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Learning algorithms allow for improved reliability
and accuracy of global mean surface temperature
projections
Ehud Strobach 1,2* & Golan Bel 3,4*

Climate predictions are only meaningful if the associated uncertainty is reliably estimated.

A standard practice is to use an ensemble of climate model projections. The main drawbacks

of this approach are the fact that there is no guarantee that the ensemble projections

adequately sample the possible future climate conditions. Here, we suggest using simulations

and measurements of past conditions in order to study both the performance of the ensemble

members and the relation between the ensemble spread and the uncertainties associated

with their predictions. Using an ensemble of CMIP5 long-term climate projections that was

weighted according to a sequential learning algorithm and whose spread was linked to

the range of past measurements, we find considerably reduced uncertainty ranges for the

projected global mean surface temperature. The results suggest that by employing advanced

ensemble methods and using past information, it is possible to provide more reliable and

accurate climate projections.
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C limate predictions and projections are typically based on
global circulation models, which simulate the multi-scale
processes that form the climate system1. The different

parameterizations of unresolved processes2 and the lack of precise
initial conditions3 result in uncertain projections. Therefore, the
quantification of the associated uncertainties is important1,4. One
of the simplest methods, which is also commonly used in climate
research, is to establish an ensemble of simulations by varying
some of the uncertain factors and/or model characteristics (initial
condition, parameterization, numerical schemes, grid resolution,
model parameters, etc.)5–9.

Ensembles can be used to generate probabilistic forecasts, in
which the full probability distributions of the variables of interest
are estimated, rather than focusing on the mean and/or the
variance of the variables. Probabilistic forecasting was done for
different climate variables and using different weighting methods
for the ensemble members4,10. Ensembles representing the
uncertainties in model parameters10,11, the uncertainties due to
differences between models4,12–14, and the uncertainties of
empirical statistical models12,15 were used to generate probabil-
istic forecasts. Many of these studies and others16 also considered
models in which different initial conditions of the models were
included in the ensembles, and methods were suggested to
account for the similarity between different realizations of the
same model or different generations of the same model17–19.

The underlying assumption of conventional probabilistic
forecasts is that the ensemble spread represents (or at least pro-
vides a meaningful sampling of) the actual uncertainty regarding
the climate dynamics20. However, structural uncertainties, due to
different representations of physical processes (or the inadequate
or missing representation of processes in some or all the models),
affect the ensemble spread20,21 and the relation between the
ensemble spread and the uncertainty associated with its
forecast5,22. Nevertheless, various methods relying on the
ensemble spread were used to assess the uncertainty1,23–26. The
true uncertainty (which includes both the ontic and epistemic
uncertainties), or the relation between the ensemble spread and
the real climate system uncertainties, can only be derived from
past observations27.

The quality of an ensemble forecast should be measured by two
characteristics: the obvious one is its accuracy (often quantified by
the magnitude of the errors), and the second one, which is often
overlooked, is its reliability. The reliability is the correct quanti-
fication of the probability of the occurrence of different ranges of
conditions28–30. Specifically, we refer to reliability as the accurate
quantification of the fraction of observations within different
confidence level intervals (which is equivalent to comparing the
cumulative probability distribution). In order to evaluate prob-
abilistic predictions, measures accounting for the reliability were
developed and tested31–34.

It was argued and shown that weighting climate models
according to their ability to correctly simulate current and past
conditions can reduce the structural uncertainties1,4,35–38. Eval-
uating climate projections by their past performances has been
questioned, because the projections simulate future conditions
that may be significantly different from past and current condi-
tions, and certain limitations have been pointed out1,20,39–42.
However, numerous studies have shown that this approach is
legitimate and indeed improves the quality of climate predictions
and projections1,17–19,43–48.

