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Neutrophil microvesicles drive atherosclerosis by
delivering miR-155 to atheroprone endothelium
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Neutrophils are implicated in the pathogenesis of atherosclerosis but are seldom detected in

atherosclerotic plaques. We investigated whether neutrophil-derived microvesicles may

influence arterial pathophysiology. Here we report that levels of circulating neutrophil

microvesicles are enhanced by exposure to a high fat diet, a known risk factor for athero-

sclerosis. Neutrophil microvesicles accumulate at disease-prone regions of arteries exposed

to disturbed flow patterns, and promote vascular inflammation and atherosclerosis in a

murine model. Using cultured endothelial cells exposed to disturbed flow, we demonstrate

that neutrophil microvesicles promote inflammatory gene expression by delivering miR-155,

enhancing NF-κB activation. Similarly, neutrophil microvesicles increase miR-155 and enhance

NF-κB at disease-prone sites of disturbed flow in vivo. Enhancement of atherosclerotic plaque

formation and increase in macrophage content by neutrophil microvesicles is dependent on

miR-155. We conclude that neutrophils contribute to vascular inflammation and atherogenesis

through delivery of microvesicles carrying miR-155 to disease-prone regions.
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A causal role for neutrophils in atherosclerosis is now
evident and these abundant leucocytes have been shown
to play a part both in plaque development1,2 and plaque

erosion3, as well as being implicated in plaque rupture4,5.
Increased levels of circulating neutrophils exacerbate athero-
sclerotic plaque formation in mice2 and indirect evidence also
links increased circulating leucocyte counts and infection with an
increased risk of cardiovascular disease6,7. Nevertheless, detection
of neutrophils in lesions is rare, possibly due to their short life
span, the rapid removal of senescent neutrophils by macrophages
within the developing plaque, and/or the lack of a highly specific
detection method (see ref. 8 for review). In order to address this
paradox, we have investigated whether neutrophils exacerbate
vascular inflammation through the release of pro-inflammatory
microvesicles (MVs), thus influencing atherosclerotic plaque
formation without entering the vessel wall.

MVs are 0.1–1 µm vesicles released from the cell membrane in
response to various stimuli or during apoptosis. Depending on
the cell source, MVs vary in their size, content, and surface
marker expression9. While MVs are present in healthy indivi-
duals10, increased levels of leucocyte MVs have been observed in
patients with sepsis11, acute vasculitis12 and individuals with high
risk of cardiovascular disease13. Advances in our understanding
of extracellular vesicle function have led to the discovery of a
novel mechanism by which cells can communicate with each
other through the transfer of vesicle cargo, such as noncoding
RNA (e.g. microRNA (miRNAs)), to target cells14–17. Neutrophil-
derived microvesicles (NMVs) have been detected in human
atherosclerotic plaques18 but their role in plaque progression has
not been studied.

Atherosclerotic plaque distribution is focal, with plaques devel-
oping at sites of disturbed flow, such as bifurcations, where adhe-
sion molecules are highly expressed19,20. Disturbed flow generates
shear stress (mechanical drag) that is low and oscillatory at ather-
oprone sites, whereas shear stress is high at atheroprotected
sites21,22. Vascular inflammation is regulated by a number of
transcription factors including the master regulator nuclear factor
(NF)-κB23, the expression of which is known to be enhanced in
atheroprone regions24–26 and induced by disturbed flow27.
Enhanced vascular inflammation leads to leucocyte recruitment to
these sites, with the presence of monocytes within the vessel wall a
characteristic of atherosclerotic plaque development.

Here we show that NMVs are released in response to high-fat
diet and preferentially adhere to sites prone to atherosclerotic
plaque development. We also demonstrate NMVs contain miR-
NAs and are internalised by arterial endothelial cells. NMVs
induce NF-κB expression, through delivery of cargo such as
miRNAs, leading to enhanced endothelial inflammation, mono-
cyte recruitment and atherosclerotic plaque development.

Results
Characterisation of isolated NMVs. In order to characterise the
subpopulation of extracellular vesicles investigated in these stu-
dies, we performed transmission electron microscopy of MVs
derived from both human (Fig. 1a, b) and mouse (Fig. 1d, e)
peripheral blood neutrophils. This demonstrated the hetero-
geneity and structure of isolated NMVs. Tunable Resistive Pulse
Sensing (TRPS) was performed on human NMVs (Fig. 1c; mode
size 280 ± 16.6 nm (SEM)) and Nanoparticle Tracking Analysis
(NTA) performed on mouse NMVs (Fig. 1f; mode size 165 ±
7.5 nm (SEM)) to assess the size distribution.

Proatherogenic diet elevates NMV levels. We determined whe-
ther exposure to a high-fat diet in healthy human subjects
affected circulating levels of NMVs. The energy intake and diet

composition is described in the methods and an example of the
typical daily food intake is shown in Supplementary Table 1. Flow
cytometry analysis revealed that human plasma NMV levels were
significantly increased after 1 week of high-fat feeding (~27%
increase, Fig. 1g) indicating that a high-fat diet induced increased
circulating NMV levels. Analysis of markers of different cellular
origins revealed that MVs derived from neutrophils, platelets and
monocyte, but not endothelial cells, were significantly increased
after high-fat feeding (Supplementary Tables 2 and 3 and Sup-
plementary Fig. 1a). However, the overall distribution of MVs
from different cell types was not altered (Supplementary Fig. 1b).
We also found elevated levels of total plasma MVs in ApoE−/−

mice on high-fat diet compared to chow (Fig. 1h), however due to
technical difficulties with antibody labelling we were unable to
differentially label NMVs directly in the plasma of mice. We
therefore determined the effect of depleting neutrophils from the
circulation and found a significant reduction in circulating MV
levels compared to control (~32%, Fig. 1i). Taken together, these
findings provide evidence that NMV are produced in vivo in
response to a proatherogenic diet.

NMVs preferentially adhere to atheroprone regions. Having
determined that high-fat diet induced production of NMVs, we
investigated whether these endogenously released NMVs were
detectable in the vessel wall. Flow cytometry analysis of aortic arch
homogenates from ApoE−/− mice fed chow or a Western diet
revealed that greater numbers of NMVs were detected in the vessel
wall at 20 weeks compared to 6 weeks (Fig. 1j), suggesting that
NMVs accumulate at atheroprone regions. Significantly more pla-
telet and monocyte but not endothelial cell derived MVs were also
detected in the homogenates but, similar to the human responses to
high-fat feeding, the overall distribution of MVs from different cell
types was not altered (Supplementary Table 4 and Supplementary
Fig. 2) at 20 weeks. In order to investigate the mechanisms by which
NMVs are recruited to the vessel wall, we determined whether
NMVs were able to adhere to arteries in vivo. Fluorescently labelled
NMVs (4 × 106) or supernatant from fluorescently labelled NMV
pellets was injected via the tail vein into ApoE−/− mice that had
been fed a Western diet for 6 weeks. This number of NMVs is
similar to the 30% increase in circulating NMVs observed in human
subjects after 7 days on an atherogenic diet (Fig. 1g). Using en face
confocal microscopy of the inner and outer curvature of the aorta of
each injected mouse, fluorescently labelled NMVs were rarely
detected in atheroprotected regions (outer curvature of aortic arch;
Fig. 2a, b) after 2 h but significantly higher numbers were detected
at the atheroprone regions (inner curvature of aortic arch; Fig. 2c, d;
quantified in Fig. 2d). No fluorescence was detected in ApoE−/−

mice that were injected with supernatants from labelled NMVs
(Supplementary Fig. 3). Thus, we conclude that NMVs adhere
preferentially to atheroprone sites within arteries in conditions of
hypercholesterolaemia.

Oscillatory shear stress promotes NMV adhesion to HCAEC.
In order to investigate the mechanism of preferential adhesion of
NMVs to atheroprone endothelium, we carried out in vitro
experiments to quantify adhesion of NMVs to HCAEC cultured
under different flow parameters. We used oscillatory shear stress
(OSS) to model flow at atheroprone regions and high shear stress
(HSS) to model the flow found at atheroprotected areas and
human NMVs were added to the perfusion media for 2 h after a
72 h conditioning period. As with our in vivo data, we found that
under flow conditions, more NMVs adhered to HCAEC that had
been cultured under OSS compared to HSS (Fig. 3a, b). As NMVs
have previously been shown to adhere to endothelial cells via a
CD18-dependent mechanism28, we confirmed the presence of
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adhesion molecules on the surface of NMVs as previously
described28–30 (Supplementary Fig. 4a). CD18 expression was
detected on all NMVs regardless of the stimulus used to induce
their release (Supplementary Fig. 4b). We therefore hypothesised
that the preferential adhesion to atheroprone regions may be due
to alterations in endothelial expression of the CD18 counter-
receptor, intercellular adhesion molecule-1 (ICAM-1). Indeed,
HCAEC cultured under oscillatory flow expressed higher levels of
ICAM-1 on their surface compared to cells exposed to high shear
(Fig. 3c). Consequently, pretreatment of HCAEC cultured under
oscillatory shear stress with anti-ICAM-1 antibody significantly

inhibited NMV adhesion (Fig. 3d, e) indicating the preferential
adhesion of NMVs to HCAEC exposed to OSS was via an ICAM-
1-dependent mechanism. Although PSGL-1 was detected on the
surface of NMVs (Supplementary Fig. 4a), HCAEC levels of P-
selectin were found to be unchanged by shear stress (Supple-
mentary Fig. 4c) and therefore not likely to mediate the pre-
ferential adhesion of NMVs to atheroprone regions.

