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Cooperative excitonic quantum ensemble in
perovskite-assembly superlattice microcavities
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Long Zhang1,4* & Wei Xie 3*

Perovskites—compounds with the CaTiO3-type crystal structure—show outstanding perfor-

mance in photovoltaics and multiparameter optical emitters due to their large oscillator

strength, strong solar absorption, and excellent charge-transport properties. However, the

ability to realize and control many-body quantum states in perovskites, which would extend

their application from classical optoelectronic materials to ultrafast quantum operation,

remains an open research topic. Here, we generate a cooperative quantum state of excitons

in a quantum dot ensemble based on a lead halide perovskite, and we control the ultrafast

radiation of excitonic quantum ensembles by introducing optical microcavites. The stimulated

radiation of excitonic quantum ensemble in a superlattice microcavity is demonstrated to not

be limited by the classical population-inversion condition, leading to a picosecond radiative

duration time to dissipate all of the in-phase dipoles. Such a perovskite-assembly superlattice

microcavity with a tunable radiation rate promises potential applications in ultrafast,

photoelectric-compatible quantum processors.
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Perovskites are an excellent optical candidate for achieving
large oscillator strength and highly efficient light absorp-
tion1–4. However, realizing long-range quantum states

based on perovskite systems and controlling their quantum
behavior to provide a fast response and high sensitivity are sig-
nificant challenges. To overcome these issues, the quantum fea-
tures of materials can be revealed by reducing their dimensions5.
For example, one can uncover the quantum character of per-
ovskites by using perovskite quantum dots (QDs). In addition,
long-range phenomena involve many-body cooperation6–9. To
combine these two kinds of performance to develop long-range
quantum behavior, a QD-assembly superlattice10,11 is an excellent
candidate. The QD-assembly superlattice is a two- or three-
dimensional structure in which same-size QDs are the basic unit,
and they arrange themselves periodically. Closely packed semi-
conductor QD superlattices with long-range order could offer a
high density of exciton states, low energy broadening, and long
dephasing time of particles, all of which enable the formation of
macroscopic quantum states12. On the other hand, in order to
control these collective behaviors for applications, further
requirements arise, such as new degrees of freedom for manip-
ulation. Although various structures and devices based on the
perovskite family have been designed for highly efficient solar
cells1,2, highly coherent single-photon source13, and other light
sources with excellent properties14–16, an ultrafast control of
many-body quantum ensemble in a perovskite core has never
been reported.

Here, we develop a novel microstructure—a “QD superlattice
microcavity (QDSM)”—for controlling many-body quantum
behaviors with high response rate (Fig. 1). In light-matter inter-
action system, two major types of methods can manipulate the
many-body effect and accelerate the coupling rate. One strategy
involves the material itself, for example, transforming the many-
body system into a collective state wherein the cooperative
ensemble behaves like a giant quasi-particle with large oscillator
strength17–21. The other method is related to the optical envir-
onment coupling. For example, optical cavities can be constructed
to stimulate the material source to radiate coherently22–24. Our
QDSM design combines the advantages of these methods. More
specifically, we integrate the high quality of a QD superlattice and
the optical controllability of a cavity in a perovskite micro-
structure (Fig. 2 and Supplementary Fig. 2). Such a highly sym-
metric, long-range-ordered perovskite QDSM could show both
superfluorescence (SF) behavior and an optically stimulated
amplification effect (i.e., lasing) above the critical excitation
density. The entire radiation process, which we term cavity-
enhanced SF (CESF), is realized at 77 K with high repeatability
(Fig. 3). In addition, cooperative excitons exhibit quantum
behavior during their lasing process, in which the perovskite
system consumes all the cooperative components of dipoles by
the CESF channel, rather than being limited by the population-
inversion condition, as in classical lasers (Fig. 4). By utilizing such
a unique characteristic, the radiation time of cooperative exciton
ensemble is shortened to be picoseconds.
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Fig. 1 Linking “self-assembly of QDs” to “phase transitions of exciton ensemble”, and “optimization of radiative features”. a Self-assembly evolution
from monodisperse colloidal QDs (left) to a closely packed SC (middle) and finally to a highly symmetric QDSM (right). The whiskers around the cubic QD
are oleylamine and oleic acid ligands. b Phase transitions of exciton ensemble in the structures discussed above. The “+” and “−” orientations indicate the
phase of dipole moments. c Experimental radiation dynamics. Monodisperse QDs radiate spontaneously with a radiative time tr (the full-width at half-
maximum (FWHM) of the dynamical PL peak) of tens of nanoseconds, while self-cooperating excitons in the SC emit a SF pulse with tr on the order of
10 ps. Furthermore, the cavity field in the QDSM accelerates the SF process, with tr reaching as low as a few picoseconds.
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Results
Structural characterizations. High-quality QDSMs are obtained
using an innovative self-assembly method. First, mono-
dispersed CsPbBr3 QDs (Fig. 2a, Supplementary Fig. 1) are
synthesized according to a previously reported method with
modifications25. Transmission electron microscopy (TEM) and
fast Fourier transform reveal that the CsPbBr3 QDs are cubic
with very good crystallinity (Supplementary Fig. 2). These
cubes self-assemble into regular geometric configurations
seamlessly and tightly on the silicon wafer. Their size can be
controlled (from hundreds of nanometers to dozens of micro-
meters) by varying the aging time at low temperature and the
evaporation rate of the solution (Fig. 2b, e). During this process,
low-temperature operation decreases the thermal energy of the
whole system so that the initially repulsive QDs become
attractive26. Next, slowly evaporating the solution in vacuum
enables QDs of the same size to aggregate and align
perfectly27,28, thus achieving long-range ordering and yielding
regular geometrical superstructures (Fig. 2c, d). This assembly
method produces samples with few defects and low inhomo-
geneous broadening, which facilitates the cooperation of exci-
tons. Moreover, these samples remain stable in the ambient

