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Natural variation of an EF-hand Ca2+-binding-
protein coding gene confers saline-alkaline
tolerance in maize
Yibo Cao1, Ming Zhang1, Xiaoyan Liang1, Fenrong Li1, Yunlu Shi2, Xiaohong Yang1,2,3 & Caifu Jiang 1,2,4*

Sodium (Na+) toxicity is one of the major damages imposed on crops by saline-alkaline

stress. Here we show that natural maize inbred lines display substantial variations in shoot

Na+ contents and saline-alkaline (NaHCO3) tolerance, and reveal that ZmNSA1 (Na+ Content

under Saline-Alkaline Condition) confers shoot Na+ variations under NaHCO3 condition by

a genome-wide association study. Lacking of ZmNSA1 promotes shoot Na+ homeostasis

by increasing root Na+ efflux. A naturally occurred 4-bp deletion decreases the translation

efficiency of ZmNSA1 mRNA, thus promotes Na+ homeostasis. We further show that,

under saline-alkaline condition, Ca2+ binds to the EF-hand domain of ZmNSA1 then

triggers its degradation via 26S proteasome, which in turn increases the transcripts levels of

PM-H+-ATPases (MHA2 and MHA4), and consequently enhances SOS1 Na+/H+ antiporter-

mediated root Na+ efflux. Our studies reveal the mechanism of Ca2+-triggered saline-alkaline

tolerance and provide an important gene target for breeding saline-alkaline tolerant maize

varieties.
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Saline-alkaline stress is a widely spread abiotic stress affecting
an estimation of 4.15 × 108 ha of lands all over the world1,
which is emerging as a major constraint of global crop

production2. Saline-alkaline soil is characterized by high salt
(salinity) and high pH (above pH 8.0; alkalinity)3, which causes
combined damages of high pH stress, ion toxicity, and osmotic
stress3–5. In order to cope with saline-alkaline stress, plants have
evolved a range of adaptive strategies. For instance, the H+ efflux
from root to soil acidifies the rhizosphere then promotes adap-
tation to high pH stress6, the Na+-preferring transporters (e.g.,
SOS1 and HKT1) enable the circumvention of Na+ toxicity2,7, the
accumulation of osmoprotectants (e.g., glycinebetaine) attenuates
osmotic damage8. These adaptive mechanisms act together to
enable plant to survive saline-alkaline stress. Up to this day, it
remains largely unknown how plants sense saline-alkaline stress
and convert it into second signaling messengers (e.g., Ca2+), and
how plants decode the second messengers then activate/inactivate
the downstream responses.

The major natural basic salts in saline-alkaline farmlands are
sodium hydrogen carbonate (NaHCO3) and sodium carbonate
(Na2CO3)9, and Na+ is the most abundance soluble salt in the
saline-alkaline farmlands. Excessive accumulation of tissue Na+ is
deleterious for most crops, thus the maintenance of Na+ home-
ostasis is essential for the crop saline-alkaline tolerance. Previous
studies have shown that Na+ selective transporters substantially
confer cellular and whole-plant Na+ homeostasis2,7. For example,
SOS1 Na+/H+ antiporters (e.g., AtSOS1) transport Na+ out of
root cells7,10, the HKT family Na+ transporters (e.g., AtHKT1)
regulate long distance Na+ delivery, e.g., the root-to-shoot Na+

translocation and Na+ exclusion from the reproductive
organ11–16. These Na+ transporters and their regulators (e.g.,
SOS2 and SOS3) act together to circumvent Na+ toxicity2,7,17.
Under saline-alkaline condition, the increases of rhizosphere and
cytosolic pH weaken the function of H+-gradient-dependent Na+

transporters (e.g., SOS1 Na+/H+ antiporters), then boosting Na+

damage18. Therefore, maintaining the H+ gradient across the
plasma membrane is essential for Na+ homeostasis, especially
under saline-alkaline conditions (see below).

The optimal cytoplasmic pH for plant cells is neutral pH.
When the rhizosphere pH is lower than the pH in the cytosolic of
root cells, the H+ gradient across the plasma membrane (mem-
brane potential) drives uptake of nutrients (e.g., phosphorus,
nitrate and iron)19–21. Under saline-alkaline condition, plants
have to export cellular H+ to rhizosphere to maintain the
membrane potential22,23, and the PM-H+-ATPase is the major
pump mediating root H+ efflux6. Previous studies in Arabidopsis
have shown that the activity of the PM-H+-ATPase AHA2 is
inhibited by its C-terminal mediated auto-inhibition and by PKS5
mediated phosphorylation at Ser931. The saline-alkaline stress
induces the increase of cytosolic Ca2+, which binds to the 14-3-3
proteins and triggers its interaction with PKS5, then inhibits
PKS5 activity thus activates AHA26. In the meantime, a phos-
phorylation at Thr947 activates AHA2 via triggers its interaction
with the dimeric 14-3-3 proteins6,18,24. These posttranscriptional
mechanisms act together to activate AHA2, then promotes root H+

efflux, thereby activating SOS1 Na+/H+ antiporter and other
adaptive responses18,25. Moreover, previous studies have
also suggested that the transcript levels of some PM-H+-ATPase
increased under stress conditions, e.g., phosphorus deficiency
increases the transcript levels of AHA2 and AHA726, iron defi-
ciency increases the expression of AHA2 and AHA727,
salt stress upregulates the transcript levels of AHA228. These
observations indicate that the transcriptional regulation of
PM-H+-ATPase is also important for the regulation of root
H+ efflux under stress conditions, nevertheless, the mechanism
remains largely unknown.

Maize (Zea mays ssp. mays) is a glycophytic specie that is
sensitive to saline-alkaline stress29. Previous studies have shown
that natural maize inbred lines show large variations of sensitivity
to saline and saline-alkaline stress, and which is substantially
attributed to the variations of shoot Na+ contents30,31. Here, we
show that a calcium-binding EF-hand protein ZmNSA1 underlies
the natural variations of shoot-Na+ contents under NaHCO3

condition by a GWAS analysis. Lacking of ZmNSA1 increases
root Na+ efflux, then promotes shoot Na+ exclusion and saline-
alkaline tolerance. The functional variation of ZmNSA1 is ascri-
bed to a 4-bp deletion located in the 3′UTR of ZmNSA1, which
decreases the abundance of ZmNSA1 protein by reducing the
translation efficiency of ZmNSA1 mRNA. We further show that,
under saline-alkaline condition, Ca2+ binds ZmNSA1 and trig-
gers its degradation via 26S proteasome, then increases the
expression of PM-H+-ATPases, thereby promoting root H+

efflux and SOS1 Na+/H+ antiporter-mediated root Na+ efflux,
ultimately promoting saline-alkaline tolerance. Our study shows
how Ca2+ triggered degradation of a Ca2+-binding EF-hand
protein confers transcriptional upregulation of PM-H+-ATPases
and saline-alkaline tolerance, providing a mechanistic under-
standing of crop saline-alkaline stress tolerance and an important
genetic target for breeding saline-alkaline tolerant maize varieties.