Recently, a new method for the quantification of the uncer-
tainties associated with ensemble predictions was suggested49.
The method is based on studying the relation between the spread
of the ensemble member predictions (quantified by the ensemble
standard deviation (STD)) and the ensemble root mean squared
error (RMSE). Obviously, this approach requires simulations of

past conditions, which allow the calculation of the RMSE. The
most general method of those suggested49 is the asymmetric
range (AR) method, which relies only on the assumption that the
relation between the ensemble spread and the error does not
change significantly with time (i.e., the relation found during the
learning period remains the same during the prediction/projec-
tion period). The prediction of an ensemble is the distribution of
the climate variables or their anomalies. The AR method has the
advantage of estimating independently the range of likely con-
ditions above the mean and the range of conditions below the
mean (in this sense, it is asymmetric). The AR method was shown
to improve the reliability of surface temperature and surface zonal
wind prediction by an ensemble of CMIP5 (coupled model
intercomparison project, phase 5) decadal simulations49. The
improvement of the reliability demonstrated the validity of the
assumption that the relation between the ensemble spread and its
error does not vary considerably for decadal predictions.

Climate projections are not expected to be synchronized with
the natural variability of the climate system (e.g., we do not expect
the correct timing of future El Niño events). However, they are
expected to be synchronized with the climate system responses to
changes in its atmospheric composition1,50. Some synchroniza-
tion between the simulations and observations can be found in
the historical part of the CMIP5 projections (Supplementary
Fig. 1). This synchronization can be attributed to the forcing by
the observed atmospheric composition (which mostly varies by
the greenhouse gas emissions and large volcanic eruptions; e.g.,
1992–1993 cooling related to the Mount Pinatubo eruption51,52,
the effects of the Agung eruption in 1963, and the El Chichon
eruption in 1982). The climate system responded to the volcanic
eruptions within several years. These relatively short response
times, which are reflected by the changes in the global mean
surface temperature (GMST) within the period used for the
evaluation of the model performances, suggest that comparing the
model projections with observations may be used to assess the
model performances in simulating the climate system responses
to external forcing.

In this study, we use a sequential learning algorithm for
weighting the members of an ensemble of CMIP5 climate pro-
jections and the AR method in order to study the relation
between the spread of the weighted ensemble and the errors of its
projections. Combining the two techniques we show that the
uncertainties of future climate projections are significantly
reduced relative to those specified in the last IPCC report1.
Various tests that include different validation periods and the
application of the methods to specific model projections, rather
than the reanalysis data, demonstrate the robustness of the
combined methods.

Results
Study design and performance tests. We use an ensemble of
CMIP5 projections50. The simulated GMST 20-year running
averages for the period of 1967–2100 are considered (the annual
average GMST for the period 1948–2100 is used to construct the
20-year running average time series). The value assigned for each
year represents the average GMST of the 20-year period ending
on that year. Running averages could be used in this study
because our methodology does not assume that sequential values
of the variable are independent. The first stage in the analysis
involves weighting the ensemble members according to their past
performances (during the learning period of 1967–2016; total of
50 simulated and observed values of the GMST 20-year average;
note that the first independent point is the value assigned to the
year 2036, which does not include any year that was used during
the learning process), using the exponentiated gradient average
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(EGA) sequential learning algorithm45,46. The weighting of the
models is done during the learning period in a sequential manner.
At each time step (i.e., for each observation revealed), the weights
are updated in order to bring the weighted mean of the ensemble
closer to the observations. Moreover, in order to ensure stability
of the weights, the maximal allowed change for the weights is
limited. The weighting method is expected to improve the
weighted ensemble average forecast45,46 by finding the optimal
combination of weights such that the weighted ensemble mean is
as close as possible to the observed value during a learning period.
It is important to note that the EGA is designed to track the
observations and not the best model. This in turn enables its
outperforming the best model in the ensemble45,46. In previous
works, we tested several other learning algorithms. We found that
all the sequential learning algorithms that we tested performed
better than the simple average (equally weighted ensemble) and
better than the linear regression. Among the sequential learning
algorithms, the EGA, which attempts to maximize the mutual
information between the forecast and the observations53, per-
formed better (smaller RMSE and better estimated spread). The
weighting affects not only the ensemble mean (the projection of
the EGA forecaster) but also the ensemble’s STD, which is often
used to quantify its spread and the uncertainties associated with
the projection. In the second stage of the analysis, the relation
between the weighted STD and the projection errors is established
using the AR method49 in order to estimate the range of likely
GMST values at different periods. The AR method calculates a
pair of time-independent correction factors for each desired
confidence level (confidence level c implies that the extreme
higher and lower tails of the probability distribution, each with a
probability (1−c) ∕ 2, are excluded). The two correction factors
(γu(c) and γd(c)), multiplied by the time-dependent ensemble
STD (σt), are then used to determine the uncertainty range for
each confidence level: one for the range above the ensemble mean
and one for the range below the ensemble mean (see the Methods
section). By doing this, the AR method can generate an asym-
metric interval for selected confidence levels.