atmospheric environment for several months and even main-
tain good fluorescence after high-power laser pumping. These
excellent properties demonstrate the good performance of our
innovative self-assembly method, which may be extended to the
self-assembly of other semiconductor nanoparticles.

Optical properties of QDSM. The dynamic process of QD self-
assembly can be investigated via photoluminescence (PL) spec-
troscopy. The PL spectrum of a superlattice cluster (SC) is
compared with that of monodispersed QDs in Fig. 2f, wherein a
new peak emerges for the SC at around 528 nm, which originates
from the overlapping of single-QD excitonic wave functions in
the superlattice structures10. In addition, QDs of the same size
have superiority in the self-assembly process, thus narrowing the
original broad peak. More interestingly, during the increase of the
degree of self-assembly, the original peak of the unassembled QDs
disappear, and the new peak dominates the PL spectrum of the
QDSM. Furthermore, CESF behavior is observed in the optical
modes of QDSM (Fig. 2g). The energy centers of the optical
modes and the mode interval can both be controlled by adjusting
the size of the QDSMs (Fig. 2i). Whispering gallery modes are
formed by total reflections, and the field distributions of the
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Fig. 2 Dynamic tracing and optical characterization of perovskite QDSMs. a TEM image of monodisperse CsPbBr3 cubic QDs. b–e TEM images of the
evolution of monodisperse QDs (a) self-assembling into closely packed SC (b) and finally to the rectangular QDSM (e) via low-temperature aging and
drying-mediated methods. Rows of dots capped with oleylamine and oleic acid arrange themselves along the crystalline axis (b) and finally form sharp
edges and regular shape (e). c is the annular TEM images of the cuboid QDSM and d is a close-up view of the red dotted box in c. f PL spectra of different
structures. g PL spectra of the cavity-enhanced SF effect from a QDSM at 77 K. Inset: the simulated field distribution of the whispering gallery mode, L1 and
L2 are long side and short side of the QDSM, respectively. h Power dependence of the PL intensity in cavity mode. Inset: Lorentz fitting of the cavity mode.
i The resonant optical modes of QDSMs with different sizes. Multimode lasing can be obtained and the spacing between two adjacent modes decreases
with the increasing of cavity size.
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resonant modes in the microcavities fit well with the theoretical
prediction of whispering gallery model (Supplementary Fig. 3).
The typical Q factor of QDSM can reach about 2000 (Fig. 2h),
corresponding to an energy broadening of cavity mode of ~1 meV
and a photon lifetime on the order of 1 ps. Generally, our sample
is <1 µm thick, and its lateral dimensions are several micrometers.
To confine light for 1 ps in such a small cavity, the light must
reflect at the external surface of QDSMs tens of times, using a
simplified classical picture. Thus, to maintain the high quality of
the microcavity assembled from QDs, it must possess smooth
external surfaces and few internal defects.

