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Interaction variability shapes succession
of synthetic microbial ecosystems
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Ting Lu1,2,9,10,11*

Cellular interactions are a major driver for the assembly and functioning of microbial com-

munities. Their strengths are shown to be highly variable in nature; however, it is unclear how

such variations regulate community behaviors. Here we construct synthetic Lactococcus lactis

consortia and mathematical models to elucidate the role of interaction variability in eco-

system succession and to further determine if casting variability into modeling empowers

bottom-up predictions. For a consortium of bacteriocin-mediated cooperation and competi-

tion, we find increasing the variations of cooperation, from either altered labor partition or

random sampling, drives the community into distinct structures. When the cooperation and

competition are additionally modulated by pH, ecosystem succession becomes jointly con-

trolled by the variations of both interactions and yields more diversified dynamics. Mathe-

matical models incorporating variability successfully capture all of these experimental

observations. Our study demonstrates interaction variability as a key regulator of community

dynamics, providing insights into bottom-up predictions of microbial ecosystems.
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M icrobial communities are assemblages of multi-species
microorganisms that live and interact with each other.
They regulate the biogeochemical cycling of the planet1,

fertilization of crops2, and metabolism of our human body3,
thereby affecting profoundly the environment, agriculture and
human health. As the dynamics of a community often underlies
its emergent properties, being able to predict ecosystem succes-
sion is central to the elucidation of community organization and
function4, rational design of artificial ecosystems5–7 and intro-
duction of intervention8. To that end, rapidly developed is
bottom-up analysis9–12, which aims to determine community
behaviors from the characterization of microbial interactions—
such as competition and cooperation—that are ubiquitous among
microbes13. This approach is conceptually compelling, because it
offers a systematic solution to capture emergent ecosystem
properties and is potentially generalizable for both native and
synthetic communities. In practice, although there are exciting
successes in selected cases such as the utilization of the general-
ized Lotka-Volterra model for specific microbiomes14–16, pre-
dicting community dynamics from the bottom up remains as a
grand challenge in general4.

One possible major cause of this challenge is pointed to the
discrepancy between current modeling scheme and experimental
observations. To date, bottom-up models commonly consider
microbial interactions invariant and presume that determining
interaction strength autonomously specifies community beha-
viors. Associated with these model developments are experi-
mental efforts, which largely focus on the identification and
measurement of interaction strength4,13. However, increasingly
overwhelming evidences show that microbial interactions are
highly variable, rather than static, in nature. Indeed, microbial
interactions often change with environmental cues such as pH,
nutrient and stress17–27. For example, the mutualism between
Escherichia coli and Rhodopseudomonas palustris is moderated by
the toxicity of organic acids in the culture21; the antagonism from
Pseudomonas aeruginosa to Staphylococcus aureus increases with
ion depletion24. Microbial interactions are also subjective to the
population of microorganisms generating the interactions as well
as the presence of other species20,28–32. For instance, Lactococcus
lactis produces nisin to suppress pathogens such as Staphylo-
coccus aureus through quorum sensing of its own population31

while Enterococcus faecalis secrets cytolysin when sensing the
presence of target cells32. Additionally, as cellular interactions are
typically fulfilled through the production of metabolites and
proteins—biochemical processes that are fundamentally sto-
chastic33–35, there are intrinsic fluctuations for all microbial
interactions including those ‘constant’. Recognizing this char-
acteristic of microbial interactions, a handful of mathematical
frameworks have been proposed to consider interaction varia-
tions36–40. In contrast, there is a lack of systematic experimental
investigations that quantify the degree of variability for given
microbial interactions. It also remains unclear to what extent such
variations drive ecosystem succession and alter community
structures and characteristics. Accordingly, it is unknown how
the incorporation of variability into modeling shapes the pre-
dictive power of bottom-up mathematical modeling.

Here we hypothesize that variations of microbial interactions
are a key modulator of community behaviors and characterizing
and incorporating the variability empowers predictive under-
standing of ecosystem succession from the bottom up. To test the
hypotheses, we design and build a set of synthetic three-strain
microbial consortia, which involve both cooperation and com-
petition, and use them as our experimental model systems.
Compared to native ecologies, such synthetic communities pos-
sess a significantly reduced degree of complexity while offering
the feasibility for mechanistic dissection and quantitative

measurement7,41–49. In parallel, we develop mathematical models
with an explicit incorporation of interaction variability to analyze
ecosystem succession. For the consortium containing a variable
cooperation, we quantify the variability of cooperation, elucidate
the alteration of ecosystem dynamics arising from the variations,
and demonstrate the power of variability-incorporated modeling
in capturing community development. For the ecosystem whose
cooperation and competition both fluctuate, more complex eco-
system dynamics arises but characterizing the variabilities again
lead to successful succession predictions. Together, our results
elucidate the role of interaction variability in regulating com-
munity dynamics, providing fundamental insights into bottom-
up understanding of microbial ecosystem succession.