The performance of our methodology was tested by splitting
the learning period into learning and validation periods. A
35-yearlearning period (15-year validation period) was found to
be long enough to reduce the projection error by 64%, to decrease
the 0.9 confidence level uncertainty range by 65%, and to be more
reliable (see also the Methods section and Supplementary Fig. 1).
A reversed experiment, in which the last part of the period for
which there is reanalysis data was used for learning and the first
period was used for validation, also demonstrated improvement
relative to the simple average. In addition, out-of-sample tests
were performed in which one model was removed from the
ensemble and used as the projected variable. In these tests, the
EGA+AR also showed improvement relative to the simple
average (see full details in the Methods section and Supplemen-
tary Fig. 2).

Global mean surface temperature uncertainties. Figure 1 shows
the GMST uncertainties for the different representative con-
centration pathway (RCP) scenarios. Compared to the simple
averages (Supplementary Fig. 3), the uncertainty ranges in this
figure are considerably reduced by using the learning process
(learning the relation between the ensemble spread and its error).
The uncertainty range of the 0.9 confidence level is found to be
68–78% smaller than the range calculated using an equally
weighted ensemble and assuming a Gaussian distribution of the
ensemble projections. Similar ratios, between the uncertainty
ranges estimated using the EGA and AR methods and those
estimated using the equally weighted ensemble and the Gaussian

assumption, are also found for other confidence levels (see Sup-
plementary Table 1; numerical values of the ranges estimated
using the two methods can be found in Supplementary Tables 2
and 3).

We also find that the distribution of the GMST 20-year average is
highly asymmetric. For example, the higher significance levels are
skewed toward higher than the mean values, and for the 0.9
confidence level, the γu values are even more than twice as large as
the γd values (namely, the range above the ensemble mean including
45% of the probability is more than twice as large as the range below
the mean, which includes the same probability). The values of γu
and γd for different significance levels and RCPs are given in
Supplementary Table 4. In Supplementary Table 5, we provide the
skewness and the excess kurtosis of the distribution of the 20-year
average GMST. As can be seen, for all RCPs, the skewness does not
vanish and is positive (implying that the distribution is right-tailed),
and the excess kurtosis is positive, implying a distribution for which
rare events are more likely than in a Gaussian distribution. These
results demonstrate that the AR method is not only capable of
reducing the uncertainty ranges but is also capable of extracting the
deviations from a Gaussian distribution and, therefore, provides
more accurate and reliable estimates of the GMST probability
distribution.

The role of EGA and AR in reducing the uncertainties. There
are two elements that may influence the estimated uncertainty
ranges using the EGA and AR methods: the EGA weights, which
affect the ensemble STD (weighted STD vs. simple STD), and the
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Fig. 1 Projections of global mean surface temperature. The 20-year
running average of the global mean surface temperature (GMST) change
relative to the 1986–2005 average for the representative concentration
pathways included in the coupled model intercomparison project, phase 5.
The thick lines represent the weighted ensemble mean for the 20-year
running average GMST projections, and the shadings represent different
significance levels (from 0.1 to 0.9) of the associated uncertainty (based on
the exponentiated gradient average weighted ensemble and the
asymmetric range estimation of the uncertainty ranges). Black lines
represent the national centers for environmental prediction (NCEP)
reanalysis. The left part of each panel (to the left of the dashed vertical line)
represents the learning period, and the right part of each panel represents
the validation period.
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AR method correction factors, which multiply the STD and
provide the relation between the STD and the uncertainty range
for different confidence levels. The first element is time-depen-
dent, and the second is constant during the projection period (see
the Methods section for a more detailed discussion). We find that
the average (2020–2099) EGA weighted STD is similar to the
average STD of the equally weighted ensemble (the orange lines
in Fig. 2). This suggests that the EGA learning does not converge
to one specific model but rather spreads the weights among dif-
ferent models. Specifically, we find that only the MRI-CGCM3
has a considerably larger weight than the others, but most of the
models were assigned a non-negligible weight (see Supplementary
Tables 6 and 7). The main uncertainty reduction is due to the AR