Results
High pH stress disturbs Na+ homeostasis in maize. In this
study, we aimed to identify factors regulating maize shoot Na+

homeostasis under saline-alkaline conditions. Given sodium
hydrogen carbonate (NaHCO3) is one of the major basic salts in
nature environments30, we used 100 mM NaHCO3 to mimic the
saline-alkaline stress, and both the Na+ concentration (100 mM)
and pH value (pH 8.8) were agronomic relevance12,32. Firstly, we
compared the shoot Na+ contents in maize seedlings grown
under NaHCO3 and neutral salt (NaCl) conditions. We grew 419
maize inbred lines under conditions with 100mM NaHCO3 or
100 mM NaCl (pH 7.0) for two weeks, then measured the shoot
Na+ contents (see Materials and methods), subsequently
observed large variations of shoot Na+ contents ranging from 0.4
to 35 mg g−1 dry mass (Fig. 1a, b; Supplementary Data 1). The
overall shoot Na+ contents of the plants grown under NaHCO3

condition were significantly greater than that grown under NaCl
condition (P= 2.53 × 10−66; Fig. 1c), with 95% of the inbred lines
conferred greater shoot Na+ contents under NaHCO3 condition
than under NaCl condition (Fig. 1d). In addition, although dif-
ferent inbred lines showed large variations of shoot K+ contents
(ranging from 22 to 83 mg g−1 dry mass) (Supplementary Fig. 1),
the overall shoot K+ contents of the plants grown under NaHCO3

condition were comparable with that grown under NaCl condi-
tion (Supplementary Fig. 1c). Since the major feature distin-
guishing saline-alkaline stress from saline stress is the high pH
stress, we suggest that high pH stress boosts maize shoot Na+

accumulation under high-Na+ conditions. Such a perspective is
further supported by the observation that the increase of soil pH
(from 7.0 to 10.0) caused up to 50% reduction of shoot biomass
and up to 30% increase in shoot Na+ contents under condition
with 100 mM NaCl (Supplementary Fig. 2).

ZmNSA1 confers natural variations of shoot Na+ contents. We
next thought to identify the genetic variations underlying natural
variations of maize shoot Na+ contents under NaHCO3 condi-
tion. GWAS analyses were performed using a mixed linear model
(MLM; TASSEL 3.0) to identify the SNPs that were significantly
associated with shoot Na+ content under either NaHCO3 or NaCl
condition (see Materials and methods). Among the significant
SNPs (−log10(P) > 5.0) (Supplementary Fig. 3), two SNPs next to
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each other (Chr2_12130275 and Chr2_12130134) were sig-
nificantly associated with shoot Na+ contents under NaHCO3

condition but not under NaCl condition (Fig. 1e, f; Supplemen-
tary Fig. 3), with Chr2_12130275 showed greater association
(−log10(P)= 5.5). We designated the gene underlies this sig-
nificant association as Zea may L. Na+ Content 1 under Saline-
Alkaline Condition (ZmNSA1), which potentially identifies an
important mechanism regulating Na+ homeostasis under saline-
alkaline condition. The leading SNP Chr2_12130275 was located
in the 3′ untranslated region (3’UTR) of GRMZM2G000397
(Supplementary Fig. 4), at which a thymine (T) and a cytosine (C)
were associated with a lower and a greater shoot Na+ content
respectively (Fig. 1g). GRMZM2G000397 encodes a putative
calcium-binding family protein, which contains a single EF-hand
domain, but with no other domains of known function (Sup-
plementary Fig. 5). The orthologues of ZmNSA1 were identified
in most plant species (Supplementary Fig. 6), but their function
remains unknown. The phylogenetic analysis indicated that
ZmNSA1 and its othologues likely have evolutionary relationship
with CML family protein (Supplementary Fig. 7), however, they
haven’t been classified as CML family proteins in previous ana-
lysis33. Give previous studies have shown that saline-alkaline
stress induces the increase of cytosolic Ca2+, which is perceived
by Ca2+-binding proteins (e.g., the EF-hand containing
proteins) then triggers downstream adaptive responses6, it is

possible that the calcium-binding EF-hand protein encoded
by GRMZM2G000397 may perceives the saline-alkaline induced
Ca2+ signal, then confers the regulation of Na+ homeostasis.
Therefore, we suggest that GRMZM2G000397 is a likely candidate
of ZmNSA1.

To determine if the candidate of ZmNSA1 (GRMZM2G000397)
is associated with shoot Na+ content and saline-alkaline tolerance
in maize, we tried to generate ZmNSA1 knockout mutant using
previously described CRISPR-Cas9 technology34,35. Nevertheless,
with four CRISPR-Cas9 targets and more than 80 independent
transgenic plants (Supplementary Fig. 8), we failed to obtain
ZmNSA1 knockout line, which might be the consequence of low
mutational efficiency36. Fortunately, we identified a mutant line
(ZmNSA1UFMu), which conferred a UniformMu insertion in the
second exon of ZmNSA1 (Supplementary Fig. 9; Fig. 2a).
ZmNSA1 transcript and protein were hardly detected in
ZmNSA1UFMu mutant (Fig. 2b, c), indicating that ZmNSA1UFMu

conferred a function null allele of ZmNSA1. ZmNSA1UFMu and
wild type (W22) plants showed undetectable differences under
control condition, but ZmNSA1UFMu plants were significantly
larger and conferred lower shoot Na+ content than that of W22
under NaHCO3 (100 mM) condition (Fig. 2d–f). Moreover, we
generated two independent ZmNSA1-overexpressing lines
(ZmNSA1oe-1 and ZmNSA1oe-2), with both lines showed
increased transcript and protein levels of ZmNSA1 (Fig. 2g, h).
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Fig. 1 ZmNSA1 confers natural variations of shoot Na+ contents under NaHCO3 condition. a, b Distribution of shoot-Na+ contents among 419 maize
inbred lines under conditions with 100mM NaCl (a) or 100mM NaHCO3 (b). c Comparison of the shoot Na+ contents under NaCl and NaHCO3

conditions. The box shows the median, lower and upper quartiles, and dots denote outliers. Statistical significance was determined by a two-sided t-test
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We observed that, while the growth of wild type and ZmNSA1-
overexpressing plants were comparable under control condition,
ZmNSA1oe-1 and ZmNSA1oe-2 plants were significantly smaller
and conferred greater shoot Na+ contents than wild type under
NaHCO3 condition (Fig. 2i–k). Taken together, these results
indicated that ZmNSA1 is associated with shoot Na+ content and
saline-alkaline (NaHCO3) tolerance, supporting the perspective
that GRMZM2G000397 is the candidate of ZmNSA1.

