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Reversible interconversion between methanol-
diamine and diamide for hydrogen storage based
on manganese catalyzed (de)hydrogenation
Zhihui Shao1, Yang Li1,2, Chenguang Liu1, Wenying Ai1, Shu-Ping Luo2 & Qiang Liu 1,3*

The development of cost-effective, sustainable, and efficient catalysts for liquid organic

hydrogen carrier systems is a significant goal. However, all the reported liquid organic

hydrogen carrier systems relied on the use of precious metal catalysts. Herein, a liquid

organic hydrogen carrier system based on non-noble metal catalysis was established. The

Mn-catalyzed dehydrogenative coupling of methanol and N,N’-dimethylethylenediamine to

form N,N’-(ethane-1,2-diyl)bis(N-methylformamide), and the reverse hydrogenation reaction

constitute a hydrogen storage system with a theoretical hydrogen capacity of 5.3 wt%. A

rechargeable hydrogen storage could be achieved by a subsequent hydrogenation of the

resulting dehydrogenation mixture to regenerate the H2-rich compound. The maximum

selectivity for the dehydrogenative amide formation was 97%.

https://doi.org/10.1038/s41467-020-14380-3 OPEN

1 Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China. 2 State Key Laboratory Breeding Base of
Green Chemistry-Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, China. 3 School of Biotechnology and Health Sciences, Wuyi
University, Jiangmen, Guangdong 529090, China. *email: qiang_liu@mail.tsinghua.edu.cn

NATURE COMMUNICATIONS |          (2020) 11:591 | https://doi.org/10.1038/s41467-020-14380-3 | www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0002-8402-029X
http://orcid.org/0000-0002-8402-029X
http://orcid.org/0000-0002-8402-029X
http://orcid.org/0000-0002-8402-029X
http://orcid.org/0000-0002-8402-029X
mailto:qiang_liu@mail.tsinghua.edu.cn
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Hydrogen has long been regarded as one of the most pro-
mising sustainable energy carriers because it has a high
mass energy density, can be efficiently transformed into

electricity by fuel cells, and generates only water during com-
bustion1–4. In recent years, significant progress has been made in
the generation of hydrogen from renewable energy sources and
the development of efficient hydrogen-powered fuel cells5–8.
However, hydrogen has not been widely used as an energy source
because its storage is challenging. There are economic and safety
concerns associated with the compressed and cryogenic liquid
hydrogen9,10, therefore reversible hydrogen storage in chemical
bonds via catalytic hydrogenation/dehydrogenation reactions is a
promising technique11,12. Formic acid13–16, formaldehyde17,18,
and methanol19–23 have been extensively studied as molecular
hydrogen carriers. However, H2 release from these compounds
involves generation of CO2, and H2 cannot be readily reloaded
because the liquid carriers are consumed. The need to use stoi-
chiometric amounts of bases and the low hydrogen capacity of
formic acid (4.3 wt%) further limit such approaches. To develop
more efficient hydrogen storage systems, liquid organic hydrogen
carriers (LOHCs) have emerged as a powerful strategy, in which a
pair of H2-rich and H2-lean liquid organic compounds can
repeatedly release and unload H2

24–28. Early LOHCs studies
focused on the dehydrogenation of cycloalkanes and the reverse
hydrogenation of aromatics, but harsh reaction conditions
(usually >250 °C) were required29,30. To lower the endothermi-
city, LOHCs systems based on nitrogen-containing organic
hydrides24, e.g., N-heterocycles, were developed. These have high
H2 capacities, in the range 5.3–7.3 wt%31–37. These systems can
be promoted by various homogeneous and heterogeneous cata-
lysts38–40 under relatively mild conditions (Fig. 1a). Besides,
the Milstein and Prakash groups reported LOHCs systems
via Ru-catalyzed amide bond formation and hydrogenation
(Fig. 1b)41–45. Notably, widely available and inexpensive amines
and alcohols can be used as hydrogen carriers in these systems.
Despite the favorable thermodynamics, usually <80% selectivity
for dehydrogenative amide bond formation was reached43–45.