NMVs enhance monocyte transendothelial migration. To
determine the functional consequences of NMV interaction with
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Fig. 1 Hypercholesterolaemia promotes NMV release and accumulation in the vessel wall. NMVs were prepared from stimulated human (a–c) or mouse
(d–f) neutrophils. a, d Transmission electron micrograph of an NMV pellet. b, e Transmission electron micrograph of a negatively stained NMV sample on
carbon-coated copper grids. Magnification of both micrographs ×28,500. Scale bars= 0.25 µm (a), 0.2 µm (b), 0.25 µm (c), 0.2 µm (d). Representative
histogram showing size distribution of human (c) and mouse (f) NMVs analysed using Tunable Resistive Pulse Sensing and Nanoparticle Tracking
Analysis, respectively. g NMVs were detected in human plasma samples before and after high-fat diet using flow cytometry by staining with FITC-anti-
CD66b (n= 15). h Total plasma MVs in ApoE−/− mice fed chow (n= 6) or high-fat diet for 6 weeks (n= 5) and i in ApoE−/− mice fed high-fat diet
for 6 weeks with and without neutrophil depletion (n= 5) were quantified by flow cytometry. Numbers were normalised to the mean of control samples
(filled circles, g–i). j NMVs were detected in aortic arch homogenates by staining with FITC-anti-mouse Ly6G. The number of NMVs in the aortic arch of
ApoE−/− mice on western diet for 6 (n= 7) or 20 weeks (n= 4) was compared to that of ApoE−/− mice on chow (dotted line) using flow cytometry. Data
are presented as mean ± SEM and statistical significance evaluated using a paired (g) or unpaired (h–j) t-test. *P < 0.05, **P < 0.01. All n numbers represent
independent participants/animals. Source data are provided as a Source Data file.
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arterial endothelial cells, we investigated their potential effects on
pathophysiological processes underpinning vascular inflamma-
tion and atherogenesis. In vitro experiments showed that the
presence of NMVs significantly enhanced monocyte adhesion to
HCAEC under OSS (Fig. 3f, g). Furthermore, monocyte trans-
endothelial migration toward CCL2 was increased in the presence
of NMVs in a manner that was dependent on the number of
NMV present (Fig. 3h). Crucially, NMVs released from unsti-
mulated neutrophils were unable to induce this increase in

monocyte transmigration (Supplementary Fig. 5a), suggesting
that this response is dependent on the properties of NMVs
released from stimulated neutrophils. The effect was, however,
dependent on the presence of endothelial cells, as NMVs did not
influence monocyte migration in the absence of HCAEC (Fig. 3i).
Pre-blocking CD18 on the surface of NMVs significantly reduced
monocyte transendothelial migration (Fig. 3j). We noted that
relatively few fluorescently labelled NMVs adhered to monocytes
(Supplementary Fig. 5b) and also NMVs did not activate
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Fig. 2 NMVs preferentially adhere to atheroprone regions in vivo. Fluorescently labelled NMVs (green) were injected via the tail vein into ApoE−/− mice
that had been fed a Western diet for 6 weeks. After 2 h, mice were culled and en face immunostaining of the mouse aortic arch was performed.
Representative en face images of NMV adhesion in atheroprotected (outer curvature, a, b) and atheroprone (inner curvature c, d) regions of the aorta,
visualised by confocal fluorescence microscopy. Endothelial cells were identified by staining with anti-CD31 antibody (red) and cell nuclei were identified
using TO-PRO Iodide (magenta). Outer and inner curvature of the ascending aorta were identified by anatomical landmarks and confirmed by
characterising the phenotype of endothelial cells; those at the outer curvature were aligned, elongated and uniform—a characteristic of cells under high
shear, whereas cells in the inner curvature had a disorganised appearance. Samples were visualised using a ×100 objective at ×1 zoom (a, c) and at ×6
zoom (b, d). Scale bars= 20 µm (a, c), 5 µm (b, d). e Quantification of adherent NMVs presented as mean ± SEM (n= 4 animals) and statistical
significance evaluated using a paired t-test test. *P < 0.05. Source data are provided as a Source Data file.
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monocytes (as demonstrated by a lack of L-selectin shedding and
no induction of CD11b expression; Supplementary Fig. 5c). Thus
we conclude that interaction of NMVs released from stimulated
neutrophils with endothelial cells, via CD18 on the NMV surface,
promotes the subsequent recruitment of monocytes, and that this
process does not involve monocyte–NMV interactions. Therefore,

we next investigated whether NMVs promote monocyte recruit-
ment by altering endothelial cell inflammatory activation.

NMVs induce inflammatory activation of HCAEC via RelA.
Given the central role of cytokines and adhesion molecules in

Static

40 8000

NMVs

Monocytes

Isotype control Anti-ICAM-1

Isotype Anti-CD18

Isotype
control

Anti-
ICAM-1

6000

4000

2000

0

30

20

10

0

150
–NMV

–NMV –NMV +NMV–NMV

+NMV/μl (×103)

0.1 1 102 h 4 h

+NMV

2 h 4 h

100

50

0

300

200

100

0

300

200

100

0

150

–HCAEC

NS

100

50

0

150

100

50

0

M
V

 c
ou

nt
/fi

el
d 

of
 v

ie
w

N
M

V
 a

dh
es

io
n 

(%
 c

on
tr

ol
)

M
on

oc
yt

e 
ad

he
si

on
/H

C
A

E
C

(%
 c

on
tr

ol
)

M
on

oc
yt

e 
tr

an
sm

ig
ra

tio
n

(%
 c

on
tr

ol
)

M
on

oc
yt

e 
tr

an
sm

ig
ra

tio
n

(%
 c

on
tr

ol
)

M
on

oc
yt

e 
tr

an
sm

ig
ra

tio
n

(%
 c

on
tr

ol
)

IC
A

M
-1

 e
xp

re
ss

io
n 

(M
F

I)

HSS OSS Static HSS OSS

Statica HSS OSS

NMV/CD31/TO-PRO-3

b c d

e f

g h i j

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-14043-y ARTICLE

NATURE COMMUNICATIONS |          (2020) 11:214 | https://doi.org/10.1038/s41467-019-14043-y |www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


monocyte recruitment, we investigated the effects of NMVs on
endothelial expression of these inflammatory factors. Following 2
or 4 h incubation with NMVs under static conditions, HCAEC
showed a significant increase in the release of the monocyte
chemoattractant CCL2 and the neutrophil chemoattractant
CXCL8 compared to HCAEC alone, whereas levels of IL-6 were
not significantly increased (Fig. 4a). The increase in CCL2 release
at 4 h is physiologically relevant since it is comparable to that
measured when HCAEC were incubated with a well-described
inflammatory stimulus, tumour necrosis factor (TNF) (1154 ±
298 pg mL−1 (mean ± SEM). We then repeated the 4 h incubation
adding NMVs under OSS conditions as disturbed flow itself is
known to be pro-inflammatory27,31. NMVs induced a significant
increase in the release of IL-6 and CXCL8 from HCAEC under
OSS (Fig. 4b). In addition, NMVs induced an increase of ICAM-
1, vascular cell adhesion molecule-1 (VCAM-1), and CCL2 pro-
tein levels under static conditions (Fig. 4c) in HCAEC. These
cytokines and adhesion molecules were not detectable in NMVs
alone indicating that their production by HCAEC can be induced
by NMVs. Gene expression changes in ICAM-1 and VCAM-1
were observed in HCAEC incubated with NMVs both under
static and OSS conditions after 2 h, whereas increased levels of
CCL2 were only observed under static conditions (Fig. 4d).
Additionally, the increase in gene expression was not due to
contaminants contained within the NMV supernatants (Supple-
mentary Fig. 6). Importantly, NMVs released by stimulated
neutrophils were able to induce significantly greater increases in
gene expression in HCAECs than those from unstimulated cells
(Supplementary Fig. 7a) suggesting that NMVs released from
stimulated neutrophils are able to induce greater endothelial cell
activation.

To interrogate the mechanism by which NMVs induced
increased expression of inflammatory molecules, we investigated
whether they influence the NF-κB pathway, which is a central
regulator of inflammation in arterial endothelial cells. We focused
on RELA, an abundant proinflammatory NF-κB subunit in
endothelial cells, and found that NMVs released by activated
neutrophils induced RELA expression in HCAEC after 2 h under
both static and OSS conditions (Fig. 4e) unlike those released by
unstimulated cells (Supplementary Fig. 7b). We hypothesised that
this was mediated via transfer of NMV cargo to endothelial cells
and inflammatory activation via increased RELA expression.
Consistent with this, we found that NMVs were internalised by
arterial endothelial cells, both in vitro (Fig. 5a) and in vivo
(Fig. 5b, c). Targeted labelling of early endosomes was used to
determine the localisation of NMVs within the cytoplasm and
some NMVs were found to colocalise with this marker (Fig. 5a).
No signal in the NMV channel was detected in cells that were
treated with supernatants from labelled NMVs where F-actin was

labelled (Supplementary Fig. 8). This was a metabolically active
process (i.e. endocytosis/macropinocytosis rather than diffusion)
as internalisation was significantly reduced when cells were
incubated at 4 °C or room temperature compared to 37 °C
(Fig. 5d). Furthermore, TNF, a known inducer of ICAM-1
expression, increased internalisation whereas blocking ICAM-1
with anti-ICAM antibody partially inhibited NMV internalisation
(Fig. 5e), both of which support a role for ICAM-1. Consistent
with this, increased NMV internalisation was observed when
HCAEC were cultured under OSS compared to static conditions
(Fig. 5f).

