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Surface protein imputation from single cell
transcriptomes by deep neural networks
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While single cell RNA sequencing (scRNA-seq) is invaluable for studying cell populations,

cell-surface proteins are often integral markers of cellular function and serve as primary

targets for therapeutic intervention. Here we propose a transfer learning framework, single

cell Transcriptome to Protein prediction with deep neural network (cTP-net), to impute

surface protein abundances from scRNA-seq data by learning from existing single-cell multi-

omic resources.
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Recent technological advances allow the simultaneous pro-
filing, across many cells in parallel, of multiple omics fea-
tures in the same cell1–5. In particular, high throughput

quantification of the transcriptome and a selected panel of cell
surface proteins in the same cell is now feasible through the
REAP-seq and CITE-seq protocols2,3. Cell surface proteins can
serve as integral markers of specific cellular functions and pri-
mary targets for therapeutic intervention. Immunophenotyping
by cell surface proteins has been an indispensable tool in hema-
topoiesis, immunology and cancer research during the past 30
years. Yet, due to technological barriers and cost considerations,
most single cell studies, including Human Cell Atlas project6,
quantify the transcriptome only and do not have cell-matched
measurements of relevant surface proteins7,8. Sometimes, which
cell types and corresponding surface proteins are essential
become apparent only after exploration by scRNA-seq. This
motivates our inquiry of whether protein abundances in indivi-
dual cells can be accurately imputed by the cell’s transcriptome.

We propose cTP-net (single cell Transcriptome to Protein
prediction with deep neural network), a transfer learning
approach based on deep neural networks that imputes surface
protein abundances for scRNA-seq data. Through comprehensive
benchmark evaluations and applications to Human Cell Atlas and
acute myeloid leukemia (AML) data sets, we show that cTP-net
outperform existing methods and can transfer information from
training data to accurately impute 24 immunophenotype mar-
kers, which achieve a more detailed characterization of cellular
state and cellular phenotypes than transcriptome measurements
alone. cTP-net relies, for model training, on accumulating public
data of cells with paired transcriptome and surface protein
measurements.

Results
Method overview. An overview of cTP-net is shown in Fig. 1a.
Studies based on both CITE-seq and REAP-seq have shown that
the relative abundance of most surface proteins, at the level of
individual cells, is only weakly correlated with the relative
abundance of the RNA of its corresponding gene2,3,9. This is due
to technical factors such as RNA and protein measurement
error10, as well as inherent stochasticity in RNA processing,
translation and protein transport11–15. To accurately impute
surface protein abundance from scRNA-seq data, cTP-net
employs two steps: (1) denoising of the scRNA-seq count
matrix and (2) imputation based on the denoised data through a
transcriptome-protein mapping (Fig. 1a). The initial denoising,
by SAVER-X16, produces more accurate estimates of the RNA
transcript relative abundances for each cell. Compared to the raw
counts, the denoised relative expression values have significantly
improved correlation with their corresponding protein measure-
ment (Figs. 1b, S3a, S4a, b). Yet, for some surface proteins, such
as CD45RA, this correlation for denoised expression is still
extremely low.

The production of a surface protein from its corresponding
RNA transcript is a complicated process involving post-
transcriptional modifications and transport11, translation12,
post-translational modifications13, and protein trafficking14.
These processes depend on the state of the cell and the activities
of other genes9,15. To learn the mapping from a cell’s
transcriptome to the relative abundance of a given set of surface
proteins, cTP-net employs a multiple branch deep neural network
(MB-DNN, Supplementary Fig. 1). Deep neural networks have
recently shown success in modeling complex biological sys-
tems17,18, and more importantly, allow good generalization across
data sets16,19. Generalization performance is an important aspect
of cTP-net, as we would like to perform imputation on tissues

that do not exactly match the training data in cell type
composition. Details of the cTP-net model and training
procedure, as well as of alternative models and procedures that
we have tried, are in “Methods” section and Supplementary Note.