In addition to identifying renewable and inexpensive liquid
molecular hydrogen carriers, the development of cost-effective,
sustainable, and efficient catalysts for LOHCs systems is a sig-
nificant goal. To the best of our knowledge, all the reported
LOHCs systems relied on the use of precious metal catalysts. The
development of efficient catalytic systems based on earth-
abundant non-noble metals is therefore important. On the
basis of recent achievements in Mn-catalyzed hydrogenation and
dehydrogenation reactions46–60, we have developed the LOHCs
system based on Mn-catalyzed dehydrogenative amide bond
formation and the reverse hydrogenation reaction. Remarkably,
the maximum selectivity for the dehydrogenative condensation
of methanol and N,N’-dimethylethylenediamine (DMEDA) to
form N,N’-(ethane-1,2-diyl)bis(N-methylformamide) was 97%
(Fig. 1c).

Results and discussion
Optimization of the reaction conditions. We commenced the
investigation by exploring the catalytic activities of a series of
NNP- and PNP-pincer Mn complexes I to VII in the dehy-
drogenative condensation of DMEDA (1) and methanol
(Table 1). In the presence of PhPNP-complex VI (2 mol%), and
tBuOK (4 mol%) in 1,4-dioxane, full conversion of 1 was
achieved along with formation of the desired product N,N’-
(ethane-1,2-diyl)bis(N-methylformamide) (2a) in 86% yield
(Table 1, entry 6). N-methyl-N-[2-(methylamino)ethyl]for-
mamide (2b) and 3-methyl-1-methyleneimidazolidin-1-ium (3)
were generated in 9% and 5% yield, respectively. Under the same

conditions, the more electron-rich iPrPNP-complex V gave much
lower selectivity for 2a (Table 1, entry 5), and the NNP-
complexes I–IV showed no activity (Table 1, entries 1–4).

Various reaction parameters were screened to further improve
the efficiency of this transformation (Table 2). Use of <6 equiv of
MeOH decreased the selectivity for 2a and increased production
of monoamide 2b (Table 2, entry 3). The added base also crucially
affected the selectivity. The best choice was tBuOK; tBuONa gave
much worse results (Table 2, entries 1 and 4). When a weaker
base, i.e., KOH, was used, the reaction yield of 2a decreased to
71% (Table 2, entry 6). Concentration screening showed that
0.42–0.63M 1 gave the highest selectivity for the desired product
2a (Table 2, entries 1 and 8). Decreasing the reaction temperature
from 165 to 150 °C diminished the reaction efficiency (Table 2,
entry 10). We assumed that H2 generated during the reaction
would accumulate in the closed system, and this would inhibit
dehydrogenation. To verify this assumption, the evolved gas was
released from the reaction system after reaction for 2 h, and the
reaction was then performed for a further 6 h at 165 °C. The yield
of 2a increased to 97% (Table 2, entry 11). The evolved gas
(24mL) was collected in a gas buret. GC analysis showed that the
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Fig. 1 Hydrogen storage systems based on N-containing organic hydrides.
a Heterocycles hydrogenation and dehydrogenation reactions. b Amide
bond formation and Hydrogenation reactions. c Mn-catalyzed
hydrogenation and dehydrogenation reactions.
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Table 1 Mn-catalyzed dehydrogenative condensation of 1 and CH3OH.

Reaction conditions: 1 (0.25 mmol), MeOH (1.5 mmol), Mn (2 mol%), tBuOK (4mol%) and 1,4-dioxane (0.4 ml) were reacted at 165 °C for 16 h. The conversion and yield were determined by NMR and
GC using 1,1,2,2-tetrachloroethane as the internal standard.
aThe yield of H2 was calculated on the basis of maximum H2 evolution with respect to 100% conversion of 1–2a (4 mmol H2 per mmol of 1). The H2 purity is shown in parentheses.