NMVs induce NF-κB activation in HCAEC via delivery of miR-
155. We next investigated whether NMVs contained miRNAs
that could influence gene expression in recipient endothelial cells.
We focussed on miRNAs that are found in activated neutrophils
and are not found constitutively in endothelial cells. RT-qPCR
analysis revealed that NMVs contained several miRNAs, includ-
ing regulators of inflammation (miR-9, miR-150, miR-155, miR-
186, miR-223; Fig. 6a).

We next determined whether plasma MV expression of the
most abundant miRNAs, miR-223 and miR-155, were altered by
high-fat diet in human subjects and found that only miR-155
expression levels were significantly elevated (Fig. 6b). We
compared the relative levels of expression of miR-155 in NMVs
derived from unstimulated neutrophils and neutrophils exposed
to fMLP or modified lipoprotein. NMVs from fMLP and acLDL
stimulated neutrophils had relatively more miR-155 expression
than those from unstimulated neutrophils (Supplementary Fig. 9).
Moreover, stimulation of neutrophils with fMLP or acLDL
resulted in a significant increase in NMV release compared to that
from unstimulated neutrophils (Supplementary Fig. 10). It was
therefore conluded that stimulated neutrophils release greater
number of NMVs with increased miRNA content. In mice, miR-
155 expression levels were found to be increased in plasma MVs
and NMVs after Western diet compared to chow (Fig. 6c, d).
Additionally, following Western diet feeding for 6 weeks, NMVs
had comparatively higher levels of miR-155 expression than
plasma NMVs as a whole (copy number for plasma MVs after
WD= 171 ± 18.1 (mean ± SEM); copy number for NMVs after
WD= 416 ± 13.8 (mean ± SEM)). miR-155 has been shown to
increase NF-κB expression by targeting its negative regulator,
BCL632–34. We therefore hypothesised that NMVs activate NF-κB
by delivering miR-155, which reduces BCL6 expression. Con-
sistent with this, incubation of HCAEC with NMVs led to
enhanced endothelial expression of miR-155 associated with
reduced BCL6 expression (Fig. 6e). Exposure to high-fat diet for
1 week augmented the ability of NMVs to increase miR-155

Fig. 3 NMVs adhere to HCAEC under flow and enhance monocyte migration. a, b HCAEC were cultured (72 h) under static, high laminar (HSS) or low
oscillatory shear stress (OSS). Fluorescently labelled NMVs (red) were added for 2 h. Cells co-stained for CD31 (green) and TO-PRO-3 (blue).
a Representative images (scale bar= 50 µm) and b quantification of NMV adhesion (n= 3). c HCAEC cultured as for a were incubated with fluorescently
labelled anti-ICAM-1, changes analysed by flow cytometry and displayed as mean fluorescence intensity (MFI) (n= 5). d, e HCAEC cultured under OSS
(72 h) were incubated with anti-ICAM-1 or isotype control antibody (100 µg mL−1) for 1 h before addition of fluorescently labelled NMVs. d Representative
images (scale bar= 100 µm) and e quantification of NMV (red) adhesion. Data expressed as percentage of mean of isotype sample (n= 3). f, g After 72 h
exposure to OSS, NMVs were perfused over conditioned HCAEC for 2 h. Fluorescently labelled monocytes (red) were added to perfusion media for 2–4 h.
f Representative images (scale bar= 100 µm) and g quantification of adherent monocytes (n= 3). Data expressed as percentage of mean number of
adherent monocytes per HCAEC in control samples (−NMV). h–j HCAEC cultured on transwells were incubated with (+NMV) or without (−NMV)
NMVs for 30min followed by addition of monocytes. Monocyte transmigration toward CCL2 (5 nmol/L) was measured after 90min (n= 5). i Monocyte
transmigration was repeated in absence of HCAEC (n= 3). j NMVs were treated with anti-CD18 or isotype control for 20min, washed and the
transmigration experiment repeated (n= 4). h–j Data expressed as percentage of mean of control samples (−NMV/isotype) and presented as mean ±
SEM. Statistical significance evaluated using a paired t-test (e, i, j) or one-way ANOVA followed by Tukey’s (b, c) or Dunnettʼs (g, h) test. NS not
statistically significant, *P < 0.05, **P < 0.01. All n numbers represent independent experiments. Source data are provided in Source Data file.
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expression levels in HCAEC (Fig. 6f). The potential of MVs to
deliver miR-155 to EC was confirmed by demonstrating that
NMVs from wild-type mice could enhance miR-155 expression in
HCAEC whereas NMVs from miR-155−/− mice could not
(Fig. 6g). Indeed, we found a small but statistically significant
reduction in miR155 copy number in HCAEC when incubated

with miR155−/− NMVs, although the mechanism for this
unexpected finding are unknown and could be due to levels
being near the lower detection limit of the assay. The reduced
expression of BCL6 seen with NMV incubation was reversed
in endothelial cells transfected with an antagomir that blocks
miR-155 function, indicating that BCL6 is negatively regulated by
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miR-155. Consequently, the increase in expression of RELA and
its downstream target genes VCAM-1, ICAM-1 and CCL2
induced by NMVs was significantly decreased in the presence
of miR-155 antagomir (Fig. 6h). In support of this, injection of
NMVs into ApoE−/− mice induced a significant increase in
arterial expression of miR-155 (Fig. 7a) and a subsequent
reduction in BCL6 expression (Fig. 7b, c).

NMVs enhance plaque formation in a miR-155 dependent
manner. Having shown regulation of RelA expression in vitro, we

investigated whether circulating NMVs could induce focal inflam-
mation in vivo. To investigate the function of NMVs in vivo,
ApoE−/− mice were injected twice weekly for 6 weeks with NMVs to
chronically increase circulating NMV levels by ~30%, similar to the
increase in circulating NMVs observed in human subjects after
7 days on an atherogenic diet (Fig. 1g). Levels of RELA in the aorta
were assessed by en face confocal microscopy and found to be
markedly and selectively increased at atheroprone regions in
response to NMV injection (Fig. 8a, b). Under these conditions,
RELA localised partially to the nucleus and a proportion located to

Fig. 4 HCAEC activation by NMVs. HCAEC were cultured for 72 h under static conditions (a) or oscillatory shear stress (OSS; b) and were then incubated
with (+NMV) or without (−NMV) NMVs for 2 h (a; n= 5) and 4 h (a; n= 7, b; n= 4). Release of CCL2, CXCL8 and IL-6 into the media was analysed
using cytometric bead array (a) or ELISA (b). c HCAEC were incubated with (+NMV) or without (−NMV) NMVs for 2 h under static conditions and
alterations in inflammatory protein (n= 5) expression were investigated using western blotting. Samples were quantified using densitometry and
normalised to GAPDH. d, e HCAEC were incubated with (+NMV) or without (−NMV) NMVs for 2 h under static conditions (n= 10; upper panel) or OSS
(n= 3; lower panel) and gene expression changes measured using RT-qPCR. Samples were normalised to β-actin. Results are presented as mean ± SEM
and statistical significance evaluated using a paired t-test. NS not statistically significant, *P < 0.05, **P < 0.01, ***P < 0.001. All n numbers represent
independent experiments. Source data are provided as a Source Data file.
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Fig. 5 NMV internalisation by endothelial cells. a Confocal z stack image taken at a depth of 0.8 µm from the base of an HCAEC incubated with
fluorescently labelled NMVs (green) and labelled with early endosome marker (CellLight® Early Endosomes-RFP; red) and Hoechst (nuclei; blue). The
arrowheads indicate colocalisation of NMV and CellLight® Early Endosomes-RFP fluorescence. Scale bar= 5 µm. b Orthogonal view (scale bar= 10 µm and
c 3D reconstruction of an ApoE−/− mouse aorta stained en face with anti-CD31 (endothelial cells; red) and TO-PRO-3 (nuclei; magenta) showing
internalisation of fluorescently labelled NMVs (green) 2 h after i.v. injection. Elastin autofluorescence also appears as green. CD31 expression on the apical
surface was used for orientation and the plane of view set just below. Note the misaligned endothelial cell nuclei, characteristic of an area of disturbed flow.
Arrows denote NMVs. HCAEC were cultured under static conditions (d, e) or flow conditions (f) for 72 h followed by incubation with fluorescently labelled
NMVs for 2 h under static (d, e) or flow (f) conditions (n= 3). Fluorescence from residual surface bound NMVs was quenched with trypan blue and data
were analysed for changes in mean fluorescence intensity by flow cytometry. d The experiment was performed at 4 °C, room temperature (RT) or 37 °C.
e HCAEC were incubated at 37 °C in the presence of TNF (4 h prior to the addition of NMVs) and/or anti-ICAM-1 or isotype control. Data are expressed as
a percentage of the mean of the isotype control samples. Data are presented as mean ± SEM and statistical significance evaluated using one-way ANOVA
followed by Tukey’s post test for multiple comparisons (d, e) or paired t-test (f). *P < 0.05, **P < 0.01, ***P < 0.001. All n numbers represent independent
experiments. Source data are provided as a Source Data file.
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Fig. 6 NMVs contain miRNAs that are delivered to HCAEC and alter gene expression. a miRNA content of NMVs prepared from stimulated human
neutrophils quantified by RT-qPCR (n= 5). b miR-155 and miR-223 content of MVs in human plasma pre- and post high-fat diet (HFD, n= 5), or (c) plasma
from mice fed chow or Western diet (WD, 6 weeks; n= 5) was quantified by RT-qPCR. d miR-155 expression levels in NMVs isolated from mice fed chow
or Western diet (n= 3) was measured by RT-qPCR. e HCAEC were incubated with (+NMV) or without (−NMV) NMVs for 2 h and miR-155 (n= 10) and
BCL6 (n= 9) expression levels measured by RT-qPCR. f HCAEC were incubated with NMVs prepared from human neutrophils isolated pre- and post HFD
and miR-155 expression levels quantified by RT-qPCR (n= 3). The dotted line shows the mean copy number per HCAEC in the absence of NMVs. g HCAEC
were incubated with NMVs prepared from miR-155−/− vs. wild type mouse neutrophils and miR-155 expression levels quantified by RT-qPCR (n= 3).
h HCAEC were transfected with 25 ρmol of miR-155 antagomir (A) or scrambled control (Sc) and incubated with NMVs for 2 h. HCAEC expression of BCL6,
RELA and its downstream targets was investigated by RT-qPCR (n= 5). Data are presented as mean ± SEM and statistical significance evaluated using a
paired or unpaired t-test as appropriate. NS not statistically significant, *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. All n numbers represent
independent experiments. Source data are provided as a Source Data file.
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the cytoplasm, suggesting that NMVs induce partial activation of
NF-κB at atheroprone sites, and also prime endothelial cells for
enhanced inflammatory responses by increasing total NF-κB
expression.