Imputation accuracy evaluation via random holdout. To
examine imputation accuracy, we first consider the ideal case
where imputation is conducted on cells of types that exactly
match those in training data. For benchmarking, we used per-
ipheral blood mononuclear cells (PBMCs) and cord blood
mononuclear cells (CBMCs) processed by CITE-seq and REAP-
seq2,3, described in Supplementary Table 1. We employed hold-
out method, where the cells in each data set were randomly
partitioned into two sets: a training set with 90% of the cells and a
holdout set with the remaining 10% of the cells for validation (see
the “Methods” section, Supplementary Fig. 2a). Each cell type is
well represented in both the training and validation sets. Figs. 1b
and S3a show that, for all proteins examined in the CITE-seq
PBMC data, cTP-net imputed abundances have much higher
correlation to the measured protein levels, as compared with the
denoised and raw RNA counts of the corresponding genes. We
obtained similar results for the CITE-seq CBMC and REAP-seq
PBMC data sets (Supplementary Fig. 4a, b).

Generalization accuracy to unseen cell types. Next, we con-
sidered the generalization accuracy of cTP-net, testing whether it
produces accurate imputations for cell types that are not present
in the training set. For each of the high-level cell types in each
data set in Supplementary Table 2, all cells of the given type are
held out during training, and cTP-net, trained on the rest of the
cells, was then used to impute protein abundances for the held
out cells (see the “Methods” section, Supplementary Fig. 2b). We
did this for each cell type and generated an “out-of-cell-type”
prediction for every cell.

Across all benchmarking data sets and all cell types, these out-
of-cell-type predictions still improve significantly upon the
corresponding RNA counts while slightly inferior in accuracy to
the traditional holdout validation predictions above (Figs. 2a and
S4a). This indicates that cTP-net provides informative predictions
on cell types not present during training, vastly improving upon
using the corresponding mRNA transcript abundance as proxy
for the protein level.

Generalization accuracy across tissue and lab protocol. To
further examine the case where cell types in the training and test
data are not perfectly aligned, we considered a scenario where the
model is applied to perform imputation on a tissue that differs
from the training data. We trained cTP-net on PBMCs and then
applied it to perform imputation on CBMCs, and vice versa, using
the data from Stoeckius et al.3 (see the “Methods” section). Cord
blood is expected to be enriched for stem cells and cells under-
going differentiation, whereas peripheral blood contains well-
differentiated cell types, and thus the two populations are com-
posed of different but related cell types. Figures 2a and S3b shows
the result on training on CBMC and then imputing on PBMC.
Imputing across tissue markedly improves the correlation to the
measured protein level, as compared to the denoised RNA of the
corresponding gene, but is worse than imputation produced by
model trained on the same population. For practical use, we have
trained a network using all cell populations combined, which
indeed achieves better accuracy than a network trained on each
separately (see the “Methods” section, Supplementary Figs. 3b
and 4a, c). The weights for this network are publicly available at
https://github.com/zhouzilu/cTPnet.
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We then tested whether cTP-net’s predictions are sensitive to
the laboratory protocol, and in particular, whether networks
trained using CITE-seq data yields good predictions by REAP-
seq’s standard, and vice versa. Using a benchmarking design
similar to above, we found that, in general, cTP-net maintains
good generalization power across these two protocols (Figs. 2a
and S3b).

Imputation accuracy comparison to Seurat v3. Seurat v3 anchor
transfer20 is a recent approach that uses cell alignment between

data sets to impute features for single cell data. For comparison,
we applied Seurat v3 anchor transfer to the holdout validation
and out-of-cell-type benchmarking scenarios above (see the
“Methods” section). In the validation scenario, we found the
performance of cTP-net and Seurat v3 to be comparable, with
cTP-net slightly better, as both methods can estimate protein
abundance by utilizing marker genes to identify the cell types.
cTP-net, however, vastly improves upon Seurat in the out-of-cell-
type scenario (Figs. 2a and S5a). This is because cTP-net’s neural
network, trained across a diversity of cell types, learns a direct
transcriptome-protein mapping that can more flexibly generalize
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Fig. 1 cTP-net analysis pipeline and imputation of example proteins. a Overview of cTP-net analysis pipeline, which learns a mapping from the denoised
scRNA-seq data to the relative abundance of surface proteins, capturing multi-gene features that reflect the cellular environment and related processes.
b For three example proteins (CD3, CD4, and CD8), cross-cell scatter and correlation (cor) of CITE-seq measured abundances vs. (1) raw RNA count
(“CD3s” and “CD8s” are sum of all genes that compose proteins CD3 and CD8, see Supplementary Table 6), (2) SAVER-X denoised RNA level, and (3)
cTP-net predicted protein abundance.
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Fig. 2 Benchmark evaluation on CITE-seq PBMC data. a Benchmark evaluation of cTP-net on CITE-seq PBMC data, with comparisons to Seurat v3, in
validation, across cell type, across tissue, and across technology scenarios. The table on the left shows the training scheme of each test, the heatmap
shows correlations with actual measured protein abundances. b Within cell type correlations between imputed and measured protein abundance on the
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to unseen cell types, while Seurat v3 depends on a nearest-
neighbor method that can only sample from the training dataset.
As shown by the cross-population and out-of-cell-type bench-
marking above, cTP-net does not require direct congruence of cell
types across training and test sets.