method (γuðcÞþ γdðcÞ
2�δGðcÞ < 1; where, 2 ⋅ δG(c) is the correction factor

corresponding to a Gaussian distribution). We also find that this
reduction is true not only for the temporal average (2020–2099)
but also for the entire time series of the projections (see Sup-
plementary Fig. 4).

Comparison of estimated probability distribution. The PDs
(probability distributions) of the GMST in different years differ
due to the temporally varying STD, σt, and mean, pt, of the
ensemble of GMST projections. Note that the mean serves as the
prediction of the ensemble, and both the mean and the STD are
based on the weights assigned to the ensemble members. In Fig. 3,
we present the probability distribution of the change in the 20-
year average GMST, relative to the NCEP (national centers for
environmental prediction) reanalysis 1986–2005 average, for two
different periods and for the four RCPs included in the CMIP5.
All RCPs predict significantly warmer GMST in the future, which
is indicated by the separation of the 1986–2005 average GMST
probability distribution from the probability distributions of
the 2046–2065 and 2080–2099 average GMSTs. As expected, the
uncertainties also increase with the increased lead time of the
projections (indicated by the broadening of the distributions,
see also Supplementary Tables 8 and 9). We also note that the

larger the assigned change in the greenhouse gas concentration,
the larger the growth of the uncertainty. Relative to the ranges
provided in the last IPCC report1, our estimates of the uncer-
tainty ranges are considerably reduced for all the scenarios
(Supplementary Tables 8 and 9).

Discussion. Uncertainties in climate projections are of great
importance for policy makers and practical applications including
the development of adaptation and mitigation plans. The ade-
quate quantification of the uncertainties and their reduction,
where possible, are also at the core of climate dynamics research.
The fundamental assumption underlying our methods is that it is
legitimate to use our knowledge regarding past conditions and the
simulations of these conditions in order to learn the relation
between them.

Dividing the historical period into learning validation periods
revealed that for the conditions in the last century, the
assumption is valid. The combination of the EGA learning
algorithm (to weight the models) and the AR method (to extract
the relation between the ensemble spread and the actual
uncertainties associated with the weighted ensemble projection)
resulted in a considerable reduction of the uncertainties for all the
RCPs and for the entire period of the projection. The reduction
for the 20-year averages reached over 80%. Moreover, the entire
probability distribution was derived by considering different
confidence levels. A comparison of the CMIP5 ensemble spread
with past observations clearly reveals an underconfident ensemble
projection, suggesting that the actual uncertainty associated with
these projections may be even smaller than estimated here.
The method suggested and applied here was shown to be suitable
for ensembles whose spread is dominated by model variability
(rather than internal variability), which was found to be the
case for multi-model ensembles of climate predictions and
projections9,21,54,55. For ensembles of weather predictions where
the internal variability is dominant, it was shown that there is a
weak relation between the ensemble spread and its error56.
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Fig. 2 Reduction of uncertainties using the asymmetric range method. The ratio between the confidence intervals of the asymmetric range (AR) and
Gaussian methods for different confidence levels. The difference in the intervals stems from the different standard deviations (STDs) of the exponentiated
gradient average (EGA) weighted and equally weighted ensembles and also from the correction factors due to the non-Gaussian distribution of the
ensemble projections. The orange line presents the ratio between the EGA and equally weighted ensemble STDs (note that it differs between the
representative concentration pathways (RCPs) due to the different ensembles and weights); the yellow curve represents the ratio between the sum of the
AR correction factors (γu(c)+ γd(c)) and the expected sum of the Gaussian distribution correction factors for a given confidence level (2 ⋅ δG(c)); and the
blue curve represents the total uncertainty reduction, namely, the ratio between the uncertainty ranges estimated using the EGA and AR methods and
those estimated using the equally weighted ensemble and the assumption of a Gaussian distribution of the ensemble projections, for different confidence
levels. The black curve represents the unity line and is displayed for reference. a–d correspond to the denoted RCPs.
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We propose that the methods used here should find wider
application in the analysis of ensembles of climate predictions.