Having determined that NMVs preferentially adhere to
atheroprone regions, enhance monocyte transendothelial migra-
tion and regulate RELA, we hypothesised that this could lead to
enhanced plaque formation. Consistent with this hypothesis, en
face Oil Red O staining revealed significantly more atherosclerotic
plaque formation in mice treated with NMVs (twice weekly
injections over a 6-week period as for the RELA expression
experiments above) compared to those treated with saline (Fig. 8c,
d). En face staining with MAC3 antibody revealed enhanced
recruitment of monocytes/macrophages in response to NMV
injection (Fig. 8e, f). Thus, we conclude that systemic NMVs can
induce focal activation of NF-κB at atheroprone sites and, thereby,
amplify vascular inflammation and accelerate lesion formation.

To further elucidate the role of miR-155 in NMV-induced
enhancement of atherosclerotic plaque formation, wild type ormiR-
155−/− mouse NMVs were injected twice weekly for two weeks into
ApoE−/− mice that had been on Western diet for 4 weeks. Wild
type NMVs significantly increased atherosclerotic plaque area in the
aortic root compared to control (no NMVs injected), whereas
NMVs isolated from miR-155−/− mice had no significant effect
(Fig. 9a) as determined by Oil Red O staining. Additionally,
immunohistochemical analysis of MAC3 staining in the aortic root
revealed that significantly higher levels of monocyte/macrophages
were detected in atherosclerotic plaques in ApoE−/− mice that were
injected with wild type NMVs compared to control (Fig. 9b).
However, miR-155−/− NMVs did not affect monocyte recruitment
and significantly fewer were detected in plaques compared to wild

type NMV injected mice. It was therefore concluded that NMVs
enhance vascular inflammation and atherosclerosis and that miR-
155 is essential for this pathogenic process.

Discussion
Neutrophils are the most abundant leucocyte in human circula-
tion and are essential for an effective innate immune response.
There is also increasing evidence for their role in atherosclerosis.
High fat feeding, both in humans and in mouse models, increases
the level and activation of neutrophils35–37. Although small
numbers of neutrophils have been detected within the core of
developing atherosclerotic plaques, this peaks at early stages
(4 weeks after high-fat diet for ApoE−/− and 6 weeks for LDL−/−

models of experimental atherosclerosis) and neutrophils are
rarely observed beyond these time points37,38. Nevertheless,
there is evidence to suggest that neutrophils may play a role in
plaque development through mechanisms that do not require
them to be present within the plaque core, such as neutrophil
extracellular trap formation (NETosis) in response to the pre-
sence of cholesterol crystals39. In addition to NETosis, activated
neutrophils are known to release MVs29,40,41. However, a role for
NMVs in atherosclerosis has not previously been investigated.
Here we show that: (i) high-fat diet raises levels of circulating
NMVs; (ii) NMVs adhere preferentially to atheroprone regions;
(iii) once adherent, NMVs are internalised by endothelial cells
and deliver miR-155 and that (iv) NMVs from stimulated neu-
trophils activate endothelial cells, enhance monocyte recruitment
and exacerbate atherosclerotic plaque formation in a miR-155-
dependent manner (see Fig. 10 for proposed molecular model).

We observed that a high-fat diet, a known driver of
atherosclerosis42,43, potently enhanced circulating levels of NMVs
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Fig. 7 NMVs increase miR-155 and reduce BCL6 expression in atheroprone regions in vivo. a ApoE−/− mice were injected with NMVs via the tail vein
and miR-155 expression levels in the aorta were quantified by RT-qPCR 2 h after injection of saline (−NMV) or NMVs (+NMV; n= 4). All RT-qPCR
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were identified by staining with anti-CD31 (green) and cell nuclei were identified using TO-PRO-3 Iodide (blue). Representative en face images of the BCL6
channel and merged channels are shown. Scale bar= 20 µm. Total fluorescence intensity of BCL6 expression was quantified using ImageJ software (n= 4)
and expressed as a percentage of the mean fluorescence in the control samples (−NMV). Data are presented as mean ± SEM and statistical significance
evaluated using an unpaired t-test. *P < 0.05. All n numbers represent independent animals. Source data are provided as a Source Data file.
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Fig. 8 NMVs induce activation of NF-κB in atheroprone regions and enhance atherosclerosis. ApoE−/− mice fed a Western diet were injected with
NMVs, or an equivalent volume of saline, twice weekly via the tail vein for 6 weeks. a Representative en face images of RELA (red) expression in the aorta
of mice injected with saline (−NMV) or NMVs (+NMV) in atheroprone regions visualised using confocal fluorescence microscopy. Scale bar= 10 µm.
Endothelial cells were identified by staining with anti-CD31 (green) and cell nuclei were identified using TO-PRO-3 Iodide (blue). Examples of nuclear
staining of RelA indicated with arrowheads. b Mean fluorescence intensity was quantified using ImageJ software and data expressed as mean ± SEM (n=
5). c, d Plaque formation was measured in dissected aortae using en face Oil Red O staining and imaged by bright field microscopy. c Representative
images are shown. d Areas of plaque formation were determined in the entire aorta using NIS-elements analysis software (n= 7). e, f The aortic arches of
mice injected with saline (−NMV) or NMVs (+NMV) were studied by en face staining to quantify macrophages (MAC-3, red). e Endothelial cells were
identified by staining with anti-CD31 antibody (green) and cell nuclei were identified using TO-PRO-3 Iodide (blue). Scale bar= 10 µm. fMean fluorescence
intensity was quantified using Image J software (n= 3). Data are expressed as a percentage of the mean of the control samples (−NMV) and presented as
mean ± SEM. Statistical significance was evaluated using two-way ANOVA followed by Bonferroniʼs post hoc test (b) or an unpaired t-test (d, f). *P < 0.05,
**P < 0.01. All n numbers represent independent animals. Source data are provided as a Source Data file.
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in healthy humans. Additionally, we found that modified LDL was
able to induce the release of large numbers of MVs from neu-
trophils with high levels of microRNA, suggesting that dyslipidae-
mia may induce the increased levels of circulating MVs observed in
both our human and murine studies. It is important to note that,
despite the differences in the longevity of the different models used

in the current study—a short term increase in fat intake in healthy
humans and a longer term high-fat diet in hypercholesterolemic
mice - similar changes in plasma MVs were observed with the
absolute number rather than the proportions of MVs changing. Our
findings in healthy human subjects were mirrored in hypercholes-
terolemic mice and led to an increase of NMVs in vessel walls.
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Fig. 9 NMVs enhance formation and macrophage content of atherosclerotic plaques in a miR-155-dependent manner. ApoE−/− mice fed a Western diet
for 6 weeks were injected with NMVs isolated from wild type (WT) or miR-155−/− mouse neutrophils, or an equivalent volume of saline (control), twice
weekly via the tail vein for the final 2 weeks. a Plaque formation and b macrophage content was measured in frozen aortic root sections by Oil Red O and
MAC-3 staining respectively and imaged by bright field microscopy. a Representative images of Oil Red O staining from control, wild type NMV and miR-
155−/− NMV injected ApoE−/− mice are shown. Scale bar= 200 µm. Areas of plaque formation were determined in aortic root sections using NIS-
elements analysis software (n= 10). b Representative images of MAC-3 staining from control, wild type NMV and miR-155−/− NMV injected ApoE−/−