Dynamics of SF and CESF. The typical SF/CESF characteristics
of a SC/QDSM are presented in Fig. 3 based on time-resolved
PL (TRPL) measurements under different excitation densities.
The radiative time (tr), that is, the full-width at half-maximum
of the dynamical PL peak, decreases rapidly with increasing
pumping density. Meanwhile, the dynamical PL peak intensity
(Imax) increases non-linearly during the corresponding process.
Both are fitted well by the results of a theoretical simulation
(Supplementary Note 2 and Supplementary Fig. 7). Notably, the
Imax of CESF exhibits an obvious intensity threshold (Nph),
which represents the critical density of stimulated photon
amplification in the QDSM. Moreover, above this threshold, the
CESF effect could attain a much smaller tr than that of SF due
to the radiative enhancement by coupling with the amplified
light field. These characteristics of CESF are common for

different QDSM samples. The value of Nph is related to the
quality of the sample and takes values ranging from tens to
hundreds of microjoules per square centimeter per pulse. In
addition, compared with the radiation time of individual QDs
(~12 ns) (Fig. 1c, Supplementary Fig. 4), tr of SF is about 400
times shorter (~30 ps), while tr of CESF is 3000 times shorter
(~4 ps). The reduced ratios tSR/tSF roughly indicates the effec-
tive numbers of cooperative dipoles Neff ~102.

Cooperative ensemble breaks population-inversion limitation.
The nonlinear and dynamical characteristics of the CESF effect in
cavities are easily confused with the normal lasing effect in
semiconductor cavities. For example, the light signals that they
emit have some similar features. Nevertheless, they are essentially
different from the aspect of matter29, that is, the emitting core.
Dense excitons in perovskite QDSMs are in a collective quantum
state rather than being an ordinary thermal gas, as they are in a
classical semiconductor laser system. For a cooperative dipole
ensemble, a CESF pulse will rapidly dissipate all of the in-phase
dipoles, while the dephasing component of the dipoles would
radiate non-collectively and slowly8. The residual density after
CESF is determined by the dephasing dipoles in ensemble Ndp

(Fig. 4a, c). In our samples, the Nph/Ndp ratio could be 10:1 or
higher for the dipoles resonant with the cavity mode, and the
fluctuation in the pulse energy of the pumping laser is about 5%.
We focus on the unambiguous part of the PL data, wherein the
intensity is larger than the fluctuation noise. The surplus ratio
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after the CESF process is close to this noise limit. However, the
stimulated radiation of hot excitons in semiconductor lasers
depends on the population-inversion condition30 (Fig. 4b, i).
When the lasing process finishes, the semiconductor laser system
remains a dense exciton ensemble, the density of which is limited
by the threshold Nph. Experimentally, two pumping pulses with
different time intervals and power densities (Supplementary
Fig. 5) are used to test the residual excitons after the fast-radiation
process (Fig. 4f–h, l–n). A conventional microlaser of the same
perovskite material (i.e., a microspherical CsPbBr3 bulk crystal31)
is selected to carry out a comparative experiment. The Q factor of
the microsphere and the lasing threshold Nph are similar to those
of the QDSM sample (Supplementary Fig. 6). However, the
microsphere shows a classical carrier response, which is totally
different from that of QDSM sample. Thus, we experimentally
demonstrate that the cavity-mediated cooperative quantum state
could break the limitation of the population-inversion condition
in the radiation process.

Discussion
Based on such a quantum feature of cooperative excitons, we
propose a single perovskite QDSM as a THz quantum container,
as shown in Fig. 5a. Here, we focus on rapidly manipulating the
emitting core rather than the light field. We could define two
different states for the perovskite QDSM as the two identified
states of a quantum container. The existence of an excitonic
quantum ensemble represents the “Filled” status, whereas the
absence of cooperative dipoles indicates the “Void” status. The
container can be “filled” via optical pumping. The excitation laser
will rapidly yield dense carriers30 (<1 ps), but it is not responsible
for setting up a cooperative quantum state, which is actually
supported by the high-quality QDSM and the low-temperature
environment placed the dense exciton ensemble. The formation
time of cooperative states is short (~ps) because the cavity exci-
tons with a small dipole distance can cooperate with each other
via the efficient exchange of virtual photons12. However, the
emptying process is a shortcoming for the fast control, wherein
the excitonic quantum state is disappearing. Here, we use the
radiative relaxation channel of CESF to empty the quantum
container. Note that after the ultrafast CESF process, the residual
carriers are dephased, and the quantum QDSM container is
considered to be “Void.” Thus, the quantum container can be
directly and rapidly controlled between the “Filled” and “Void”
states. The lower limit of the control period (tcri, shown in Fig. 4c)
could reach as low as 10 ps.