Results
Creation of a cooperation between synthetic populations. We
started by engineering a cooperation in synthetic populations
because it is ubiquitous among microorganisms and critical to
their organization50–52. Specifically, the interaction involves two
engineered Lactococcus lactis strains, Cα and Cβ, both of which
harness the biosynthetic pathway of lcnG, a Class II two-subunit
lactococcus bacteriocin (Fig. 1a and Methods)53,54. Here, Cα
constitutively expresses lagA, lagD, and lagE which encode the
peptide α precursor, ABC transporter and accessory protein of
the pathway respectively, allowing the strain to synthesize and
secret the α subunit of lcnG. Similarly, Cβ constitutively expresses
the pathway’s β precursor gene lagB, transporter gene lagD and
accessory protein gene lagE, enabling the synthesis and secretion
of the β peptide, the other subunit of lcnG. In the extracellular
milieu, the two subunits α and β self-assemble into a bioactive
antimicrobial which inhibits the growth of L. lactis strains.
Through this fashion of division of labor, Cα and Cβ achieve a
cooperation for successful lcnG production. As lcnG inhibits all L.
lactis strains, the immunity gene lagC was introduced into both
Cα and Cβ to confer them an immunity. Additionally, two
reporter genes, yemGFP and mCherry, were loaded into Cα and
Cβ respectively to enable the quantification of ecosystem
dynamics.

To validate the cooperation, we conducted inhibition zone
assays using the supernatants of Cα and Cβ monocultures
(Methods). Four supernatant combinations, including blank
culture (GM17 media supplemented with chloramphenicol)
(−/−), supernatant of Cα monoculture (+ /−), supernatant
of Cβ monoculture (−/+ ), and mix of the two supernatants
(+ /+ ), were loaded into single wells in the solid agar plated
with a lawn of lcnG-sensitive cells (L. lactis NZ9000 loaded with a
chloramphenicol resistant gene)55. Upon 8 hours (h) of incuba-
tion at 30 °C (Methods), only the well loaded with the
supernatant mix (+ /+ ) produced an inhibition zone (Fig. 1b).
In addition, the four supernatant combinations were loaded into
separate wells in agar plates covered with lcnG sensitive cells. We
found that a clear inhibition zone formed between adjacent wells
only when they were loaded with the Cα and Cβ supernatants
respectively (Fig. 1c). Together, the results confirmed two pieces
of information. First, combination of Cα and Cβ produced the
active lcnG but individual strains alone did not. Second, peptides
α and β were able to autonomously assemble into an active
bacteriocin without the need for any assistance.

Characterizing the variations of cooperation. Driven by diverse
biotic and abiotic factors, microbial interactions are highly vari-
able. Here we aimed to experimentally determine the variability
of the cooperation originating from its division of labor nature.
Specifically, to quantitate how labor partition, reflected by the
cooperator ratio, affects the strength of cooperation, we grew the
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monocultures of Cα0 and Cβ0 (the reporter-free version of Cα
and Cβ), mixed their supernatants with varied ratios while fixing
the total volume (30 μL), and further used the mixes to perform
inhibition zone experiments (Methods). Our results (Fig. 2a, top
row) showed that, across the ratios from 30:1 to 1:30, the size of
the inhibition zones varies from small to large and back to small
with the largest occurring at the 1:1 ratio. As zone size correlates
positively to a mix’s lcnG level and hence the strength of coop-
eration, the results suggested that initial labor partition can
induce significant variations of the cooperation. Using the
supernatants of Cα0-Cβ0 co-cultures with varied initial relative
population abundance, we also observed the same dependence of
the lcnG level on the initial population partition (Fig. 2a, bottom
row). To quantitatively determine the variations, we further
measured the relative lcnG level of each sample by normalizing its
inhibition zones with that of Cαβ, a lcnG-producing strain (L.
lactis MG1363 loaded with the complete lcnG pathway) (Fig. 2b,
Methods, Supplementary Fig. 1).

In the above experiments, a low-high-low pattern of the
cooperation strength (i.e., lcnG productivity) was observed with
the maximum at the 1:1 labor partition. From a molecular
perspective, we reasoned that the bell-shape variation of the
cooperation is rooted in the 1:1 stoichiometric ratio of the α and β
subunits. We further speculated that the 1:1 initial ratio happened
to be optimal because Cα0 and Cβ0 have a comparable growth
rate and a comparable subunit productivity and, thus, the final
ratio of the two peptides in a co-culture is solely determined by
their initial densities. Supporting the speculation, the inhibition
zone assays and lcnG quantifications for the Cα-Cβ co-culture
(Supplementary Fig. 2b, c) showed that the maximum was shifted
towards a higher initial Cβ abundance due to a slower growth rate

of Cβ than Cα (Supplementary Fig. 3a). Such a growth reduction
is a common consequence of heterologous protein production in
microorganisms that is well documented in literature56,57.
Meanwhile, the maximum for the monoculture mixes remained
at 1:1 ratio (Supplementary Fig. 2a, c) because, in monocultures,
Cα and Cβ had the same amount of nutrient and, thereby,
produced a comparable level of subunits. To further confirm that
the maximal cooperation is characterized by the stoichiometric
ratio of the lcnG subunits, we derived new strains with altered
peptide productivities, including Cα0v2 with a doubled α
productivity compared to Cα, and Cβ0v1/3 and Cβ0v1/5 whose β
productivities are reduced to 1/3 and 1/5 of that of Cβ0
(Supplementary Fig. 4). In theory, the combinations of Cα0 and
Cβ0v1/3, Cα0 and Cβ0v1/5, Cα0v2 and Cβ0v1/3, and Cα0v2 and Cβ0v1/
5 would shift the optimal ratios from 1:1 to 1:3, 1:5, 1:6, and 1:10
respectively, which were subsequently confirmed by the experi-
ments (Fig. 2c).