mice are shown. Scale bar= 50 µm. MAC-3 positive staining within plaques was determined using NIS-elements analysis software (n= 10). Data are
expressed as a percentage of the mean of the control samples (no NMV) and presented as mean ± SEM. Statistical significance was evaluated using one-
way ANOVA followed by Tukey’s post hoc test. NS not statistically significant, *P < 0.05, ***P < 0.001 compared to control. ###P < 0.001 wild type NMV
compared to miR-155−/− NMV injected mice. All n numbers represent independent animals. Source data are provided as a Source Data file.
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Fig. 10 Proposed model of the molecular mechanism of action of NMVs in atherosclerosis. High fat diet increases the level of circulating NMVs (i) that
preferentially adhere to atheroprone regions of arteries (ii) where they become internalised by endothelial cells (iii). Delivery of miR-155 to the endothelial
cells downregulates BCL6, leading to an increase in NF-κB expression and subsequent inflammatory activation. This results in an increase in the number of
monocytes recruited to the vessel wall and enhanced atherosclerotic plaque formation.
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Although levels of NMVs in the vessel wall increased over time, this
could be due to accumulation of NMVs that are not degraded once
internalised or, alternatively, it could be due to an increase in the
rate of uptake due to exacerbation of local inflammation. The
observations from our murine studies are in agreement with find-
ings from Leroyer and colleagues who detected the presence of
granulocyte-derived MVs in human atherosclerotic plaques18.
Further studies into the role of NMVs in patients with cardiovas-
cular disease will need to take into account the effects of current
treatments such as statins on MV numbers44 as well as the effect of
comorbidities such as diabetes, which is known to be correlated
with increased circulating MVs45. However, since our data clearly
show a link between NMVs and atherosclerosis, this may warrant
further investigation in a large cohort of well-characterised patients
at risk of cardiovascular disease.

Atherosclerosis is a focal disease that occurs in regions of dis-
turbed flow. NMV-endothelial cell interactions were increased when
under conditions of disturbed flow and at atheroprone sites in mice
fed on a high-fat diet. This correlated with the expression of ICAM-
1, and adhesion was indeed found to be ICAM-1 dependent, similar
to findings previously described investigating NMV interactions
with HUVEC under static conditions28. Interestingly, interaction of
NMVs from stimulated neutrophils with endothelial cells further
increased ICAM-1 expression suggesting that this interaction may
lead to an augmentation of subsequent NMV-endothelial cell
interactions (i.e. positive feedback). This could provide a mechanism
by which NMVs accumulate in the vessel wall of mice on a high-fat
diet over time. Once adherent, NMVs were internalised by endo-
thelial cells. ICAM-1 was also required for the internalisation of
NMVs and, interestingly, Muro et al. have described a pathway for
endocytosis involving clustering of ICAM-146,47. It is plausible that
NMVs utilise this pathway, providing a mechanism by which
increased levels of internalisation occur in areas where there is
increased expression of this adhesion molecule, such as atheroprone
regions. Further studies to investigate the precise mechanisms by
which NMVs are internalised and the fate of NMVs once inter-
nalised are of great importance as this could potentially be exploited
in the future for targeted delivery of therapeutic agents.

Although we found that unstimulated neutrophils released
NMVs albeit in lower numbers, we also found that, unlike NMVs
from stimulated neutrophils, these NMVs were unable to induce
endothelial cell activation. It is likely that these functional dif-
ferences are due to divergent cargo as previously described for
NMVs released from adherent vs. non-adherent neutrophils48.
There has been much interest in the ability of extracellular vesi-
cles to transfer genetic material from the parent cell to a target
cell14,15. Here we demonstrate that NMVs contain numerous
miRNAs implicated in atherosclerosis and vascular inflammation,
the most abundant of which were miR-155 and miR-223. High fat
feeding of both healthy human volunteers and ApoE−/− mice
resulted in a significant increase in plasma MV and NMV levels
of miR-155 but not miR-223. In addition, incubation of HCAECs
with NMVs increased cellular expression of miR-155, which was
further increased when NMVs were prepared from subjects who
had undertaken the high-fat diet study. We also found that levels
of miR-155 were greater in NMVs derived from stimulated
compared to unstimulated neutrophils. We concluded that miR-
155 was delivered to, but not induced in, HCAEC as NMVs
isolated from miR-155−/− mice did not enhance miR-155
expression in HCAEC. In support of these findings, previous
studies have shown that microvesicles derived from TNF stimu-
lated HUVEC are able to transfer miR-155 to T lymphocytes,
leading to more severe graft-vs-host disease in irradiated mice49.

We subsequently carried out functional studies using a miR-
155-specific antagomir and demonstrated that miR-155 enhanced
inflammatory gene expression by promoting the expression of the

RELA NF-κB sub-unit. The mechanism involves BCL6, a negative
regulator of NF-κB, whose expression in EC was suppressed by
miR-155 delivery. Thus, we suggest that NMVs enhance NF-κB
expression in endothelial cells by delivering miR-155, which
inhibits the negative regulator BCL6. Consistent with this, we
observed that NMVs enhance NF-κB expression at atheroprone
regions in hypercholesterolemic mice. Moreover, miR-155
expression is increased in both human and mouse athero-
sclerotic plaques, and ApoE−/− mice deficient in miR-155 have
been shown to have reduced atherogenesis and monocyte
recruitment50. Interestingly a study by Zheng et al. found that
injection of exosomes derived from smooth muscle cells over-
expressing miR-155 enhanced atherosclerotic plaque formation51,
suggesting that there could be multiple sources of miR-155 con-
tributing to the elevation of this miRNA within plaques. We
hypothesise that NMVs play a role in focal increases in miR-155
levels leading to enhanced vascular inflammation and accelerated
atherogenesis. To address this hypothesis, we injected NMVs
isolated from wild type or miR-155−/− mice into hypercholester-
olemic mice and found that only those from wild type mice were
able to enhance atherosclerotic plaque formation, demonstrating
that NMV delivery of miR-155 to atheroprone regions is crucial in
this response. It should be noted that NMVs contain a complex
mixture of proteins, RNAs, and miRNAs that may also contribute
to atherosclerosis development and future studies should address
the potential role of these factors. Nevertheless, despite this com-
plex cargo, we have shown that miR-155 is an important com-
ponent and may be a potential therapeutic target in atherosclerosis.

Together, our studies presented here provide fundamental
insights into the mechanism of action of NMVs in enhancing
vascular inflammation and monocyte recruitment to developing
plaques, potentially solving a long-standing enigma regarding the
role of neutrophils in atherosclerosis. The ability of NMVs to pre-
ferentially adhere to atheroprone sites and activate endothelial cells
could be a major mechanism by which neutrophils contribute to
plaque formation but are rarely detected in human plaques.

Methods
Ethics. For human studies, experiments complied with all ethical regulations and
were approved by the University of Sheffield Research Ethics Committee (reference
SMBRER310) or the Loughborough University Ethical Subcommittee for Human
Participants (Study title: Molecular and Hormonal Responses to Diet-Induced
Insulin Resistance, Approval number: R13-P171). The trial was also retrospectively
registered at ClinicalTrials.gov (identifier: NCT03879187). All subjects gave
informed consent and the experimental procedures and possible risks were fully
explained. The pre-specified primary outcomes were glucose and insulin con-
centrations, glucose kinetics, skeletal muscle insulin signalling and muscle micro-
vascular eNOS content and phosphorylation. These outcomes have been
published52 and the data presented in the current manuscript is an ad-hoc analysis
which was covered under the original ethical approval as all human volunteers
consented to their samples being used in future research related to cardiometabolic
health outcome (approved by the Loughborough University Ethical Subcommittee
for Human Participants).

All procedures involving mice complied with all ethical regulations and were
approved by the University of Sheffield ethics committee and performed in
accordance with the UK Home Office Animals (Scientific Procedures) Act 1986
under Project Licences 40/3562 and PF8E4D623. Both male and female mice were
used. Where appropriate, age-matched animals were randomly assigned to
treatment groups. Number rather than treatment group was used to label samples
for subsequent blinded analysis. ApoE−/− mice were sourced from an in-house
colony derived from breeding pairs obtained from Jackson Laboratories (JAX 2052;
ME). miR-155−/− mice were supplied by Jackson Laboratories (JAX 7745; ME).

High fat diet. Fifteen healthy individuals (13 males and 2 females) with a mean ±
SEM age 24 ± 1 y, height 176.1 ± 2.1 cm, body mass 77.65 ± 3.02 kg and body mass
index (BMI) of 24.9 ± 0.6 kg m−2 volunteered to participate in this study. Partici-
pants attended an initial pre-screening visit for assessment of baseline anthropo-
metric characteristics and estimation of resting energy expenditure according to the
calculations described by Mifflin et al.53. From these procedures it was determined
that a daily energy intake of 13474 ± 456 kJ was required to maintain energy bal-
ance. A week long, high-fat diet intervention was carried out in order to increase
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daily energy intake by ~50% (19868 ± 759 kJ). Macronutrient intake was 333 ± 14 g
[64%] fat, 188 ± 8 g [16%] protein and 237 ± 8 g [20%] carbohydrate. All foods
were purchased and prepared by the research team and diet adherence was assessed
via daily interviews and through asking participants to return any uneaten foods.
Fasting venous blood samples were obtained in the morning before commencing
the high-fat diet and again after 7 days adherence. Blood samples were collected at
least 12 h after consuming the previous evening meal. Platelet poor plasma was
prepared by spinning platelet rich plasma at 2000 × g for 20 min, and immediately
stored at −20 °C for batch analysis of MV levels at the University of Sheffield.