In summary, we propose the ultrafast control of a perovskite
core of non-equilibrium cooperative excitons. We experimentally
demonstrate it based on a closely packed perovskite QDSM. Such
a many-body quantum device is not limited by the classical
population-inversion condition and shows a unique radiation
capacity with a tunable bandwidth of up to 0.1 THz. In addition
to the collective manipulation in a perovskite system, we develop
a novel microstructure, a “QDSM,” which can find application for
various materials in designing micro-devices with long-range
quantum features and high optical controllability.

Methods
Preparation of Cs-oleate. The preparation of Cs-oleate proceeded by the fol-
lowing method. CsCO3 (0.825 g, Aladdin, 99.9%), octadecene (40 ml, Sigma-
Aldrich, 90%), and oleic acid (2.5 ml, Aladdin, >90%) were mixed in a 100 ml
three-neck flask and dried under N2 for 1 h at 120 °C, and then heated under N2 to
150 °C until all the CsCO3 reacted with OA. The resulting Cs-oleate were stored for
the next experiment.

Synthesis of CsPbBr3 QDs. The synthesis of CsPbBr3 QDs is according to the
previously reported hot-injection method with minor modifications25. Octadecene (4
ml, Sigma-Aldrich, 90%) and PbBr2 (69mg, Aladdin, 99.999%) were mixed in a 50ml

four-neck flask and dried under N2 for 50min at 120 °C. Then, oleylamine (1ml,
Aladdin, 80–90%) and oleic acid (0.5ml, Aladdin, >90%) were injected into the flask;
after 20min at 120 °C under N2, the temperature was raised to 170–190 °C (for tuning
the nanocrystals size), hot Cs-oleate (0.4ml, 0.1M in ODE, prepared above) was
rapidly injected, and 5 s later, the reaction mixture was cooled in the ice-water bath.
The resulting NCs were dispersed into toluene for self-assembly.

Self-assembly of CsPbBr3 QDs into superlattices. The CsPbBr3 QD superlattice
is formed in the solvent by low temperature aging and slow evaporation of solvent
(toluene). Various superlattices with different sizes were made by tuning the low-
temperature aging (10 °C) time and solvent evaporation rate. The aging time is
about 4–15 days and the evaporation rate should be slower by putting the QD
solution in vacuum.

Characterization techniques. TEM, high-resolution TEM, and high angle annular
dark field-TEM measurement were performed on a Tecnai G2 F20 S-TWIN operated
at 200 kV. All the samples are previously dropped on clean bare wafer with fine
concentration and later transfer onto 300-mesh copper TEM grid by spot cleaning.

PL spectra and dynamical measurements. The PL spectra in Fig. 2 were measured
under 400 nm femtosecond (fs) laser (Libra, Coherent, ∼40 fs, 10 kHz) with a con-
focal microphotoluminescence system (LabRAM HR Evolution). The system was
equipped with a cryostat (80–475 K, Janis ST-500) and temperature controller
(cryocon 22C). Liquid N2 was used for cooling. All the optical measurements were
performed at 77 K. The dynamical measurements were performed on a streak camera
(C10910–05, M10911–01) with a closed-cycle high-vacuum dewar (MONTANA) at
77k. The excitation source is fs pulsed laser (Spectra-Physics, ~400 nm, 80MHz). It
was divided into two or three beams of controllable power ratio and time intervals for
the experiments in Figs. 4 and 5. The radiative efficiency would change with the
excitation configure (such as the heating effect in the two or three beam case). Thus,
the intensity-normalized data were used to indicate the density of surplus dipoles.
Radiation dynamics were performed on a streak camera (C10910–05, M10911–01).
We measure the spectral and temporal properties of luminescence in the reflection
geometry. Luminescence is collected through the objective, separated from the
reflected specular and scattered pumping laser light with a notch filter, and then
directed to a spectrometer with CCD or the streak camera. The corresponding
spectral and temporal resolutions are ~0.1 nm and ~1 ps, respectively. For all the
experiments, the front surface of the sample is positioned at the focal plane of a high-
numerical-aperture microscopy objective (NA= 0.42, ×50). A monochromated light
(375 nm) from a xenon lamp equipped with a Horiba FluoroLog-3 spectro-
fluorometer in reflection geometry is used to perform TRPL measurements of Fig. 1c
and Supplementary Fig. 3a. The emission is passed through a 500 nm blaze grating
monochromator (iHR320) and collected by a TCSPC detector.

Data availability
All data in the manuscript and the Supplementary Materials are available from the
corresponding author upon reasonable request. The source data underlying Figs. 1c, 2f, g,
h, i, 3g, h, 4f, g, h, l, m, n and Supplementary Figs. 3a–c, 4a–c, 6b–d, 7a–d are provided as
a Source Data file.
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