? We assess the performance of the
following methods for each simulation.

(1) Raw, where all detected instruments are used in a standard IVW random
effects analysis.

(2) Adjusted SNP–outcome effects

(a) Where outlier SNPs are tested for association with all candidate traits
and adjusted for the effect of the candidate trait on the outcome using
MR-TRYX.

(b) Where attempts are made to adjust all detected instruments regardless
of outlier status.

(3) Removed instruments

(a) Where all detected outliers are removed.
(b) Where only outliers that are found to influence a candidate trait are

removed.

(4) Multivariable MR (MVMR)

(a) Where the traits selected to be included in the model are the candidate
traits associated with outliers.

(b) Where the traits selected to be included in the model are the candidate
traits associated with any of the detected instruments regardless of
outlier status.

Empirical analyses. As applied examples, we chose two robust findings and two
controversial findings that are potentially biased due to pleiotropy: (i) systolic
blood pressure (SBP) and coronary heart disease (CHD); (ii) urate and CHD; (iii)
sleep duration and schizophrenia; and (iv) education level (years of schooling) and
body mass index (BMI). Those examples were chosen based on previous
findings20,22,50,51 to illustrate how pleiotropic variants can be used to identify other
pathways and adjusted to estimate the causal effect of the original exposure on the
outcome independent of pleiotropic bias.

Summary statistics (β-coefficients and SEs) for the associations of the SNPs with
each exposure were obtained from the publicly available GWAS database
(Supplementary Table 1). Selected SNPs were harmonised for the analysis,
excluding palindromic SNPs and pruning for linkage disequilibrium (r2 < 0.001).
We primarily used the two-sample MR IVW method to obtain causal estimates
between exposures and outcomes allowing each SNP to have a different mean effect
(random effects model). A number of sensitivity analyses were applied to evaluate
the consistency of causal effect estimates under different models of pleiotropy
among the SNPs, including the MR-Egger6, weighted median, and weighted mode
approaches7,8.

Outliers were detected among the instruments for each exposure (p < 0.05/the
number of SNPs). We searched the MR-Base database to identify the candidate
traits that are associated with outliers (p < 5 × 10−8). We then performed
multivariable MR analysis to test which candidate trait can explain the
heterogeneity in the original exposure–outcome association. To perform
multivariable MR, more SNPs that instrument the candidate traits were introduced
into the analysis.

Subsequently we re-estimated the association of the original exposure and the
original outcome using different sets of instruments: (a) all SNPs (corresponding to
the raw method in our simulation), (b) outliers adjusted, (c) all outlier removed,
and (c) candidate outliers removed.

All analyses were conducted with the TwoSampleMR package (https://github.
com/MRCIEU/TwoSampleMR) and the MR-TRYX package (https://github.com/
explodecomputer/tryx) in R statistical software (ver 3.4.1). Detailed information are
provided in Supplementary Note 1 and the scripts used for the simulations and
empirical analyses can be found here https://github.com/explodecomputer/tryx-
analysis.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available from IEU GWAS database
(https://gwas.mrcieu.ac.uk/).

Code availability
A copy of the code used in this analysis is available at https://github.com/
explodecomputer/tryx and https://github.com/explodecomputer/tryx-analysis.
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