In addition to predictions on unseen cell type, cTP-net also
improves upon the existing state-of-the-art in capturing within
cell-type variation in protein abundance. As expected, within cell-
type variation is harder to predict, but cTP-net’s imputations
nevertheless achieve high correlations with measured protein
abundance for a subset of proteins and cell types (Supplementary
Figs. 3c and 4d). Compared to Seurat v3, cTP-net’s imputations
align more accurately with measured protein levels when zoomed
into cells of the same type (Figs. 2b and S5b); see Fig. 2c, for
example, CD11c in CD14−CD16+ monocytes, CD2 in CD8
T cells, and CD16 in dendritic cells. All of these surface proteins
have important biological function in the corresponding cell
types, as CD11c helps trigger respiratory burst in monocyte21,
CD2 co-stimulates molecule on T cells22 and CD16 differentiate
DC subpopulation23. The learning of such within-type hetero-
geneity gives cTP-net the potential to attain higher resolution in
the discovery and labeling of cell states.

Network interpretation and feature importance. What types of
features are being used by cTP-net to form its imputation? To
interpret the network, we conducted a permutation-based inter-
polation analysis, which calculates a permutation feature impor-
tance for each protein–gene pair (see the “Methods” section,
Supplementary Fig. 6a). Interpolation can be done using all cells,
or cells of a specific type, the latter allowing us to probe rela-
tionships that may be specific to a given cell type. Applying this
analysis to cTP-net trained on PBMC, we found that, at the level
of the general population that includes all cell types, the most
important genes for the prediction of each protein are those that
exhibit the highest cell-type specificity in expression (Supple-
mentary Table 3). This is because most of these surface proteins
are cell type markers, and thus when cells of all types are pooled
together, “cell type” is the key latent variable that underlies their
heterogeneity. In addition, as cell-type markers are usually
redundant and predictable by other genes, the model still per-
forms well after removing corresponding surface protein genes
during training (Supplementary Tables 5 and 6). Within cell type
interpolation, on the other hand, reveals genes related to RNA
processing, RNA binding, protein localization, and biosynthetic
processes, in addition to immune-related genes that differentiate
the immune cell sub-types (Supplementary Table 4). This analysis
shows that cTP-net combines different types of features, both cell
type markers and genes involved in RNA to protein conversion
and transport, to achieve multiscale imputation accuracy.

In addition, we analyzed the bottleneck layer with 128 nodes
before the network branched out to the protein-specific layers.
We performed dimension reduction (UMAP) directly on the
bottleneck layer intermediate output of 7000 PBMCs from CITE-
seq. Supplementary Fig. 6b shows that the cells are cleanly
separated into different clusters, representing cell types as well as
gradients in surface protein abundance. This confirms that the
bottleneck layer captures the essential information on cell stages
and transitions, and that each subsequent individual branch then
predicts its corresponding protein’s abundance.