InDel1032 reduces the translation efficiency of ZmNSA1
mRNA. In order to determine the molecular basis of the func-
tional variation of ZmNSA1, we amplified and resequenced
ZmNSA1 from 166 maize inbred lines using two pairs of primers
(ZmNSA1-G-F1/ZmNSA1-G-R1 and ZmNSA1-G-F2/ZmNSA1-
G-R2) (Supplementary Data 2, 3), subsequently identified 50
SNPs and 3 InDels with minor allele frequency (MAF) above 5%
(Supplementary Data 4). The association of these variations with
shoot Na+ contents were analyzed using TASSEL (see the
Materials and methods), and the results indicated that a SNP
(SNP1173) and an InDel (InDel1032) showed the greatest asso-
ciation with shoot Na+ content (Fig. 3a). SNP1173 and
InDel1032 were located in the 3′UTR of ZmNSA1, and they were
in complete LD among the 166 inbred lines (Fig. 3a). Based on

the haplotypes of SNP1173 and InDel1032, the 166 maize inbred
lines were grouped into two haplotype groups (Hap1 and Hap2)
(Fig. 3b; Supplementary Data 3). The Hap1 and Hap2 groups
were composed of 148 and 18 inbred lines respectively, with Hap1
group conferred significantly higher shoot Na+ content than
Hap2 group (Fig. 3b; P= 9.21 × 10−10). Therefore, the Hap1 and
Hap2 ZmNSA1 were designated as the high shoot Na+ (saline-
alkaline-sensitive) and low shoot Na+ (saline-alkaline-tolerant)
allele, respectively.

The functional variation of ZmNSA1 could be due to
transcriptional or posttranscriptional changes. We showed by
qRT-PCR assay that Hap1 and Hap2 inbred lines showed
comparable ZmNSA1 transcript levels under both control and
NaHCO3 conditions (Fig. 3c), suggesting unlikely that the
functional variation of ZmNSA1 was associated with the
transcriptional change. In contrast, we found that Hap1 lines
conferred significantly higher ZmNSA1 protein levels than Hap2
lines (Fig. 3d), suggesting likely that the functional variation of
ZmNSA1 was due to the change of protein abundance. Above
observations revealed that SNP1173 and InDel1032 showed the
greatest association with shoot Na+ content and were located in
the 3′UTR of ZmNSA1 (Fig. 3a). Given previous studies have
indicated that messenger RNA with alternative 3′UTR isoforms
can be translated with different efficiencies37,38, we then
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determined if SNP1173 and InDel1032 change the translation
efficiency of ZmNSA1 messenger RNA. We generated pSUPER-
ZmNSA1-3′UTR(Hap1) and pSUPER-ZmNSA1-3′UTR(Hap2),
transformed them into ZmNSA1UFMu protoplasts, and then
compared the transcript and protein levels of ZmNSA1 (see
Materials and methods). The results indicated that the protoplasts

transformed with pSUPER-ZmNSA1-3′UTR(Hap1) and pSUPER-
ZmNSA1-3′UTR(Hap2) conferred comparable ZmNSA1
transcript levels, but the former produced significantly more
ZmNSA1 protein than the later (Fig. 3e, f), suggesting that
the 3′UTR(Hap1) confers greater translation efficiency than 3′
UTR(Hap2). Moreover, two mutant 3′UTR(Hap1) isoforms
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ZmNSA1 between randomly selected Hap1 and Hap2 inbred lines under control and NaHCO3 conditions. e, f The transcript (e) and protein (f) levels of
ZmNSA1 in ZmNSA1UFMu protoplasts transformed with pSUPER-ZmNSA1-3′UTR(Hap1) and pSUPER-ZmNSA1-3′UTR(Hap2) (see Materials and methods).
The non-transformed protoplasts provided a control. g Carton displayed the wild type and mutant 3′UTR forms. h, i The transcript (h) and protein (i) levels
of ZmNSA1 in ZmNSA1UFMu protoplasts expressing pSUPER-ZmNSA1 with indicated 3′UTRs. In f, i, co-transformation of pSUPER-GFP and subsequent protein
blot assay using GFP antibody provided a control of transformation efficiency. Analysis of actin provided loading controls in d, f, i. Data in c, e, h were
means ± s.d. of three independent experiments. Source data underlying Figs. 3c–f, 3h, and 3i are provided as a Source Data file.
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resembling 3′UTR(Hap2) were generated, with 3′UTR
(Hap1)InDel1032 conferred an 4-bp (TCGG) deletion and 3′UTR
(Hap1)SNP1173 conferred a C to T substitution (Fig. 3g). We
found that, while ZmNSA1UFMu protoplasts transformed with
pSUPER-ZmNSA1-3′UTR(Hap1), pSUPER-ZmNSA1-3′UTR
(Hap2), pSUPER-ZmNSA1-3′UTR(Hap1)InDel1032 and pSUPER-
ZmNSA1-3′UTR(Hap1)SNP1173 showed comparable transcript
levels of ZmNSA1 (Fig. 3h), the abundance of ZmNSA1 proteins
in the pSUPER-ZmNSA1-3′UTR(Hap1)InDel1032-transformed pro-
toplasts was significantly lower than pSUPER-ZmNSA1-3′UTR
(Hap1)-transformed protoplasts, and was comparable with
pSUPER-ZmNSA1-3′UTR(Hap2)-transformed protoplasts (Fig. 3i).
Taken together, we suggest that the 4-bp (TCGG) deletion in the
3′UTR of Hap2 ZmNSA1 reduces the translation efficiency of
ZmNSA1 mRNA, thus promoting shoot Na+ exclusion under
saline-alkaline condition.