Methods
Models and data. We use all available surface temperature projections from the
CMIP5 data portal. Projections of some of the models that were included in the last
IPCC assessment report were not available when this study was initiated. Several
other models were excluded from this study either because of incomplete data for
the simulated period spanned in this study or because the cell area information was
missing (for the calculation of area-weighted global means). Supplementary Table 6
lists the models that were included in the ensembles considered in this study and
their scenario availability (different ensembles were constructed for each RCP
based on the data availability). The internal variability of climate projections was
found to be small compared with the model variability54, and therefore, we decided
to use one realization (initial condition) per model (the first listed in the CMIP5
data portal). The performance of each model was assessed by comparing the
simulated GMST with the NCEP reanalysis data57, which was considered here as
the true value. The NCEP reanalysis was chosen here to represent the true value
because it is a widely accepted reanalysis product and because of its relatively long
record starting from 1948; the JRA55 reanalysis58 was also tested but the fact that
this reanalysis is shorter, thereby only allowing a shorter learning period, resulted
in considerably larger uncertainties. We also tested observation-based products
such as the HadCRUT459 and GISTEMP v360 global temperature datasets. These
products resulted in similar uncertainty ranges as the NCEP, and therefore, they
are not shown here. The simulations used in this study spanned the period between
1948, the first year for which NCEP/NCAR reanalysis data are available, and 2100.
Both simulated results and the NCEP/NCAR reanalysis were time averaged to 20-
year running averages (the value for each year in the time series corresponds to the
average of the year and the 19 preceding years’ GMST, thereby providing a time
series from 1967 to 2100).

The weighting of the ensemble models. To weight the climate models, we use the
exponentiated gradient average (EGA) algorithm45,46,53. The inputs to the EGA
algorithm are time series of simulated GMST from an ensemble of forecasting
experts (the climate models) and a time series of the projected variable (observa-
tions; in this study, we use the NCEP/NCAR reanalysis data as the observations).
The EGA algorithm compares the simulated results from each of the ensemble
members with past observations (using a squared error metric in our study) and
weights the models based on their past performances. As a preliminary step, we
bias-corrected the CMIP5 model outputs by subtracting from each model its
temporal average during the learning period (1967–2017) and adding to it the
NCEP reanalysis temporal average for the same period. The input to the EGA
algorithm is, therefore, bias-corrected CMIP5 projections and NCEP reanalysis
data. The output of the EGA at the end of the learning period is a weight for each
model in the ensemble (Supplementary Table 7 shows the resulting weights for
each model and RCP scenario). The original method was modified to ensure that

there are no large fluctuations in the weights during the learning period and that
the learning rate is optimal45,46. The weighting procedure allowed us to derive the
weighted ensemble STD, which in turn was used to derive the relation between the
ensemble spread and the actual uncertainty range based on the asymmetric range
(AR) method49. The comparison of simulated results with an observation-based
product in this study does not suggest that we are trying to predict the future
natural variability of the climate system (such as El Niño events); rather, it suggests
that we weight the models based on their ability to correctly simulate the response
of the climate system to observed forcing fluctuations over longer time scales. It is
worth noting that repeating the same analysis using the annual averages rather
than the 20-year averages also resulted in reduced uncertainties. However, in order
to avoid criticism of the use of annual averages that are not expected to be syn-
chronized with the simulated dynamics, we focus here on the 20-year averages.