Table 2 Optimization of dehydrogenative condensation of 1a and CH3OH.

Dioxane (b mL)
165 °C, 16 h

N
H

H
N N

N

CHO
N N

3
R

2a (R=CHO)
2b (R=H)

 MeOH

n equiv.1

2 mol% VI
4 mol% Base

+ H2

Entry n Base b [mL] 2a [%] 2b [%] 3 [%] H2 [%]d

1 6 tBuOK 0.4 86 9 5 92 (95.5%)
2 8 tBuOK 0.4 86 5 8 89 (94.8%)
3 4 tBuOK 0.4 80 13 7 85 (96.7%)
4 6 tBuONa 0.4 30 22 46 48 (>99.9%)
5 6 KOMe 0.4 85 10 5 90 (98.5%)
6 6 KOH 0.4 71 14 15 80 (99.8%)
7 6 tBuOK 0.2 77 8 15 82 (96.4%)
8 6 tBuOK 0.6 86 11 3 90 (93.5%)
9 6 tBuOK 1 77 17 5 88 (90.2%)
10a 6 tBuOK 0.4 76 14 7 84 (97.8%)
11b 6 tBuOK 0.4 97 <1 2 98 (98.7%)
12c 6 tBuOK 0.4 93 5 2 90 (>99.9%)

Reaction conditions: 1 (0.25 mmol), VI (2 mol%), MeOH, tBuOK (4mol%), and dioxane were reacted at 165 °C for 16 h. The conversion and yield were determined by NMR and GC, respectively
aThe reaction temperature was 150 °C.
bAfter 2 h, the reaction mixture was cooled to room temperature and the evolved gas was released from the system. The temperature was then increased to 165 °C and the reaction was performed for a further 6 h.
cVI (1mol%) and tBuOK (4mol%) were used. After 2 h, the reaction mixture was cooled to room temperature and the evolved gas was released from the system. After addition of VI (1mol%), the temperature
was increased to 165 °C and the reaction was performed for a further 6 h.
dThe yield of H2 was calculated on the basis of maximum H2 evolution with respect to 100% conversion of 1–2a (4mmol H2 per mmol of 1). The H2 purity is shown in parentheses.
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H2 purity in the gas mixture was 98.7% and the yield was 98%. In
addition to H2, 1.3% CO was detected as a result of decarbonyla-
tion of the formaldehyde intermediate. The generation of CO was
completely suppressed by adding 2mol% of catalyst VI in two
equal portions, before and after gas release, after reaction for 2 h.
This procedure provided released H2 of purity over 99.9% (Table 2,
entry 12).

We then turned our attention to the reverse reaction,
hydrogenation of 2a to diamine 1 (Table 3). The NNP-pincer
Mn catalyst IV was found to be the most active catalyst for this
transformation (Supplementary Table 5). A decrease in the H2

pressure from 60 to 40 bar lowered conversion of the mono-
amide 2b to the fully hydrogenated product 1 at 150 °C (Table 3,
entry 2). Notably, this hydrogenation reaction proceeded
smoothly at 110 °C, with an excellent yield of 1, when 2 mol%
of catalyst IV and 2.5 mol% of tBuOK were used (Table 3, entry
8–10). For 0.25 mmol-scale reactions, a larger amount of base
was needed to achieve the same level of selectivity (Table 3,
entries 1 and 6). The use of a single catalyst for both the
dehydrogenation and hydrogenation reactions is desirable
toward practical applications. We therefore optimized the
hydrogenation of 2a with catalyst VI, the same catalyst as was
used in the dehydrogenation reaction (Supplementary Table 8).
Under harsh reaction conditions (180 °C, 80 bar of H2), a 94%
yield of 1 was obtained with complex VI as the catalyst (Table 3,
entry 11).