Lacking of ZmNSA1 promotes root Na+ efflux. Above result
has shown that lacking of ZmNSA1 promotes shoot Na+ exclu-
sion under saline-alkaline condition (Fig. 2f), which could be
ascribed to a decreased root Na+ uptake, or an increased root Na+

efflux, or a decreased root-to-shoot Na+ delivery. We then
compared the Na+ contents in the root and xylem sap of
ZmNSA1UFMu and W22 (wild type) under NaHCO3 (100 mM)
condition, and observed that ZmNSA1UFMu conferred sig-
nificantly lower root and xylem sap Na+ contents than W22
(Fig. 4a, b), suggesting likely that lacking of ZmNSA1 decreases
root Na+ content, thereby reducing xylem sap Na+ content and
root-to-shoot Na+ delivery. In agree with this perspective, we
observed that ZmNSA1-overexpressing plants conferred higher
root and xylem sap Na+ contents than wild type under saline-
alkaline condition (Fig. 4c, d).

We further determined how ZmNSA1 regulates root Na+

content, i.e. by decreasing uptake or by increasing efflux. Firstly,
we used Non-invasive Micro-test Technology (NMT) to measure
the Na+ flux at the root meristem zone of five-days-old seedlings
that have been treated with 100mM NaCl (pH 8.0) for 24 h, and
observed that the roots of ZmNSA1UFMu and ZmNSA1-over-
expressing plants showed significantly greater and lower root Na+

efflux than that of the wild type controls respectively (Fig. 4e, f).
Secondly, we measured the root Na+ contents of the plants that
have been treated with 100 mM NaCl (pH 8.0) for short time
(10 min), which to some extent reflects the rate of short-term
Na+ uptake. The results indicated that the root Na+ contents in
ZmNSA1UFMu and ZmNSA1-overexpressing plants were compar-
able with that of their wild type controls (Supplementary Fig. 10).
Taken together, these observations indicated that ZmNSA1
involves in the regulation of root Na+ efflux, but is unlikely
associated with the regulation of Na+ uptake.

Previous studies have demonstrated that the root Na+ efflux is
substantially mediated by SOS1 family Na+/H+ antiporters7, we
then thought to determine if ZmNSA1 regulates root Na+ efflux
by a Na+/H+ antiporter dependent mechanism. Amiloride is an
inhibitor of Na+/H+ antiporter39. We found that, while
ZmNSA1UFMu conffered increased root Na+ efflux and
ZmNSA1-overexpressing plants conferred decreased root Na+

efflux (Fig. 4e, f), the application of amiloride reduced root Na+

efflux of all tested genotypes, but with different degrees of
reduction (Fig. 4e–j). As a result, amiloride application
substantially reduced the differences of root Na+ efflux between
ZmNSA1UFMu and W22, and between ZmNSA1-overexpressing
plants and wild type (Fig. 4e–j), suggesting that ZmNSA1-
mediated regulation of root Na+ efflux is dependent upon SOS1
Na+/H+ antiporter. Such a perspective was supported by further
obeservations, which showed that the plasma membrane vesicles

isolated from the roots of NaHCO3 treated ZmNSA1UFMu plants
showed greater Na+/H+ antiporter activity than W22 (Fig. 4k),
and the plasma membrane vesicles isolated from ZmNSA1-
overexpressing plants conferred lower Na+/H+ antiporter activity
than wild type (Fig. 4l). Taken together, we suggest that ZmNSA1
mediates the regulation of root Na+ efflux, with lacking of
ZmNSA1 increases SOS1 Na+/H+ antiporter-mediated root Na+

efflux, thereby promoting shoot Na+ homeostasis and saline-
alkaline tolerance.

Ca2+ binds to ZmNSA1 and triggers its degradation. We next
investigated the mechanisms by which ZmNSA1 responds to
saline-alkaline stress then regulates SOS1 Na+/H+ antiporter-
mediated root Na+ efflux. Firstly, we determined the subcellular
localization of ZmNSA1, and found that ZmNSA1-GFP fusion
proteins were predominantly detected in the cytosol of maize
protoplast cells (Fig. 5a), but were hardly detected in nucleus
(Supplementary Fig. 11). Secondly, the in situ RT-PCR assays
showed that the transcripts of ZmNSA1 were detected in all root
cell types (Fig. 5b), and the saline-alkaline (100 mM NaHCO3)
treatment for 3–12 h had insignificant effect on ZmNSA1 tran-
scription in the root tissues (Fig. 5c). Thirdly, the protein blot
assays with an anti-ZmNSA1 antibody revealed that 100 mM
NaHCO3 treatment for 3–12 h dramatically reduced the abun-
dance of ZmNSA1 protein in the root tissues of wild type and
ZmNSA1-overexpressing plants (Fig. 5d, e). Finally, we showed
that the application of MG132 substantially inhibited the
NaHCO3-induced degradation of ZmNSA1 (Fig. 5f). Taken
together, these results indicated that NaHCO3 treatment triggers
the degradation of ZmNSA1 protein via the 26S proteasome
pathway, but has negligible effect on the transcript levels of
ZmNSA1.

Previous studies have shown that Ca2+ is an important
messenger mediating plant responses to environmental stres-
ses40,41, and saline-alkaline treatment increases Ca2+ concentra-
tion in cytosol6. We then tested if the saline-alkaline induced
degradation of ZmNSA1 is dependent upon the increase of
cytosolic Ca2+. LaCl3 and verapamil are Ca2+-channel
blocker42,43, which can block saline-alkaline stress induced
increase of cytosolic calcium6. We found that the treatments
with either 5 mM LaCl3 or 100 μM verapamil substantially
inhibited the NaHCO3-induced degradation of ZmNSA1 (Fig. 5g;
Supplementary Fig. 12a), but had undetectable effect on ZmNSA1
expression and root cell variability (Fig. 5h; Supplementary
Figs. 12b, 13), suggesting that saline-alkaline stress induced
degradation of ZmNSA1 is dependent upon the increase of
cytosolic Ca2+ concentration. Moreover, while LaCl3 treatment
inhibited saline-alkaline treatment induced degradation of
ZmNSA1 (Fig. 5g), the treatment reduced root Na+ efflux
(Supplementary Fig. 14), which is consistent with above
observations that ZmNSA1-overexpressing plants conferred
decreased root Na+ efflux and SOS1 activity (Fig. 4f, l).