Application to Human Cell Atlas. Having benchmarked cTP-
net’s generalization accuracy across immune cell types, tissues,
and technologies, we then applied the network trained on the
combined CITE-seq dataset of PBMCs,CBMCs, and bone mar-
row mononuclear cells (BMMCs)3,20 to perform imputation for

the Human Cell Atlas CBMC and BMMC data sets (Supple-
mentary Table 1). Figure 3 shows the raw RNA count and pre-
dicted surface protein abundance for 24 markers across 6023
BMMCs from sample MantonBM1 and 4176 CBMCs from
sample MantonCB1. (Similar plots for the other 7 BMMC and 7
CBMC samples are shown in Supplementary Figs. 8 and 9).
Similar to what was observed for actual measured protein
abundances in the CITE-seq and REAP-seq studies, the imputed
protein levels differ markedly from the RNA expression of its
corresponding gene, displaying higher contrast across cell types
and higher uniformity within cell type. Thus, the imputed protein
levels serve as interpretable intermediate features for the identi-
fication and labeling of cell states, defining cell subtypes more
clearly than the RNA levels of the corresponding marker genes.
For example, imputed CD4 and CD8 levels separate CD4+ T cells
from CD8+ T cells with high confidence. Further separation of
naïve T cells to memory T cells can be achieved through imputed
CD45RA/CD45RO abundance, as CD45RA is a naïve antigen and
CD45RO is a memory antigen. Consistent with flow cytometry
data, the large majority of CB T cells are naïve, whereas the BM T
cell population is more diverse24. Also, for BM B cells that have
high imputed CD19 levels, cTP-net allows us to confidently dis-
tinguish the Pre.B (CD38+, CD127+), immature B (CD38+,
CD79b+), memory B (CD27+), and naïve B cells (CD27−),
whose immunophenotypes have been well characterized25.

In addition, consider natural killer (NK) cells, in which the
proteins CD56 and CD16 serve as indicators for immunostimu-
latory effector functions, including an efficient cytotoxic capa-
city26,27. We observe an opposing gradient of imputed CD56 and
CD16 levels within transcriptomically derived NK cell clusters
that reveal CD56bright and CD56dim subsets, coherent with
previous studies3 (Fig. 2f, Supplementary Fig. 10, F-test: p-value=
1.667e–15). This pattern is not found in RNA abundances due to
low expression (F-test: p-value= 0.9377). Between CD56brignt and
CD56dim subsets, 7 out of 10 of previously studied differentially
expressed genes are significant in the single cell analysis (Fisher
test: p-value= 1.07e–04)3,28,29. This gradient in CD56 and CD16,
where decrease in CD56 is accompanied by increase in CD16, is
replicated across the 8 CBMC and 8 BMMC samples in HCA
(Supplementary Figs. 8–10).

Consider also the case of CD57, which is a marker for
terminally differentiated “senescent” cells in the T and NK cell
types. The imputed level of CD57 is lower in CBMCs (fetus’s
blood), and rises in BMMCs (95% quantile: bootstrap p-value <
1e–6). This is consistent with expectation since CD57+ NK cell
and T cell populations grow after birth and with ageing30–32

(Supplementary Figs. 8 and 9).
These results demonstrate how cTP-net, trained on a

combination of PBMCs, CBMCs, and BMMCs, can impute cell
type, cell stage, and tissue-specific protein signatures in new data
without explicitly being given the tissue of origin.

Application to AML. We further apply cTP-net to an AML data
set from van Galen et al.33. AML is a heterogeneous disease where
the diversity of malignant cell types partially recapitulates the
stages of myeloid development. Mapping the malignant cells in
AML to the differentiation stage of their cell of origin strongly
impacts tumor prognosis and treatment, as malignant cells that
originate from earlier stage progenitors have higher risk of
relapse34,35. In the original paper, the authors sequenced 7698
cells from five healthy donors to build a reference map of cell
types during myeloid development, and then mapped 30,712 cells
from 16 AML patients across multiple time points to this refer-
ence to identify the differentiation stage of the malignant cells.
Here, by imputing 24 immunophenotype markers with cTP-net,
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Fig. 3 Imputation results analysis on Human Cell Atlas data sets. a Left panel: UMAP visualization of MantonBM1 BMMCs T cell subpopulation based on
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subpopulation observed.
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we can directly characterize the differentiation stage of cell-of-
origin for the malignant cells.