After establishing the optimum reaction conditions for both
the dehydrogenative coupling of methanol and 1, and the
hydrogenation of diamide 2a, we performed Mn-catalyzed
reversible interconversion between 1/methanol and 2a (Fig. 2).
The cycle began with dehydrogenation using 2 mol% VI as the
catalyst; this resulted in full conversion of 1. The crude reaction
mixture, 2 mol% IV, and 2.5 mol% tBuOK were transferred to an
autoclave for the reverse hydrogenation. The catalytic activity of
IV was not decreased by the presence of the dehydrogenation
catalyst VI. After one cycle, diamine 1 was recovered in 95%
yield. Moreover, the reversible hydrogenation and dehydrogena-
tion cycle could also be realized using the same catalyst VI, albeit
with harsh reaction conditions for the H2-loading process.
Compared with the corresponding LOHC system based on Ru-
catalysis43, the Mn-catalyzed dehydrogenation process in this
system required a higher reaction temperature (165 °C vs 120 °C)
and catalyst loading (2 mol% vs 1 mol%), which has yet to be
improved in the future works.

Control experiments. Under the optimized reaction conditions
for catalyst VI bearing the N–H moiety, the corresponding N-
methyl-substituted complex VII showed no reactivity for the
dehydrogenative condensation of 1 and methanol, and gave only
7% conversion for the hydrogenation of 2a to 2b. (Fig. 3) These
results demonstrate the crucial role of the N–H group in
metal–ligand-cooperation for the (de)hydrogenation process.
Furthermore, mercury and ligand poisoning experiments indi-
cated that both hydrogenation and dehydrogenation reaction
processes proceed with involvement of homogeneous molecular
catalysts (Supplementary Tables 11–13).

Further mechanistic insights into the dehydrogenative conden-
sation reaction were obtained by performing a series of control
experiments (Fig. 4). The Mn complex VI-catalyzed dehydrogena-
tion of methanol in the absence of diamine 1 only produced methyl
formate (4) in 4% yield. This shows that dehydrogenative ester
formation is unfavorable, therefore aminolysis of 4 with 1 is not the

Table 3 Optimization of Hydrogenation of 2a.

N
N

O

O

H
H

2a
n mmol

Dioxane (b mL)

H
N

N 3

R
2b (R=CHO)
1 (R=H)

2 mol% IV
a mol% tBuOKH2

60 bar T °C, 16 h

Entry n [mmol] a [mol%] b [mL] T [oC] 2b [%] 1 [%] 3 [%]

1 0.25 20 1 150 0 99 0
2a 0.25 20 1 150 37 61 0
3 0.25 20 1 130 0 99 0
4 0.25 20 1 110 0 99 0
5 0.25 20 1 90 50 38 8
6 0.25 10 1 110 15 76 0
7 0.5 10 2 110 0 99 0
8 0.5 2.5 2 110 0 99 0
9 0.5 2.5 1 110 0 99 0
10 0.5 2.5 0.4 110 0 99 0
11b 0.5 5 1 180 5 94 0

Reaction conditions: 2a, IV (2 mol%), tBuOK, and 1,4-dioxane were reacted under 60 bar of H2

at a given temperature for 16 h. The conversion and yield were determined by GC and NMR,
respectively.
a40 bar.
bVI (3 mol%), 80 bar.
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Fig. 2 Reversible interconversion between 1/methanol and 2a by Mn-
catalyzed hydrogenation and dehydrogenation.
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major reaction pathway for Mn-catalyzed dehydrogenative amide
formation (Fig. 4a). Significant amounts of H2 (14.6 mL) and CO
(7.4mL) in a 2:1 ratio were generated in the dehydrogenation of
methanol (1.5 mmol). The use of paraformaldehyde instead
of methanol led to the formation of 2a, 2b, and 3, albeit with
lower selectivities (Fig. 4b). These results indicate that formalde-
hyde is a possible reaction intermediate in the dehydrogenative
condensation of methanol with 1. Use of monoamide 2b as the
starting material gave 2a in 92% yield. This shows that 2b is a likely
intermediate in diamide formation (Fig. 4c). In the absence of a

Mn catalyst, 1 reacted with paraformaldehyde to form 3-methyl-1-
methyleneimidazolidin-1-ium (3) (Fig. 4d). In contrast, 3 was not
produced from 2b under the same conditions (Fig. 4e). This shows
that 3 is formed by aminalization of 1 and formaldehyde formed
in situ.