ZmNSA1 encoded a putative calcium-binding EF-hand protein
with a single EF-hand domain (Supplementary Fig. 5). Next, we
investigated the Ca2+-binding profiles of ZmNSA1. The micro-
scale thermophoresis (MST) assay indicated that ZmNSA1 binds
Ca2+ directly (Fig. 5i), and a single amino acid change
(ZmNSA1E97Q) in the conserved EF-hand domain resulted in a
magnitude decrease of the Ca2+-binding activity (Fig. 5i),
indicating that ZmNSA1 binds Ca2+ via the EF-hand domain.
Notably, while previous studies have shown that, in a typical plant
cell, free cytoplasmic Ca2+ concentrations are in the range of
100–200 nM, and increase to 500–1000 nM following the onset of
external stimulations (e.g., salt stress)44, we observed that the
Ca2+-ZmNSA1 binding increase linearly as Ca2+ concentrations
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increase from 100 to 1,000 nM (Fig. 5i), indicating that the Ca2+-
ZmNSA1 binding is physiologically relevant. We further tested if
the binding of Ca2+ is essential for the NaHCO3-induced
degradation of ZmNSA1. We transformed pSUPER-ZmNSA1
and pSUPER-ZmNSA1E97Q into ZmNSA1UFMu protoplasts, then
examined the transcript and protein levels of ZmNSA1. The
results indicated that ZmNSA1E97Q mutation had undetectable
effect on the expression of ZmNSA1 (Fig. 5j), but significantly
reduced the NaHCO3-induced degradation of ZmNSA1 (Fig. 5k).
Taken together, we conclude that saline-alkaline stress (NaHCO3)
increases cytosolic Ca2+, which binds to the EF-hand domain of

ZmNSA1 then triggers its degradation, thereby promoting root
Na+ efflux and promoting saline-alkaline adaptation.

ZmNSA1 negatively regulates the activity of PM-H+-ATPase.
Previous studies have shown that the PM-H+-ATPase-mediated
root H+ efflux is a major determinant of the membrane poten-
tial22,23, which activates SOS1 Na+/H+ antiporters then promotes
root Na+ efflux and saline-alkaline tolerance18. The above results
have shown that ZmNSA1 regulates SOS1 Na+/H+ antiporter-
mediated root Na+ efflux (Fig. 4). We then determined if
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Fig. 4 ZmNSA1 regulates root Na+ efflux under saline-alkaline conditions. a–d Na+ contents in the roots (a, c) and xylem sap (b, d) of ZmNSA1UFMu,
ZmNSA1-overexpressing plants and their wild type controls (treatments as indicated). e–j Na+ flux at the root meristem zone of ZmNSA1UFMu, ZmNSA1-
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or recording buffer with 50 μM amiloride (g, i) for 30mins, then the Na+ flux were measured using Non-invasive Micro-test Technology (NMT) (see
Materials and methods). k, l The activity of Na+/H+ antiporter in the plasma membrane vesicles isolated from the roots of NaHCO3 treated plants
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ZmNSA1 regulates root Na+ efflux by an H+ efflux dependent
manner. Firstly, we grown ZmNSA1UFMu, ZmNSA1-over-
expression plants and wild type plants under alkaline (pH 8.0) and
saline-alkaline (50mM NaCl, pH 8.0) mediums with the pH
indicator bromocresol purple, and observed clear acidification of
the mediums by all genotypes under both conditions. However,
ZmNSA1UFMu showed greater activity of medium acidification
than W22, and ZmNSA1-overexpressing plants showed lower
activity of medium acidification than wild type (Fig. 6a, b), sug-
gesting likely that the function of ZmNSA1 is negatively associated
with root H+ efflux. To confirm this perspective, we measured the
net H+ flux at the meristem zone of 5-days-old plants that have
been treated with alkaline stress (pH 8.0) or saline-alkaline stress
(100 mM NaCl, pH 8.0) for 24-h (see Materials and methods), and
found that ZmNSA1UFMu conferred greater H+ efflux than W22
(Fig. 6c, d), and ZmNSA1-overexpressing plants conferred lower
H+ efflux than wild type (Fig. 6e, f), confirming that ZmNSA1
negatively regulates root H+ efflux.

The root H+ efflux is substantially mediated by PM-H+-
ATPase45. We then isolated plasma membrane vesicles from the

roots of NaHCO3 treated plants, and then measured the activity
of PM-H+-ATPase (Fig. 6g–j). The results indicated that
ZmNSA1UFMu conferred greater PM-H+-ATPase activities than
W22 (Fig. 6g, h), and ZmNSA1-overexpressing plants conferred
lower PM-H+-ATPase activities than wild type (Fig. 6i, j). These
results support the notion that ZmNSA1 influences root Na+

efflux by regulating PM-H+-ATPase-mediated H+ efflux. In
addition, while previous studies have suggested that the V-H+-
ATPase and V-H+-PPase in tonoplast also affect Na+ home-
ostasis46, we observed that the tonoplast vesicles isolated from the
roots of NaHCO3 treated ZmNSA1UFMu and W22 plants showed
comparable V-H+-ATPase and V-H+-PPase activities (Supple-
mentary Fig. 15), indicating that ZmNSA1 has minimal effect on
the activities of V-H+-ATPase and V-H+-PPase.

ZmNSA1 mediates transcriptional upregulation of MHAs. We
next investigated the mechanism by which ZmNSA1 regulates the
activity of PM-H+-ATPase. We showed that there were 13 Maize
PM-H+-ATPases (MHA1-13) (Fig. 7a; Supplementary Table 1),
and the phylogenetic analysis using MEGA647 showed that the
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PM-H+-ATPases from maize and Arabidopsis were grouped into
three classes (Fig. 7a). The data from Maize Gene Expression
Atlas showed that MHA2, MHA3, MHA4, and MHA12 were
predominantly detected in root tissues (Fig. 7b), which is in
consistent with our qRT-PCR results (Fig. 7c). While previous
studies have shown that the posttranscriptional activation of
AHA2 increases root H+ efflux, and the Ca2+-binding 14-3-3
proteins directly binds and activates AHA26, we didn’t observe
the direct interaction between ZmNSA1 and MHA2 in yeast two-
hybrid and BiFC assays (Supplementary Fig. 16). Intriguingly, we
observed that NaHCO3 treatment significantly increased the
transcript levels of MHA2 and MHA4 (the two most expressed

MHAs in maize root tissues) (Fig. 7c), and such increases were
enhanced in ZmNSA1UFMu and attenuated in ZmNSA1-over-
expressing plants (Fig. 7d–g), suggesting that ZmNSA1 media-
tes the transcriptional upregulation of MHAs under saline-
alkaline condition. Moreover, while above studies have shown
that LaCl3 treatment attenuated the NaHCO3-induced degrada-
tion of ZmNSA1 (Fig. 5g), the treatment also inhibited the
NaHCO3-induced transcriptional upregualtion of MHA2 and
MHA4 (Fig. 7h). Taken together, we conclude that, under saline-
alkaline condition, Ca2+-triggered degradation of ZmNSA1
increases the transcript levels of MHA2 and MHA4, then
promotes root H+ efflux, thereby enhancing SOS1 Na+/H+
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antiporter-mediated Na+ homeostasis and the adaptation to
saline-alkaline environments.