Figure 4a is a UMAP plot based on imputed surface protein
abundance of five normal BMs and 12 Day 0 samples from AML
patients. The majority of the malignant cells as identified in the
original paper reside on the right half of the plot, which
recapitulate the myeloid differentiation trajectory as revealed by
the imputed values of canonical protein markers (Fig. 4b): From
CD34+ progenitors to CD38+ CD123+ cells in transition to
CD11c+ and CD14+ mature monocytes36. All of the malignant
cells have imputed protein values that place them along this
monocyte lineage. Using the transcriptome for visualization, on
the other hand, reveals large batch effects across samples, due to
both technical batch and biological differences (Supplementary
Fig. 11). Thus, unlike the imputed protein data, the transcrip-
tomic data cannot be directly combined without alignment.

Based on the trajectory revealed by the imputed protein levels,
we can determine the differentiation cell stage(s) for the
malignant cells of each tumor, according to which the 12 AML
patients can be divided into three categories: (1) AMLs of single
differentiation stage (AML420B, AML556, AML707B, and
AML916; Fig. 4c), (2) AMLs of two differentiation stages
(AML210A, AML328, AML419A, and AML475; Fig. 4e), and
(3) AMLs of many differentiation stages (AML1012, AML329,
AML870, and AML921A; Fig. 4f). This stage assignment is

consistent with the original study33. For example, AML419A
harbors two malignant cell types at opposite ends of the
monocyte differentiation axis, distinguished by imputed CD34
and CD11c levels as CD34+ CD11c− indicates progenitor-like
and CD34−CD11c+ indicates differentiated monocyte-like cells
(Fig. 4d, e). AML707B, which carries a RUNX1/RUNX1T1 fusion,
consists of cells of a specific cell stage that is distinct from the
normal myeloid trajectory (Fig. 4c). Such unique cell cluster was
due to hyper CD38 level in surface protein prediction (Fig. 4d).
Such hyper-CD38 levels have been reported in AMLs with
RUNX1/RUNX1T1 fusion37–39 and recent studies have also
shown that CD38 can be a potential target for adult AML40,41.

In this example, the imputed protein levels served as useful
features for trajectory visualization. This analysis also indicates
that even though cTP-net is currently trained only on normal
immune cells, it can reveal disease-specific signatures in
malignant cells and the imputed protein levels are useful for
characterizing tumor phenotypes.

Discussion
Taken together, our results demonstrate that cTP-net can leverage
existing CITE-seq and REAP-seq datasets to predict surface
protein relative abundances for new scRNA-seq data sets, and
that the predictions generalize to cell types that are absent from,
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but related to those in the training data. cTP-net was bench-
marked on PBMC and CBMC immune cells, showing good
generalization across tissues and technical protocols. On
Human Cell Atlas data, we show that the imputed surface protein
levels allow easy assignment of cells to known cell types, as well as
the revealing of intra-cell type gradients. We then demonstrate
that, even though cTP-net used only immune cells from healthy
individuals for training, it is able to impute immunophenotypes
for malignant cells from AML, and that these immunophenotypes
allow placement of the cells along the myeloid differentiation
trajectory. Furthermore, we show that cTP-net is able to impute
protein signatures in the malignant cells that are disease specific
and that are not easily detectable from the transcriptomic counts.

SAVER-X serves an important role in the training procedure of
cTP-net. As shown in Supplementary Table 5, without SAVER-X
denoising, the cTP-net prediction performance retracts by 0.02 in
correlation, more significant than any other parameter tweaks.
This discrepancy in performance is due to: (1) SAVER-X makes
use of the noise model to obtain estimates of the true RNA
counts. This helps cTP-net learn the underlining relationship
between true RNA counts and protein level, rather than the noisy
raw counts and protein levels, which varies more across data sets
and thus does not generalize well. (2) By denoising the scRNA-
seq, the input for learning the RNA–protein relationship is less
sparse. Manifold learning on a more continuous input space
usually works better42,43. (3) Comparing to other autoencoder-
based denoising method, SAVER-X performs Bayesian shrinkage
on top of autoencoder framework to prevent over-imputation
(over-smoothing)16,44.

Despite these promising results, cTP-net has limitations: (1)
cTP-net can only apply to count-based expression input (UMI-
based). CITE-seq data with TPM and RPKM expression metric is
not available for testing. Thus, the prediction accuracy is
unknown. (2) The generalization ability of cTP-net to unrelated
cell types has limitations. Even though the final cTP-net model,
trained on immune cells, has good results on immune cells from
diverse settings, we have not tried to perform imputation of these
immune-related markers on cells that are not of the hemato-
poietic lineage.