For mouse studies, ApoE−/− mice were fed chow or a high fat (21%) Western
diet (8290; Special Diet Services, UK) for 6–20 weeks. Neutrophil depletion studies
were carried out using i.p. anti-Ly6G antibody administration (100 µg per injection;
Biologend, catalogue no: 127649)2,54. Differential blood counts were made using
blood smears stained with a Kwik-Diff™ kit (ThermoFisher Scientific, MA). Total
circulating leucocyte counts were acquired using a hemocytometer. From this the
total levels of circulating neutrophils, monocytes and lymphocytes were calculated
(Supplementary Fig. 11).

NMV isolation. NMV isolation was based on the method of Timár et al.41 with
some modifications. In brief, human neutrophils were isolated from peripheral
venous blood by density gradient separation. Mouse peripheral blood neutrophils
were isolated by negative immunomagnetic separation55. Isolated neutrophils were
stimulated with the bacterial derived peptide N-formylmethionyl-leucyl-phenylala-
nine (fMLP 10 µmol L−1; Sigma-Aldrich, MO) for 1 h (37 °C in 5% CO2). Neu-
trophils were then removed by spinning twice at 500 × g for 5 min and the
supernatant collected. In some experiments, PBS (containing calcium and magne-
sium) or acetylated LDL (acLDL 20 µgmL−1; Fisher Scientific, MA) were also used
as alternative stimuli. To remove residual fMLP, NMV suspensions were dialysed
using dialysis cassettes (ThermoFisher Scientific, MA). To pellet NMVs, the sus-
pension was centrifuged at 20,000 × g for 30min. In some assays control samples
were spiked with 20 µL of the supernatant from this step to assess HCAEC activa-
tion. NMV suspensions were tested for platelet contamination by flow cytometry
using anti-human CD41 (10 µl per sample; BD Biosciences, UK, catalogue no:
560979) and for endotoxin contamination using Limulus Amebocyte lysate assay
(Lonza, UK) and found to contain neither. NMV concentration from each isolation
was quantified by flow cytometry. In order to detect NMVs, settings were standar-
dised on an LSRII flow cytometer (BD Biosciences, UK) for forward (size) and side
(granularity) scatter parameters using Megamix fluorescent calibration beads (Bio-
Cytex, France) according to the manufacturer’s instructions (Supplementary
Fig. 12a–d). NMVs were quantified using Sphero™AccuCount beads (Saxon Europe,
UK). 20 µl of sample and 10 µL of Sphero™AccuCount beads (2.04 µm; Saxon Eur-
ope, UK) with a concentration of approximately 1 × 106 particles mL−1, were added
to 300 µl PBS. The flow cytometer was set to count 1000 beads and the number of
NMV counts used to determine the concentration in the sample using the formula:

(A divided by B) × (C divided by D)= number of MVs per µL

where:
A= number of events for sample
B= number of events for the AccuCount Particles (i.e. 1000)
C= number of AccuCount Particles per 10 µL (i.e. 10,000) and
D= volume of test sample initially used in µL (i.e. 20 µL).

For experiments where fluorescently labelled NMVs were required, PKH26 or
PKH67 fluorescent cell linker kits for general cell membrane labelling were used to
label the NMVs directly (Sigma, UK) according to the manufacturer’s instructions.
Integrity of NMV samples was checked using electron microscopy. Samples were
examined (original magnification ×17000) using a Tecnai Transmission Electron
Microscope (ThermoFisher Scientific, MA) at an accelerating voltage of 80 kV and
micrographs were taken using a Gatan digital camera (Gatan, CA; Fig. 1a). For
negative staining (Fig. 1b), 5 µL of NMV suspension was absorbed onto a glow-
discharged thin-film carbon-coated copper grid for 1 min. The grid was blotted,
washed with 50 µL of distilled water for 5 s, blotted and washed again. After blotting
for a third time, the grid was incubated with 50 µL of uranyl formate for 20 s. The grid
was blotted once more and any remaining moisture was removed using a vacuum
pump. Grids were imaged immediately using a CM100 Transmission Electron
Microscope (Philips, UK). Human NMV size distribution was assessed using Tunable
Resistive Pulse Sensing (TRPS). Measurements were made using an iZON qNano
Gold with a NP400 nanopore and SKP400 calibration beads and with the classic
capture mode of the iZON Control Suite Software (version 3.2.2.268; iZON Science,
New Zealand). Mouse NMV size distribution was assessed using Nanoparticle
Tracking Analysis (NTA). Measurements were made using a ZetaView (Particle
Metrix, Germany) with 110 nm calibration beads (Thermofisher), a frame rate of 3.75
frames s−1 and shutter speed of 70. For post-acquisition analysis, parameters were set
to a minimum brightness of 25 and a minimum and maximum area of 5 and 999
pixels, respectively. Measurements were taken at 11 positions in the cell, with two
cycles of each position. Data was then analysed using Particle Metrix software
(ZetaView 8.03.08.03). This is in accordance with the current recommendations of the
International Society for Extracellular Vesicles56 for characterisation of single vesicles.
In addition, we also investigated the expression of proteins that NMVs may inherit
from their origin cell, as suggested by the International Society of Extracellular

Vesicles. Methods are described in detail in the section on flow cytometry analysis of
surface molecule expression.

Preparation of mouse aortic arch homogenates. Six-week old ApoE−/− mice
were fed chow diet for 20 weeks, or Western diet for 6 weeks or 20 weeks. Aortic
arch homogenates were prepared based on the method described by Leroyer
et al.18. Mice were culled by i.p. injection of pentobarbital overdose and aortae
perfused in situ with ice cold PBS. Aortic arches were dissected in ice cold PBS,
rinsed in DMEM and minced thoroughly using fine scissors and forceps in 1 ml of
DMEM. After centrifugation at 400 × g for 15 min to remove contaminating cells,
the supernatant was transferred and was further centrifuged at 5000 × g for 5 min
to eliminate cellular debris. The homogenate was then analysed by flow cytometry.

Multicolour flow cytometry analysis of MVs. MV levels in platelet poor plasma
or tissue homogenates were assessed by multicolour flow cytometry to detect spe-
cific surface markers derived from the parent cell. Due to technical difficulties with
antibody binding, mouse PPP samples were not analysed. MVs were detected and
quantified as described above. The gating strategy for analysis of human plasma
MVs is shown in Supplementary Fig. 12e and for mouse aortic arch homogenate in
Supplementary Fig. 13. The number of events in the positive gate for each marker
was quantified using FlowJo analysis software (Tree star Inc, Ashland, OR) and the
total number of MVs in each subpopulation calculated from the total. Staining of
plasma MVs and multicolour flow cytometry analysis was perfomed using the
following fluorescently conjugated antibodies (all at 2 µL 100 µL−1):

Human plasma: APC-anti- human CD41 (platelets; ThermoFisher Scientific,
MA, catalogue number: 17-0419-42); PE-anti-human CD14 (human
monocytes; Biolegend, CA, catalogue number: 301806); PE-cyanine 7 anti-
human CD144 (endothelial cells; ThermoFisher Scientific, MA, catalogue
number: 25-1449-41); FITC-anti-human CD66b (neutrophils; Biolegend, CA,
catalogue number: 305103).
Mouse plasma: brilliant violet 421-anti-mouse CD41 (platelets; BD Biosciences,
CA, catalogue number: 133911); PE-anti-mouse CD155 (monocytes;
ThermoFisher Scientific, MA, catalogue number; 12-1550-41); APC-anti-mouse
CD144 (endothelial cells; Biolegend, CA, catalogue number: 138012); FITC-
anti-mouse Ly6G (neutrophils; BD Biosciences, CA catalogue number: 551460).

MV content of aortic arch homogenate was assessed using the above antibodies
described for mouse plasma.

Fluorescence minus one (FMO; a sample containing all of the fluorochromes
apart from the one being measured) and isotype antibody control samples were run
in order to set gates (to exclude background fluorescence from other fluorochromes
and non-sepecifc antibody binding) for positive fluorescence in each channel.
Samples were analysed using an LSRII flow cytometer (BD Biosciences, UK) with
FlowJo analysis software (Tree star Inc, Ashland, OR). MVs were quantified using
Sphero™AccuCount beads (Saxon Europe, UK) as described. The percentage of the
population that was positive for each marker was analysed using FlowJo analysis
software (Tree star Inc, Ashland, OR).