Discussion
Maize is a saline-alkaline sensitive crop, and global maize pro-
duction is increasingly affected by the saline-alkalization of
farmlands29. Therefore, there is an urgent need for understanding
of maize saline-alkaline-tolerant mechanisms, understanding
which can potentially be used to increase the saline-alkaline tol-
erance of maize. The sodium carbonates (NaHCO3 and Na2CO3)
are the major basic salt existed in the saline-alkaline farmlands,
which causes combined damages of high pH stress, Na+ toxicity
and osmotic stress on maize1. Here, we have shown that natural
maize inbred lines confer widely genetic variations of shoot Na+

exclusion under saline-alkaline (NaHCO3) condition (Fig. 1b),
suggesting that the identification and application of the favorable
variations minght provide a route for improving maize Na+

homeostasis and saline-alkaline tolerance. In addition, we have
discovered that ZmNSA1 underlies the natural variations of shoot
Na+ contents under NaHCO3 condition (Fig. 1f). A naturally

occurred 4-bp deletion decreases the transcription efficiency of
ZmNSA1 mRNA then promotes shoot Na+ exclusion (Fig. 3),
accordingly, lacking of ZmNSA1 promotes shoot Na+ exclusion
and saline-alkaline tolerance (Fig. 2d–f). Our identification of
ZmNSA1 provides a gene target for improving maize saline-
alkaline tolerance either by marker assisted selection or by
CRISPR-Cas9 gene editing.

The major feature distinguishing saline-alkaline stress from
saline stress is the high pH stress, which disturbs the H+ gra-
dients across the plasma membrane. Under saline-alkaline con-
dition, plants had to reinforce root-to-rhizosphere flux of H+,
thus to establish the membrane potential22,23, which is important
for the activation of H+-dependent sodium transporters (e.g., the
SOS1 Na+/H+ antiporter)6,18,45. Previous studies have indicated
that the PM-H+-ATPase is the major H+ pump responsible for
root H+ efflux45, and that the posttranscriptional activation of
PM-H+-ATPase (e.g., AHA2) confers Na+ homeostasis and
saline-alkaline tolerance6,45,48,49. Here, we have shown that
MHA2 and MHA4 were predominantly detected in root tissues
and were significantly upregulated by saline-alkaline stress
(Fig. 7b, c). These results together with previous studies suggest
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that the transcriptional and post-transcriptional activation of
PM-H+-ATPase act together to ensure the establishment of the
membrane potential under saline-alkaline conditions.

Existing knowledge have shown that Ca2+ is an important
signaling molecule of saline-alkaline response6. Following the
onset of saline-alkaline stress, the concentration of cytosolic-free
Ca2+ increase, which then acts as a messenger to activate/inac-
tivate the downstream signaling components6. The PM-H+-
ATPase is one of the important downstream targets of Ca2+

signal, e.g., previous studies have shown that the Ca2+ binds to
14-3-3 proteins then mediates the posttranscriptional activation
of AHA218. We here show that the Ca2+-binding EF-hand family
protein ZmNSA1 confers transcriptional regulation of maize PM-
H+-ATPase (Fig. 7), which acts at the steps downstream of Ca2+

signal. ZmNSA1 negatively regulates the transcript levels of
MHAs. Under saline-alkaline treatment, the concentration of
cytosolic Ca2+ increase, then Ca2+ binds to the EF-hand domain
of ZmNSA1 and triggers its degradation via 26S proteasome
pathway (Fig. 5d–k), in turn promotes the transcription ofMHA2
and MHA4 (Fig. 7). Given ZmNSA1 has no transcription acti-
vation domain and is barely detected in nucleus (Supplemental
Fig. S5, 11), the ZmNSA1-mediated upregulation of MHAs
transcript levels is likely to be an indirect response. SOS1
Na+/H+ antiporter is the major transporter responsible for root
Na+ efflux7. We show that ZmNSA1 involves in the regulation of
Na+/H+ antiporter-mediated root Na+ efflux, with lacking of
ZmNSA1 increases the activity of Na+/H+ antiporter (Fig. 4). As
previous studies have demonstrated that PM-H+-ATPase-
mediated root H+ efflux is essential for the activation of SOS1
Na+/H+ antiporter18, we suggest that ZmNSA1-mediated reg-
ulation of Na+/H+ antiporter activity is ascribed to its regulatory
roles on the transcription of PM-H+-ATPases.

In conclusion, we have discovered ZmNSA1, an important QTL
conferring natural variations of shoot Na+ contents under saline-
alkaline (NaHCO3) condition, with which we have discovered a
saline-alkaline tolerance mechanism (Fig. 8), i.e., under saline-
alkaline treatment, the concentration of cytosolic Ca2+ increase,

Ca2+ binds to ZmNSA1 and triggers its degradation via the 26S
proteasome pathway, then increases the transcript levels of maize
PM-H+-ATPases (MHA2 & MHA4) and promotes root H+

efflux, thereby enhancing SOS1 Na+/H+ antiporter-mediated
root Na+ efflux, ultimately promoting saline-alkaline tolerance.
Our study provides a mechanistic understanding of Ca2+-medi-
ated plant saline-alkaline tolerance and an important gene target
for breeding saline-alkaline tolerant maize varieties.

Methods
Plant growth and treatments. The natural maize population used in this study
was the same population used in previously study50,51. In order to measure the
shoot Na+ and K+ contents of the 419 maize inbred lines, pots (diameter of 30 cm
and height of 35 cm) filled with uniformly mixed substrate (www.pindstrup.com)
were watered to soil saturation with 100 mM NaCl or 100 mM NaHCO3 solutions.
Eight inbred lines (six plants for each) were planted in each pot, grown in a
glasshouse for 2 weeks, and then the shoot tissues were collected for measuring
Na+ and K+ contents.