With the accumulation of publicly available CITE-seq and
REAP-seq data across diverse proteins, cell types, and conditions,
cTP-net can be retrained to accommodate more protein targets
and improve in generalization accuracy. The possibility of such
cross-omic transfer learning underscores the need for more
diverse multi-omic cell atlases, and demonstrate how such
resources can be used to enhance future studies. The cTP-net
package is available both in Python and R at https://github.com/
zhouzilu/cTPnet.

Methods
Data sets and pre-processing. Supplementary Table 1 summarizes the five data
sets analyzed in this study: CITE-PBMC, CITE-CBMC, REAP-PBMC, HCA-
CBMC, and HCA-BMMC. Among these, CITE-PBMC, CITE-CBMC, and REAP-
PBMC have paired scRNA-seq and surface protein counts, while HCA-CBMC and
HCA-BMMC have only scRNA-seq counts. For all scRNA-seq data sets, low-
quality gene (<10 counts across cells) and low-quality cells (<200 genes detected)
are removed, and the count matrix (C) for all remaining cells and genes is used as
input for denoising. scRNA data denoising was performed with SAVER-X using
default parameters. Denoised counts (Λ) were further transformed with Seurat
default LogNormalize function

Xij ¼ log
Λij � 10; 000

mj

 !
ð1Þ

where Λij is the denoised molecule count of gene i in cell j, and mj is the sum of all
molecule counts of cell j. The normalized denoised count matrix X is the training
input for the subsequent multiple branch neural network. For the surface protein
counts, we adopted the relative abundance transformation from Stoeckius et al.3.

For each cell c

yc ¼ ln
p1c
g pcð Þ
� �

; ln
p2c
g pcð Þ
� �

¼ ln
pdc
gðpcÞ
� �� �

ð2Þ

where pc is vector of antibody-derived tags (ADT) counts, and g(Pc) is the geo-
metric mean of pc. The network trained using this transformed relative protein
abundance as the response vector yields better prediction accuracy than the net-
work trained using raw protein barcode counts.

cTP-net neural network structure and training parameters. Supplementary
Fig. 1 shows the structure of cTP-net. Here, we have a normalized expression
matrix X of N cells and D genes, and a normalized protein abundance matrix Y of
the same N cells and d surface proteins. Let us denote cTP-net as a function F that
maps from RD to Rd . Starting from the input layer, with dimension equals to
number of genes D, the first internal layer has dimension 1000, followed by a
second internal layer with dimension 128. These two layers are designed to learn
and encode features that are shared across proteins, such as features that are
informative for cell type, cell state, and common processes such as cell cycle. The
remaining layers are protein specific, with 64 nodes for each protein that feed into a
one node output layer giving the imputed value. All layers except the last layer are
fully connected (FC) with rectified linear unit (ReLU) activation function45, while
the last layer is a FC layer with identity activation function for output. The
objective function here is

argmin
F

Y� FðXÞj j1 ð3Þ

where the loss is L1 norm. The objective function was optimized stochastically with
Adam46 with learning rate set to 10e–5 for 139 epochs (cross-validation). Other
variations of cTP-net, which we found to have inferior performance, are illustrated
in more details in Supplementary Note.

Benchmarking procedure. Supplementary Fig. 2a shows the validation set testing
procedure. Given limited amount of data, we keep only 10% of the cells as the
testing set, and use the other 90% of the cells for training. The optimal model was
selected based on the testing error.

We perform the out-of-cell type prediction based on Supplementary Fig. 2b.
This procedure mimics cross-validation, except that, instead of selecting the test set
cells randomly, we partition the cells by their cell types. Iteratively, we designate all
cells of a given cell type for testing and use the remaining cells for training. We
then perform prediction on the hold-out cell type using the model trained on all
other cell types. In the end, every cell has been tested once and has the
corresponding predictions. In the benchmark against the validation set testing
procedure, we limit comparisons to the same cells that were in the validation set in
the holdout scheme to account for variations between subsets.