NMV adhesion and internalisation in vivo. To assess NMV adhesion and
internalisation, saline (150 µL) or fluorescently labelled NMVs (4 × 106 in 150 µL)
were injected via the tail vein into ApoE−/− mice fed a Western diet for 6 weeks.
After 2 h, mice were culled by i.p. injection of pentobarbital overdose and en face
immunostaining of the mouse aortic arch was carried out. Aortic arches were
flushed with PBS and perfusion-fixed with 2% formalin prior to harvesting. For
BCL6 expression, carotid arteries were manually dissected, cleaned of extraneous
tissue, cannulated with a micropipette-in-pipette at each end and mounted vessels
incubated ex vivo with or without 4 × 106 NMVs (based on the mean decrease of
3.6 × 106 million MVs in neutrophil depleted mice) for 2 h. RelA expression was
assessed in the aortic arches of ApoE−/− mice injected with 4 × 106 NMVs, or an
equivalent volume of saline, twice weekly via the tail vein. Fixed vessels were
immunostained using primary antibodies to mouse BCL6 (2 µg mL−1; Santa Cruz,
TX, catalogue number: sc-7388), mouse RelA (2 µg mL−1; Santa Cruz, TX, cata-
logue number: sc-372), or isotype control followed by Alexa 568 conjugated sec-
ondary antibodies (Life Technologies, CA). Negative control was performed with
omission of secondary antibody in order to detect background fluorescence.
Endothelial cells were stained with Alexa 488 or 594 anti-mouse CD31 antibody
(2 µg mL−1; Biolegend, CA, catalogue number: 102514) and nuclei were identified
with TO-PRO-3 Iodide. Stained vessels were then cut longitudinally and opened en
face, mounted using Prolong gold anti-fade mountant (Life Technologies, CA) for
visualisation using a confocal fluorescence microscopy (Leica TCS SP8 or Zeiss
LSM510 NLO inverted microscopes). Expression was assessed by quantification of
fluorescence intensity using ImageJ software (1.49 V, NIH). Z-stack image acqui-
sition was performed with Las X software (Leica Microsystems, Germany) using a
1024 × 1024 format, with a pixel size of 80.17 nm × 80.17 nm, at 1000 Hz or 700 Hz
scanning speed, and with line average of 3, zoom of 2.25 or 5× with a z-step of
0.3 μm. 3D reconstruction was performed using LasX software.

Human monocyte isolation. In experiments where NMVs and monocytes were
both used, cells were isolated from the same donors. Following density gradient

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-14043-y

14 NATURE COMMUNICATIONS |          (2020) 11:214 | https://doi.org/10.1038/s41467-019-14043-y | www.nature.com/naturecommunications

www.nature.com/naturecommunications


separation, peripheral blood mononuclear cells were harvested and monocytes
isolated using negative immunomagnetic separation according to the manu-
facturer’s instructions (Monocyte Isolation Kit II, Miltenyi Biotec, Germany).

Human coronary artery endothelial cells. Primary human coronary artery
endothelial cells (HCAEC) were obtained from Promocell (Germany). The HCAEC
were isolated from the left and right coronary arteries from a single donor. Cells
were cryopreserved immediately after isolation, shipped and stored in liquid
nitrogen until use. Cells were then defrosted and cultured at 37 °C, 5% CO2 in
specialised endothelial growth cell medium (MV2, Promocell, Germany) until
confluent. Primary cultures were dissociated using DetachKit (Promocell, Ger-
many) and used for experiments at passage 4–6. Endothelial cell preconditioning
was performed using the Ibidi pump system (Ibidi, Germany). HCAECs (1.7 × 105)
were seeded on to gelatin coated, 0.4 µm deep flow chambers (Ibidi µ-slide I0.4

Leur, Ibidi, Germany) and incubated for 2 h at 37 °C and 5% CO2 to allow
adhesion. All materials, including slides, perfusion sets, and Ibidi units were
autoclaved prior to being placed in an incubator at 37 °C and 5% CO2 to equilibrate
for at least 4 h prior to commencing the experiment. HCAECs were cultured under
high unidirectional shear stress (HSS; 13 dyne cm−2) or low oscillatory shear stress
(OSS; 4 dyne cm−2, oscillating at 1 Hz) for 72 h. Apoptosis and necrosis rates were
measured ± incubation with NMVs (1 × 103 µL−1) for 2 and 4 h using a flow
cytometry-based assay that measured Annexin V binding and propidium iodide
uptake. The percentage of cells that were positive for fluorescence for Annexin V or
propidium iodide was quantified and it was found that NMVs did not alter
HCAEC apoptosis or viability, respectively (Supplementary Fig. 14a, b).

NMV adhesion in vitro. HCAEC were cultured under static conditions, HSS or
OSS for 72 h as described above. Fresh complete growth medium containing
fluorescently labelled NMVs (1 × 103 µL−1) was added to cells under static con-
ditions or perfused over Ibidi µ-slides for 2 h at 37 °C and 5% CO2 under the same
shear conditions used for pre-conditioning the cells. Following incubation, the
medium was removed and cells gently washed three times with PBS to remove
residual NMVs. Phase-contrast and fluorescent images were taken using the ×20
lens of a wide-field microscope (Leica, DM14000B) and the mean number of
fluorescent NMVs in six fields of view per sample was calculated.

To assess NMV adhesion to monocytes, fluorescently labelled NMVs (1 ×
103 µL−1) were incubated with 2 × 105 monocytes for 2 h at 37 °C. Unbound NMVs
were removed by centrifugation (400 × g for 6 min) and the cells washed. NMV
adhesion was analysed using an LSRII flow cytometer and data analysed for
changes in mean fluorescence intensity using FACSDiva acquisition software.

Adhesion of monocytes to HCAEC under flow in vitro. HCAEC were cultured
under OSS for 72 h as described above. Unlabelled NMVs (2 × 103 µL−1) were
perfused over the cells under OSS for 2 or 4 h. The media was removed and
replaced with media containing fluorescently labelled monocytes (1 × 103 µL−1)
and this was perfused over the HCAEC for 2 h under OSS. Slides were washed
gently to remove non-adherent monocytes and fixed in paraformaldehyde (4%
w/v). Phase-contrast and fluorescent images were taken using the ×10 objective of a
wide-field microscope (Leica, DM14000B) to detect adherent monocytes. An
average of 15 images were analysed per slide and used to calculate the number of
adherent monocytes per field of view per sample.

Monocyte transendothelial migration in vitro. HCAEC were cultured on
transwell inserts. Monolayer integrity was checked using FITC-BSA, and found to
retain >80% FITC-BSA in the upper chamber of the plate after 120 min. HCAEC
were incubated ± NMVs (1 × 103 µL−1) for 30 min. Subsequently, 2 × 105 mono-
cytes were added to the upper chamber and the number of monocytes that had
migrated into the lower chamber in response to CCL2 (5 nmol L−1) was counted
after 90 min. To determine the role of HCAEC, the experiment was repeated in the
absence of HCAEC. To determine the effects of CD18 inhibition, NMVs were
treated with anti-CD18 (6 µg per 106 MVs; 6.5E gifted from M. Robinson, SLH
Celltech Group, UK) or isotype control for 20 min at room temperature. Unbound
antibody was removed by washing twice, resuspending the pellet in 1 mL of buffer
followed by centrifugation at 20,000 × g for 30 min, and the transendothelial
migration experiment was repeated.

Flow cytometry analysis of surface molecule expression. NMVs were stained
with anti-human FITC-conjugated CD18 (ThermoFisher Scientific, MA, catalogue
number: 11-0189-42), APC-conjugated anti-human L-selectin (BD Biosciences, UK
catalogue number: 561916), PE-anti-human PSGL-1 (BD Biosciences, UK catalogue
number: 556055) or isotype control (all at 2 µL 100 µL−1). For HCAEC, cells were
pre-conditioned as above or cultured under static conditions. Cells were washed in
PBS and trypsin (diluted 1:6 to avoid damage to ICAM-1 epitopes) was added to
each slide to detach endothelial cells. After labelling with FITC-conjugated anti-
ICAM-1 (5 µL 100 µL−1; Bioloegend, CA, catalogue number: 353108) for 40min on
ice, cells were washed twice and analysed using flow cytometry. Monocytes were
incubated with NMVs for 30 min, washed and stained with PE-conjugated anti-L-

selectin (2 µL 100 µL−1; ThermoFisher Scientific, MA, catalogue number: 12-0629-
42), PE-conjugated anti-CD11b (2 µL 100 µL−1; ThermoFisher Scientific, MA,
catalogue number: 12-0118-42) or isotype control for 40min on ice and then
washed twice to remove unbound antibody. FMO (where necessary) and isotype
control samples were run to set gates for positive fluorescence in each channel.
Mean fluorescence intensity of samples was analysed using an LSRII flow cytometer
(BD Biosciences, UK) with FlowJo analysis software (Tree star Inc, Ashland, OR).

Cytometric bead array. HCAEC (3 × 104) were cultured 72 h prior to the
experiment in a 24-well plate. Cells were incubated ± NMVs (1 × 103 µL−1) and
media collected at 2 h and 4 h. CCL2, IL-6 and CXCL8 levels were assessed using a
cytometric bead array (BD Biosciences, UK), a flow cytometry application that
allows quantification of multiple proteins simultaneously.

Enzyme linked immunosorbent assays (ELISA). HCAEC were cultured under
OSS for 72 h as described above. NMVs (2 × 103 µL−1) were perfused over the cells
under OSS for 4 h. The media was removed and human CXCL8, CCL2 and IL-6
Duoset ELISA kits (R&D systems, Abingdon, UK) were used to determine the
protein secretion from HCAECs cultured with NMVs.