Measurement of Na+ and K+ contents. The samples were dried at 80 °C for 24 h,
weighed, then incinerated in a muffle furnace at 300 °C for 3 h and 575 °C for 6 h.
The ashes were dissolved in 10 mL 1% hydrochloric acid, appropriately diluted
with 1% hydrochloric acid, and then Na+ and K+ contents were analyzed. In order
to measure the Na+ and K+ contents in xylem sap, 2-weeks-old seedlings grown
under control or 100 mM NaHCO3 conditions were de-topped with blade, the
xylem sap exuding at the cut surface of the de-topped root system was collected by
a micropipette every 15 min for 1 h. The contents of Na+ and K+ were analyzed
using the 4100-MP AES device (Agilent, Santa Clara, CA, USA).

Genome-wide association study. The genotype used in this study was generated
by Maize SNP50 array (containing 56,110 SNPs), RNA-seq or by joint application
of IBD (identity by descent) based projection and KNN (the k-nearest neighbor)
algorithm, and in total 556,809 high quality SNPs (MAF ≥ 0.05) were selected to
perform the GWAS analysis52. Association analysis for shoot Na+ content under
NaCl and NaHCO3 conditions were conducted by the mixed linear model (MLM;
TASSEL3.0)53. Both kinship (K) and population structure (Q) were taken into
account to avoid spurious associations53. We used the P < 1.0 × 10−5 as the final
significance cutoff in the association analysis.

Characterization of ZmNSA1UFMu. We ordered the UniformMu line (mu1089781)
from Maize Genetics COOP Stock Center. The mutant line has been suggested to
confer a UniformMu insertion in the second extron of ZmNSA1. In order to
confirm the UniformMu insertion, we designated three primers (UFMu-F, UFMu-
R and UFMu-S-F) (Supplementary Fig. 9; Supplementary Data 2), with which we
can obtain PCR products from W22 when using UFMu-F and UFMu-R as primers,
and can obtain PCR products from mu1089781 when using UFMu-S-F and UFMu-
R as primers. Subsequently, we confirmed that mu1089781 conferred a UniformMu
insertion in the second extron of ZmNSA1 (Supplementary Fig. 9), and the mutant
was designated as ZmNSA1UFMu.

Generation of ZmNSA1 overexpressing lines. We generated the transgenic lines
overexpressing ZmNSA1 at Center for Crop Functional Genomics and Molecular
Breeding, China Agricultural University, Beijing. The coding sequence of ZmNSA1
was cloned to PBCXUN vector, transformed into Agrobacterium strain EHA105 to
infecting immature embryo of inbred line 32990700 (a maize inbred line with
increased transformation efficiency), then the regenerate seedlings were obtained
from the infected embryo. The homozygous overexpression lines were obtained by
anti-herbicide selection of the self-pollinated T1, T2 and T3 generation plants.

qRT-PCR assay. Total RNA was extracted using RNA prep pure plant kit
(Tiangen, Beijing, China), then 1.5 μg RNA was used to synthesize first-strand
cDNA using M5 Super qPCR RT kit with gDNA remover (Mei5 biotechnology,
Beijing, China), and then qRT-PCR analysis was conducted using the 2 × Real time
PCR Super mix (SYBRgreen) (Mei5 biotechnology, Beijing, China) on the ABI
7500 thermocycler (Applied Biosystems). Ubi2 gene (UniProtKB/TrEMBL,
Q42415) provided a control, and the 2−ΔΔCt method was used to calculate the
expression.

ZmNSA1 association mapping and linkage analysis. To identify the genetic
variation responsible for the functional variation of ZmNSA1, we used two pairs of
primers (ZmNSA1-G-F1/ZmNSA1-G-R1 and ZmNSA1-G-F2/ZmNSA1-G-R2) to
amplify and sequence ZmNSA1 from 166 inbred lines randomly selected from the
population. A genomic region including the 5’ to 3’ UTR of ZmNSA1 was analyzed.
Multiple sequence alignments were performed using BIOEDIT (v.7.0.9.0; North
Carolina State University, Raleigh, NC, USA), and the polymorphic sites (SNPs and
InDels) (MAF ≥ 0.05) were extracted. The associations between the genetic
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variations and Na+ contents were analyzed using TASSEL 3.0, under the
standard MLM.

Protoplast-based assay. In order to determine the subcellular localization of
ZmNSA1, we isolated maize mesophyll protoplasts54, generated pSUPER-ZmNSA1-
GFP vector, and then co-transformed pSUPER-ZmNSA1-GFP with pGPTVII-
AtCBL1-OFP55 or 35S-AtWrky40-mCherry56 into the mesophyll protoplasts.
AtCBL1 is a plasma membrane localized protein55, and AtWrky40 is located in
nucleus56. Fluorescent signals were captured using a confocal laser scanning
microscope (Carl Zeiss LSM710). The excitation was at 488 nm and the detection
was between 515 and 530 nm for GFP, and the excitation was at 543 nm and the
detection was over 570 nm for OFP and mCherry. In order to analyze the tran-
scription and protein levels of ZmNSA1 in ZmNSA1UFMu protoplasts, the indicated
constructs were transformed into the protoplasts, cultured for 16 h, then the
protoplasts were used for analyzing ZmNSA1 transcript and protein levels
(Fig. 3e–i), or used for saline-alkaline treatments and follow up analysis of
ZmNSA1 transcript and protein levels (Fig. 5j, k).

Immunoblot assay. Total proteins were extracted using extraction buffer (10 mM
Tris, pH 7.5, 2.5 mM EDTA, 2.5 mM EGTA, 150 mM NaCl, 10 mM dithiothreitol,
1 mM phenylmethylsulfonyl fluoride; 1% protease inhibitor cocktail; Roche), then
the target proteins were analyzed by immunoblot analysis. The antibodies used in
this study include anti-ZmNSA1 generated by Beijing Protein Innovation, anti
β-Actin (CWBIO 01265/60205, 1/5000) and anti-GFP (ABclonal AE011/33345,
1/5000).