To apply the models we trained in validation set testing procedure to different
cell populations and technologies, the inputs have to be in the same feature space.
Even though all data sets considered are from human cells, the list of genes differs
between experiments and technologies. Genes that are in the training data but not
in the testing data are filled with zeros. Because cTP-net utilizes overrepresented
number of genes to predict the surface proteins level, having a small number of
genes missing has little effect on the performance. After prediction, we selected
only the shared proteins between two data sets for comparison.

cTP-net interpolation. To better interpret the relationships that the neural net-
work is learning, we developed a permutation-based interpolation scheme that can
calculate an influence score epi for each gene in the imputation of each protein
(Supplementary Fig. 6). The idea is to assess how much changing the expression
value of certain genes in the training data affects the training errors for a given
model F. In each epoch, we interpolate all of the genes in a stochastic manner. Let
us denote X as the expression matrix (N by G matrix, where N is the number of
cells and G is number of genes), Y as protein abundance matrix and L as the loss
function. The algorithm goes as follows (Supplementary Fig. 6):

Estimate the original model error ϵorig ¼ LðY; FðXÞÞ.
Sampling batch of genes denote by. Generate expression matrix Xperm by

permuting genes in gs in the data X. This breaks the association between gs and
protein abundance Y, i.e. the cell order within gs does not coordinate with protein
abundance Y.

Estimate error ϵperm ¼ LðY; FðXpermÞÞ based on the predictions of the
permuted data.

Calculate permutation feature importance Δgs ¼ jϵorig � ϵpermj of gene set gs to
this model F.

We set batch size as 100 with 500 epochs. Furthermore, by picking different
cells to interpolate, we could identify gene influence score in different cell types. For
example, if matrix X belongs to a given cell type, the cell type-specific genes are
consistent across cells of the given cell type, and thus, the permutation will not
influence these genes. Genes that influence the surface protein abundance within
the cell type, such as cell cycle genes and protein synthesis genes, tend to be
rewarded with high influence scores in such a cell-type-specific interpolation
analysis.
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For the top 100 highest influence scored genes from the following scenarios in
CITE-PBMC: (1) CD45RA in CD14−CD16+ monocytes, (2) CD11c in CD14
−CD16+ monocytes, (3) CD45RA in CD8 T cells, (4) CD45RA in CD4 T cells, (5)
CD11c in CD14+CD16+ monocytes, (6) CD45RA in dendritic cells, and (7)
CD11c in dendritic cells, we employed a Gene Ontology analysis47 which identify
top 10 pathways based on GO gene sets with FDR q-value < 0.05 as significant
(Supplementary Table 4).

Seurat anchor-transfer analysis. We compared cTP-net with an anchor-based
transfer-learning method developed in Seurat v320. For Seurat v3, RNA count data
are normalized by LogNormalization method, while surface protein counts are
normalized by centered log-ratio (CLR) method. In validation test setting, we used
the same cells for training and testing as in cTP-net so as to be directly comparable
to cTP-net. For out-of-cell type prediction, default parameters did not work for
several cell types in anchor-transfer step, because, for those cell types, there are few
anchors shared between the training and testing sets. To overcome this, we reduced
the number of anchors iteratively until the function ran successfully.

HCA data analysis. HCA RNA-seq data sets are pre-processed as discussed above,
resulting in log-normalized denoised values. We applied default pipeline of Seurat
and generated UMAP plot for both data sets (Supplementary Fig. 7). Cells are
clearly clustered by individuals, indicating strong batch effects. As a result, the
following analysis was performed on cells of each individual. Major cell types were
determined by known markers.

From the log-normalized denoised expression value, we predict the surface
protein abundance with cTP-net model trained jointly on CITE-seq PBMC,
CBMC, and BMMC data sets. We embedded 24 surface protein abundance across
16 individuals on t-SNE plot, showing consistent results with cell type information
(Supplementary Figs. 8 and 9).

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Public datasets for training and evaluating cTP-net can be found at National Center for
Biotechnology Information Gene Expression Omnibus (GEO) under accession number
GSE100866, GSE100501, and GSE128639 respectively.

Code availability
cTP-net package are publicly available as both an open-source R package at https://
github.com/zhouzilu/cTPnet with license GPL-3.0 and an open-source python package at
https://github.com/zhouzilu/ctpnetpy with license GPL-3.0.
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