Constructing the PD of the GMST. The AR method uses the past errors (relative
to the NCEP/NCAR reanalysis) and ensemble STD to construct the PD of the
GMST by multiplying the time-dependent (EGA or equally weighted) ensemble
standard deviation (STD) with two optimized, significance-level-dependent cor-
rection factors that are time-independent. There are two correction factors for each
significance level, one for the upper (above the mean) side of the PD (γu(c)) and
one for the lower side (below the mean) of the PD (γd(c)), to allow for non-
symmetric PDs to be captured. The upper and lower correction coefficients, γu,d(c),
are calculated after learning the fraction of the number of observations within a
specific range (pt − γd(c) ⋅ σt )− (pt + γu(c) ⋅ σt) during the learning period. The
values of γu,d(c) are chosen to be the smallest values that satisfy the conditions that
at least a fraction c ∕ 2 of the observations are inside the area spanned by the two
time series [pt, γu(c) ⋅ σ(t)] during the learning period and similarly the fraction of
observations within the area between the two time series γd(c) ⋅ σ(t), pt is c ∕ 2.
Mathematically, these conditions are described by the following equations:

γuðcÞ ¼ inf γu 2 <> 0 :
1
n

Xn

t¼1

ðΘ½ðpt þ γu � σtÞ � yt �Þ �
1þ c
2

� �( )
ð1Þ

γdðcÞ ¼ inf γd 2 <> 0 :
1
n

Xn

t¼1

ðΘ½yt � ðpt � γd � σtÞ�Þ �
1þ c
2

� �( )
ð2Þ

In the above equations, Θ(x) is the Heaviside step function (Θ(x)= 1 for x > 0,
Θ(x)= 0 for x < 0, and Θ(0)= 1∕2), pt is the weighted ensemble average (forecasts
for time t), σt is the weighted ensemble STD at time t, yt is the observed (true) value
at time t, and n is the number of time points (length of the time series used) in the
learning period. For example, γu,d(c) should both be equal to the probit function
(δG ¼ ffiffiffi

2
p

erf �1ð1� cÞ), if the observed distribution of the error is unbiased, and
Gaussian. We repeated this process for multiple significance levels between 0.1 and
0.9. The resolution of the derived PD depends on the number of observations with
values higher and lower than the ensemble projection during the learning period.
The optimization of the correction coefficients γu,d(c) can be done by including
or excluding at least one observation, and this in turn limits the PD resolution to
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Fig. 3 Probability distributions of the surface temperature change. a–d The global mean surface temperature (GMST) change probability distributions of
the 2046–2065 average (blue) and the 2080–2099 average (red) for the four representative concentration pathways (RCPs) included in the coupled
model intercomparison project phase 5, relative to the 1986–2005 national centers for environmental prediction (NCEP) reanalysis average GMST (black).
e, f Box plots of the GMST change relative to the 1986–2005 NCEP reanalysis average. The circles, boxes, and error bars represent the ensemble mean, the
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1∕Nu,d (where Nu,d are the numbers of observations larger and smaller than the
projection, respectively; in this study, it was Nu= 24 and Nd= 26) in the above and
below mean sides, respectively. Note that according to eqs. 1 and 2, the actual
confidence level might be higher than the desired one due to the finite resolution.
The AR method was developed initially for decadal climate predictions in which it
was assumed (and verified) that the uncertainty correction coefficients (γu,d(c))
show only small fluctuations during the learning and the validation periods.

20-year average probability distributions. The above analysis results in the time
series of the mean and the STD (based on the EGA weighted or equally weighted
ensembles) and the values of γu,d(c) for a range of desired confidence levels. As
outlined in eqs. 1 and 2, for each confidence level, the excluded tails on both sides
of the mean are equal (the integral over each of the tails is (1−c) ∕ 2). Considering
the quantities above allows one to construct the full probability distribution. The
AR algorithm outputs are ranges as a function of probabilities. To convert to
probabilities as a function of ranges, we drew 107 values from the derived dis-
tribution of the 20-year average GMST of 2065 and 2099. The depicted PDs of the
20-year average GMST are the histograms of the 107 values. We verified that the
probability distribution converges for this number of realizations (the differences
were below any statistical significance).