Non-invasive micro-test technology. The net Na+ and H+ fluxes were mea-
sured using non-invasive micro-test technology (NMT) (Younger USA, LLC,
MA, USA). In order to measure the net Na+ and H+ fluxes, five-day-old
seedlings were treated with 100 mM NaCl solution (pH 8.0) for 24 h, then Na+

and H+ effluxes (Figs. 4e–j, g, h and 6d, f) were measured at primary root
meristem zone (~500 μm from the root tip). In addition, the H+ fluxes at
meristem zone of five-day-old seedlings treated with water (pH 8.0) for 24 h
were analyzed (Fig. 6c, e). The NMT measurement procedures as follows: The
backfilling solution (250mMNaCl for Na+ measurement; 15 mM NaCl plus 40 mM
KH2PO4 for H+ measurement) were filled into the pre-pulled and salinized micro
sensor (⌀4.5 ± 0.5 μm, XY- CGQ -01) to a length of 1.0 cm, and then 50–60 μm
LIXs (XY-SJ-Na for Na+ measurement; XY-SJ-H for H+ measurement) were filled
into the tip of the micro sensor. The micro sensor was calibrated in the calibration
liquid (0.1 mM CaCl2, 0.1 mM KCl, 0.3 mM MES, and 0.5 mM or 5.0 mM NaCl,
pH 6.0 for Na+ measurement; 0.1 mM CaCl2, 0.1 mM KCl, 0.3 mM MES, pH5.5 or
pH 6.5 for H+ measurement). The roots were incubated in the measuring solutions
(0.1 mM CaCl2, 0.1 mM KCl, 0.3 mM MES, and 0.5 mM NaCl, pH 6.0 for Na+

measurement; 0.1 mM CaCl2, 0.1 mM KCl, and 0.3 mM MES, pH 7.0 for H+

measurement) for 10 min, then the Na+ or H+ net fluxes were measured and
calculated using JCal V3.3 (Younger, USA)18.

Assay of rhizosphere acidification. The kernels were sterilized in 75% ethanol for
5 min, washed with sterilized water for three times, then enclosed with seed coating
agent for later use. The culture MS media contained 30 g L−1 sucrose, 8 g L−1 agar,
and 0.004% bromocresol purple, with or without 50 mM NaCl (pH 8.0). In order to
avoid contamination, 2-cm-thick isolating layer (autoclaved mixture of sand and
vermiculite) was added on the top of culture medium. The pretreated kernels were
embedded in the isolating layer with a depth of 1 cm, and then cultured in
greenhouse. The acidification of the media was analyzed 8 days later.

In situ PCR. In situ PCR was conducted as described below. The roots were sliced
into 50 μm-thick sections using Microtome (Leica, Germany). Then the samples
were transferred into 100 μl sterile water with RNase inhibitor (1 U per μl), added 8
U DNase and incubated at 25 °C for 20 min to eliminate the genomic DNA, and
then stop the reaction by adding 15 mM EDTA and heating to 75 °C for 10 min.
The cDNA were synthesis with gene-specific primers (ZmNSA1-cDNA for
ZmNSA1 and Zm18S-cDNA for 18S ribosomal RNA; Supplementary Data 2), then
PCR amplifications were conducted in a reaction system containing 1 × PCR
buffer, 1.5 mM MgCl2, 200 μM dNTPs, 0.4 nM digoxigenin-11-dUTP (Roche),
0.5 μM primers and 2 U Taq DNA polymerase (Thermo Fisher, USA). Following
the PCR amplification, the samples were washed twice for 5 min with PBS buffer,
blocked for 30 min in 0.1% BSA, incubated for 1 h with 1.5 U alkaline phosphatase-
conjugated anti-digoxigenin Fab (Roche), washed twice for 15 min with washing
buffer (0.1 M Tris-HCl, 0.15M NaCl, pH9.5), stained with BM Purple AP Substrate
precipitating (Roche) for 40 min, then washed twice with water and photographed
using a Olympus microscope (BX53). The primers and sequences were listed in
Supplementary Data 2.

MST assay. ZmNSA1 and ZmNSA1E97Q were cloning into pGEXT vector and then
transformed into Escherichia coli (DE3) to express the GST-tagged recombinant
proteins. The purified GST-ZmNSA1 or GST-ZmNSA1E97Q proteins (10 μM) were
then labeled by dye (NT-647-NHS) using a Pierce™ BCA Protein Assay Kit

(Thermo Fischer Scientific). The labeled proteins were incubated with indicate
concentrations of Ca2+ (ligands) for 10 min, then the samples were analyzed by
Monolish NT.115 (NanoTemper Technologies) at 25 °C, 20% MST power and 20%
LED power using hydrophobic capillaries (Polymicro Technologies). The displayed
results in Fig. 5i were based on three biological replicates and analyzed by MO.
Affinity Analysis software (V2.2.4)57.

Measurement activities of H+-ATPase and Na+/H+ antiporter. The isolation
of plasma membrane vesicles, and the measurement of the activities of H+-ATPase
and Na+/H+ antiporter were as described below. Plasma membrane vesicles were
isolated from the roots of 2-week-old plants that have been treated with 200 mM
NaHCO3 for 2 days. Fifty μg of plasma membrane proteins were used to determine
the activity of H+-ATPase and Na+/H+ antiporter. The quenching in the fluor-
escence of quinacrine (a pH-sensitive fluorescent probe) provides a measure of H+-
ATPase activity58. Na+/H+ exchange activity was calculated based on Na+-
induced dissipation59. The quinacrine fluorescence was measured using a Hitachi
F-7500 imager.

Measurement of the V-H+-ATPase and V-H+-PPase activities. Two-week-old
plants were treated with 200 mM NaHCO3 for 2 days, and then collected the roots
to isolated tonoplast vesicles using differential centrifugation (25/33/50% (w/w)
sucrose gradients). The vesicles that sedimented at the interface between 25% and
33% sucrose were collected. Fifty micrograms of tonoplast proteins were used to
measure the proton transporting activity of V-H+-ATPase and V-H+-PPase. The
reaction substrate for V-H+-ATPase is ATP (3 mM), and for V-H+-PPase is PPi
(1 mM). The quenching of the fluorescence detected by Hitachi F-7500 imager was
regarded as the H+-transport activity60.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Data supporting the findings of this work are available within the paper and its
Supplementary Information files. A reporting summary for this Article is available as a
Supplementary Information file. The datasets generated and analyzed during the current
study are available from the corresponding author upon request. The source data
underlying Figs. 1d, g, 2b, c, e–h, j, k, 3c–f, h, i, 4, 5c–k, 6c–j, and 7c–h, as well as
Supplementary Figs. 2c–f, 9b, 10, 12, 14, 15, and 16c–f are provided as a Source Data file.
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