Accordingly, to prevent the formation of byproduct 3 in
the catalytic dehydrogenative condensation reaction, the Mn-
catalyzed dehydrogenation of the hemiaminal intermediate 5
must be much faster than its dehydration under these reaction
conditions (Fig. 5).

Proposed mechanism. Based on the above results and our pre-
vious studies of Mn-catalyzed alcohol dehydrogenation61–64,
plausible reaction pathways for the dehydrogenative condensation
of methanol and 1 are proposed (Fig. 6). The dehydrogenation of
methanol gives formaldehyde as a reaction intermediate. This
reacts with one amine group of 1 to generate the hemiaminal
species 5, which eliminates one molecule of H2 to give the
monoamide intermediate 2b. Reaction of 2b with another mole-
cule of formaldehyde affords the final product 2a and one mole-
cule of H2 is released. A possible minor reaction pathway is
dehydrogenative ester formation from methanol to form methyl
formate (4), which undergoes aminolysis with 1 to deliver diamide
2a. The decarbonylation of formaldehyde to CO and H2 can be
prevented in this reaction system by fast condensation of for-
maldehyde with the amino groups of 1 and monoamide 2b.

In summary, a LOHC system based on non-noble-metal
catalysis was developed. The Mn-catalyzed dehydrogenative
condensation of methanol and DMEDA to form N,N’-(ethane-
1,2-diyl)bis(N-methylformamide), and the reverse hydrogenation
reaction, gave unloading and loading of H2 in excellent yields
with a theoretical hydrogen capacity of 5.3 wt%. Reversible
hydrogen storage was shown by subsequent hydrogenation of the
resulting dehydrogenation mixture to regenerate H2-rich com-
pounds. The maximum selectivity for the dehydrogenation
reaction was 97%.

Methods
General procedure for the dehydrogenation. All dehydrogenation experiments
were carried out in a 25 mL pressure seal tube. In the argon atmosphere glovebox,
[Mn], tBuOK, solvent, N,N’-dimethylethylenediamine 1, and MeOH were added
sequentially to the seal tube equipped with a magnetic stir bar, The reaction
mixture was stirred at given temperature for 16 h and cooled to room temperature.
After the gas was released, the conversion of 1 was determined by NMR and the
yield of products 2a, 2b, and 3 was determined by GC wiith 1,1,2,2-tetra-
chloroethane as the internal standard.

General procedure for the hydrogenation. All hydrogenation experiments were
carried out in a Parr Instruments 4560 series autoclave (300 mL) containing an
alloy plate with wells for seven 4 mL glass vials. In the argon atmosphere glovebox,
N,N’-(Ethane-1,2-diyl)bis(N-methylformamide) 2a, [Mn], tBuOK, and solvent
were added sequentially to the vial equipped with a magnetic stir bar, which was
capped with a septum threaded with a syringe. The vial was placed in the alloy
plate, which was then placed to the predried autoclave. Once sealed, the autoclave
was purged three times with hydrogen, then pressurized to given pressure and
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e Reactivity of 2b without Mn catalyst.
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heated at given temperature for 16 h. After reaction, the autoclave was cooled to
0 °C, depressurized. The conversion and yield were determined by GC and NMR
with 1,1,2,2-tetrachloroethane as the internal standard.

Data availability
The authors declare that all the data supporting the findings of this research are available
within the article and its supplementary information.
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