Testing the EGA and AR performance. We test the performance of our meth-
odology by dividing the 50 year period of 1967–2016 into two periods: a learning
period and a validation (prediction) period. We tested different combinations of
learning and validation periods, and we found that in order to improve the forecast
(in terms of accuracy and reliability), we need >30 years of learning. In Supple-
mentary Fig. 1, we show the forecast from 35 years of learning (1967–2001) and 15
years of a validation experiment (in all CMIP5 projections, the assigned atmo-
spheric composition for the historic part until 2005 is based on observation, and
later on, it depends on the RCP. We used the RCP 4.5 ensemble. The validation
period of 2002–2016 includes years with RCP- rather than measurement-based
atmospheric compositions in the last 12 years (2006–2017); it is worth mentioning
that the variability between the different scenarios was found to be small compared
with the model and internal variabilities during the first years of the projections54).
We find that the RMSE of the equally weighted ensemble is larger than that of the
EGA weighted ensemble (0.094 °C for the simple average compared to 0.034 °C for
the EGA weighted average); in addition, using the AR method for estimating the
uncertainty ranges resulted in smaller future uncertainty ranges for the EGA
weighted ensemble and more reliable predictions (Supplementary Fig. 1). We also
performed a reversed experiment, in which the first period was used for validation
and the second period was used for learning. This test enables the use of periods
with different trends in the learning and validation periods. We find that in this
case, 40 years of learning (1977–2016) were needed to improve the accuracy and
the reliability of the EGA+AR forecast during the validation period, 1967–1976
(relative to the equally weighted ensemble with the Gaussian assumption forecast) .

For the equally weighted ensemble and the assumption of a Gaussian
distribution of the ensemble projections, we found that the uncertainty range was
much larger than the range expected from a reliable ensemble (the projections
using these methods represented an underconfident forecast). A forecast based on
the EGA weighted ensemble combined with the AR method was found to be close
to reliable (see also Supplementary Fig. 1). Due to the better performance of the
EGA weighted ensemble combined with the AR method, we focus on the results of
this methodology.

In order to test the performance of the suggested method for projections, out-
of-sample tests were performed, in which one model was removed from the
ensemble and used as the projected variable during the 1967–2016 learning period.
This type of test allows an additional test of the suggested method over a longer
period. The weakness of the test is the fact that it uses a time series which is
different (also statistically) from the one that the models aim to project. Some of
the models in the CMIP5 ensemble share major components with other models
and, as a result, have similar projections47,61,62. To perform a fair test, we removed
similar models from the ensemble that was used in each of the tests (as performed
in ref. 47; see also Supplementary Fig. 5). In addition, by definition, the weighted
ensemble (including an equally weighted ensemble) cannot project values outside
the range spanned by the model projections. Therefore, we excluded from the out-
of-sample test the two models with the warmest projections and the two models
with the coldest projections (i.e., the extreme models were not used as projected
variables). We find that the learning process (EGA+AR) reduces the RMSE and the
uncertainty range relative to the simple average and the Gaussian assumption (the
results are summarized in Supplementary Fig. 2). The EGA+AR projection is also
significantly more reliable for the RCP8.5 and not significantly more reliable for the
other three scenarios; here, we use the mean squared error of the deviation of the
reliability curve from the line of identity as a reliability score. It is important to note
that even for the scenarios in which the reliability is not significantly improved, the
uncertainties are significantly smaller while the reliability does not worsen. The
Error-Spread proper score33 was also calculated, and according to this score, the
EGA+AR method projections were significantly more reliable for the RCP2.6,
RCP4.5, and RCP8.5 (results not shown). The full projection results of these tests
with the CCSM4 as the projected variable are presented in Supplementary Fig. 6
and with the CSIRO-Mk3-6-0 as the projected variable in Supplementary Fig. 7. All

scores were calculated for the projection period, 2040–2099 (avoiding the first 20
years, which are dependent on the training data).

Data availability
The CMIP5 model data that support our findings can be downloaded from The Program
for Climate Model Diagnosis and Intercomparison (PCMDI) archive at https://esgf-node.
llnl.gov/projects/cmip5/. The NECP reanalysis data are available from the National
Oceanic and Atmospheric Administration (NOAA) Earth System Research Laboratory
(ESRL) Physical Sciences Division (PSD) website at https://www.esrl.noaa.gov/psd/data/
gridded/data.ncep.reanalysis.html.

Code availability
Code generating figures and processed data will be available upon request.
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