Western blot analysis. HCAEC (3 × 104) were cultured 72 h prior to the
experiment in a 24-well plate. Cells were incubated ± NMVs (1 × 103 µL−1) for 2 h.
HCAEC were then washed, lysed, and centrifuged to remove any cellular debris.
Sample buffer was added, samples boiled for 5 min, run on 4–12% Bis-Tris gel (Life
Technologies, Paisley UK) and transferred to nitrocellulose membranes (Millipore,
UK). Membranes were blocked and exposed to mouse anti-BCL6 (1:250 dilution;
Santa Cruz, CA, catalogue number: sc-7388), rabbit anti-RelA (1:1000 dilution;
Santa Cruz, CA, catalogue number: sc-372), mouse anti-ICAM-1 (1:500 dilution;
Bio-Techne, UK, catalogue number: MAB720-SP), goat anti-VCAM-1 (1:1000
dilution; Bio-Techne, UK, 12-1069) and mouse anti-CCL2 (1:1000 dilution; Bio-
Techne, UK, catalogue number: MAB279-SP) overnight. Membranes were washed
and goat anti-rabbit, goat anti-mouse or rabbit anti-goat Horseradish Peroxidase
conjugated secondary antibody (Dako, UK) was added (1:2000 dilution) for 1 h.
Membranes were washed again and incubated for 1 min at room temperature with
ECL Prime® (GE Healthcare, UK). Membranes were imaged and the optical density
analysed using a LI-COR C-DiGit® Blot scanner (LI-COR Biosciences, NE).

RNA extraction and RT-qPCR. Plasma MVs were isolated by centrifuging platelet
poor plasma at 2000 × g for 30 min and collecting pellets. NMV were prepared
as described and isolated by centrifuging at 20,000 × g for 30 min. HCAEC (3 ×
105) were incubated in a 6-well plate or an Ibidi µ-slide with or without MVs (1 ×
103 µL−1) for 2 h at 37 °C. Cells were dissociated using trypsin and centrifuged at
300 × g for 5 min. ApoE−/− mice were injected i.v. with 4 × 106 NMVs via the tail
vein. After 2 h, mice were culled by i.p. injection of pentobarbital overdose and
aortae perfused in situ with ice cold PBS. The aortas were dissected immediately
and cut into small pieces before lysis. RNA and miRNA were extracted using RNA
isolation kit (Bioline, UK) and Pure Link microRNA isolation kit (Invitrogen, CA)
respectively and reverse transcription polymerase chain reaction (RT-PCR) per-
formed with 0.1 μg of RNA or miRNA using a OneStep kit (Qiagen, Germany);
quantitative PCR (qPCR) was performed using SYBRgreen (Sigma-Aldrich, MO)
for RNA analysis and Taqman (Eurogentec, Belgium) for miRNA. Relative gene
expression was calculated comparing the number of cycles required to produce
threshold quantities of product and calculated using the ΔΔCT method. β actin was
used as housekeeping gene to normalise regulation of expression.

miRNA copy number was determined by spiking samples with known amounts
of custom RNA oligonucelotides (Sigma Aldrich, MO) corresponding to the
mature miRNA sequences. RNA oligos were serially-diluted in RNAse free water
and amplified by qPCR. A standard curve was generated from the Ct value
equivalent to the known amount of RNA oligo in each Taqman qPCR reaction57,58

and the copy number was calculated using the molar mass of the synthetic RNA
oligonucleotides (Supplementary Fig. 15a, b). Detail of the primers used is given in
Supplementary Table 5.

Microscopy analysis of NMV internalisation in vitro. Live cell imaging was
performed in HCAEC. Cells were seeded on glass bottomed µ-slides (Ibidi) and
cultured for 24 h. CellLight® Early Endosomes-RFP or SiR-Actin (Spirochrome,
Switzerland) and Hoechst (both from ThermoFisher Scientific, MA) staining was
performed to detect early endosomes or F-actin and nuclei in living cells respectively.
Cells were then incubated with fluorescently labelled NMVs and confocal live cell
imaging performed on a Leica TCS SP8 imaging platform (Leica, Germany) equipped
with an incubator, allowing live cell imaging at 37 °C and at 5% CO2. Samples were
observed using a ×100 oil immersion objective (HCX PL APO ×100/1.40 oil) and
excited using sequential scanning, first at 405 nm and 532 or 652 nm for Hoechst and
Early Endosome-RFP or SiR-actin, respectively and at 490 nm for PKH67. HyD
hybrid detectors were used to detect three spectral regions: 415–496 nm (Hoechst),
588–635 nm (Early Endosomes-RFP) or 662–749 nm (SiR actin), and 500-550 nm
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(PKH67). Z-stacks were performed with a z-step size of 0.20 µm. Images were analysed
using ImageJ (1.49 V, NIH) and Amira 6 software (ThermoFisher Scientific, MA).

Flow cytometry quantification of neutrophil microvesicle internalisation
in vitro. In order to quantify NMV internalisation, HCAEC (5 × 104) were seeded
onto 24-well tissue culture plates and cultured overnight. The next day HCAEC
were incubated with media alone, media+ TNF (1 ng mL−1; R&D Systems,
Abingdon, UK), media+ anti-ICAM-1 (100 ng mL−1; Biolegend, London, UK,
catalogue number: 322704) or media+ TNF+ anti-ICAM-1 for 4 h. Consequently
fluorescently labelled NMVs (0.4 × 103 µL−1) were added and cells incubated for
2 h at 4 °C, room temperature or 37 °C (as specified in the corresponding figure
legends). The use of low temperatures to inhibit endocytosis has been used by
others to demonstrate internalisation is a metabolically active process i.e. endo-
cytosis dependent59,60. Cells were then washed to remove excess NMVs and
detached using a trypsin/EDTA solution. Cells were washed and, immediately prior
to flow cytometry analysis, Trypan blue (1 mgmL−1) was added to each sample in
order quench fluorescence of residual surface bound NMVs61,62, thus ensuring any
fluorescent signal detected was from internalised NMVs only. Data were analysed
for mean fluorescence intensity using an LSRII flow cytometer using FACSDiva
acquisition software.

Transfection with antagomir. HCAEC (3 × 105) were seeded in six-well plates
and, on the following day, were transfected with 25 ρmol of miR-155 antagomir or
scrambled antagomir (Creative Biogene, NY) in unsupplemented basal media for
5 h using Lipofectamine (Invitrogen, CA). Cells were then cultured for 24 h in MV2
media (Promocell, Germany) prior to the addition of NMVs, and RT-qPCR carried
out as described above.

Atherosclerotic plaque analysis. Six-week-old ApoE−/− mice were fed a Western
diet for 6 weeks. During this period, 4 × 106 mouse NMVs, or an equivalent volume
of saline, were injected twice weekly via the tail vein for the entire 6 weeks or the
final 2 weeks of the diet. En face staining with Oil Red O was then performed and
lesion coverage in aortae was analysed using NIS elements analysis software
(Nikon, NY)63. Whole aortae were opened longitudinally and fixed and stained
with Oil Red O to identify lipid-laden lesions. Areas of positive staining were
selected using hue, saturation and intensity filters to determine the lesion area.
Lesion assessment was blinded and areas were expressed as a percentage of the total
aortic surface area. For en face staining of monocyte/macrophage accumulation,
fixed vessels were immunostained using primary antibodies to mouse MAC3 (1:100
dilution; BD Biosciences, CA, catalogue number: 550292) or isotype control fol-
lowed by Alexa 568 conjugated secondary antibodies (Life Technologies, CA).
Negative control was performed with omission of primary antibody in order to
detect background fluorescence. Endothelial cells were stained with Alexa 488 anti-
mouse CD31 antibody and nuclei were identified with TO-PRO-3 Iodide. Stained
vessels were then cut longitudinally and opened en face, mounted using Prolong
gold anti-fade mountant (Life Technologies, CA) for visualisation using a confocal
fluorescence microscopy (Leica TCS SP8 or Zeiss LSM510 NLO inverted micro-
scopes). Expression was assessed by quantification of fluorescence intensity using
ImageJ software (1.49 V, NIH).

For analysis of aortic root sections, mice were perfusion fixed (PBS with 4%
PFA) after terminal anaesthesia. The upper portion of the hearts were dissected
horizontally at the level of the atria and placed in 30% sucrose for 24 h before
embedding in Optical Cutting Temperature (OCT) compound. Serial 7 µm sections
were processed for staining with Oil Red O or for anti-Mac3 (1:100 dilution; BD
Biosciences, CA, catalogue number: 550292) with Mayer’s hematoxylin used as a
counterstain. For analysis of monocyte/macrophage content in the aortic root,
cryosections were immunostained with anti-mouse MAC3 antibody (1:100
dilution; BD Biosciences, CA, catalogue number: 550292) with DAB as the
chromagen and Mayers hematoxylin as a counter stain. NIS-elements analysis
software (Nikon, NY) was used to calculate the total lesion area and areas of
positive staining were selected using hue, saturation and intensity.

Statistical analysis. Results are presented as mean ± SEM throughout. Statistical
analyses were performed using GraphPad Prism version 7.00 (GraphPad Software,
CA). Data was analysed assuming Gaussian distribution using paired or unpaired
t-tests, one-way ANOVA followed by Tukey’s post hoc test for multiple compar-
isons or Dunnett’s post hoc test to compare to control values, or two-way ANOVA
followed by Tukey’s or Bonferonni’s post hoc test for multiple comparisons.
P values of less than 0.05 were considered significant. For in vitro experiments,
n numbers relate to different donors for both HCAEC and neutrophils/monocytes.
In experiments where percentages are shown, data are expressed as the percentage
of the mean of the control samples.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The datasets generated during and/or analysed during the current study are available in
the Source Data File. The source data underlying Figs. 1c, f, g–j, 2e, 3b–c, e, g–j, 4a–e,
5d–f, 6a–h, 7a, 7e, 8b, d, f, 9a, b and Supplementary Figs. 1a, b, 2a, b, 4a, b, c, 5a, b, c, 6,
7a, b, 9, 10, 11, 14a, b and 15a, b are provided as a Source data file.
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