For any microbial ecosystems, there are intrinsic random
fluctuations of cellular populations arising from various stochastic
processes33–35,58,59, which motivated us to quantify the variability
of cooperation from intrinsic stochasticity by specifically
examining the effects of sampling of initial populations (i.e.,
genetic drift)60,61. We first inoculated the consortium from an
initial culture (1:1 Cα-to-Cβ ratio, 1.0 optical density at 600 nm
(OD)) into fresh media through serial 1:10 dilution to generate
samples with different initial ODs (10−2, 10−4, 10−6 and 10−8)
(Fig. 2d and Methods). Here, 10−8 was selected as the minimal
initial OD since it is the minimal density for both Cα and Cβ to
stably grow in monocultures (Supplementary Fig. 5). Next, we
grew the cultures for the defined incubation time, collected their
supernatants, and measured the lcnG levels (Methods). Figure 2e
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Fig. 1 An engineered cooperation between two bacterial strains. a Circuit design. The cooperative consortium consists of two L. lactis strains, Cα and Cβ.
Cα carries three constitutively expressed genes lagA, lagD and lagE, allowing to synthesize and secret the α subunit of the bacteriocin lactococcin G (lcnG).
Cβ harbors three constitutively expressed genes lagB, lagD and lagE, which enables the synthesis and secretion of the β subunit of lcnG. The two subunits, α
and β, autonomously assemble into lcnG that inhibits L. lactis strains. Meanwhile, Cα and Cβ both carry lagC, the lcnG immunity gene, and respectively have
the fluorescence reporter genes yemGFP and mCherry. b Single-well inhibition zone assays. The four wells were loaded with blank culture (GM17 media
supplemented with chloramphenicol) (−/−), blank culture and Cβ supernatant (−/+ ), Cα supernatant and blank culture (+ /−), and Cα and Cβ
supernatants (+ /+ ) accordingly. L. lactis NZ9000 loaded with a chloramphenicol resistant gene was used as an indicator strain. An inhibition zone was
observed around the (+ /+ ) well containing the both supernatants. c Double-well inhibition zone assays. The left and right wells were loaded with blank
culture and blank culture (−/−), blank culture and Cβ supernatant (−/+ ), Cα supernatant and blank culture (+ /−), and Cα and Cβ supernatants (+ /
+ ) accordingly. L. lactis NZ9000 loaded with a chloramphenicol resistant gene was used as an indicator strain. An inhibition area was observed between
the wells loaded with the Cα and Cβ supernatants respectively. In panels b and c, scale bars, 3 mm.
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shows the lcnG levels of the co-cultures normalized by the
productivity of Cαβ, a single-strain lcnG producer we created. We
found that, with the reduction of initial OD, the mean lcnG
productivity of the consortium decreased monotonically but, in
the meanwhile, the sample-to-sample variation increased. Such a
trend was also clearly observed in the inhibition zones formed by
the co-cultures (Fig. 2f and Supplementary Fig. 6). By conducting
the same experiments for the reporter-free version of the
consortium, the Cα0-Cβ0 ecosystem (Supplementary Fig. 7), we
confirmed that random sampling continued to serve as a key
inducing factor of the variation.

Notably, partition alteration and random sampling are two
independent sources of cooperation variations; however, they are
intrinsically connected. The both alter cooperation strength by
varying the division of labor among the cooperators, but the
former is a controlled, deterministic alteration of the partition
while the latter is unintended, stochastic alteration.

Ecosystem successions driven by cooperation variations. To
elucidate the consequences of interaction variations on commu-
nity behaviors, we designed a three-strain consortium composed
of the two cooperators (Cα and Cβ) and a competitive third strain
(Ks). Here, Ks is an engineered strain capable of constitutively
secreting lactococcin A (lcnA)62, a bacteriocin that effectively kills
all L. lactis strains including Cα and Cβ unless immunized.
Experimentally, Ks was built by introducing the lcnA pathway
into the L. lactis MG1363 (Fig. 3a). To efficiently count Ks in the
three-strain ecosystem, it was inserted with constitutively
expressed gusA3, a beta-glucuronidase gene that enables colori-
metric quantification upon the supplementation of X-Gluc63. As

Ks does not contain the lcnG immunity gene lagC, it is sensitive
to lcnG cooperatively produced by Cα and Cβ. Therefore, the
community involves a cooperation between Cα and Cβ and a
competition of Ks with Cα and Cβ (Fig. 3b).

Meanwhile, we hypothesized that predicting ecosystem beha-
viors requires mathematical models that take in account the
variability of interaction. To test the hypothesis, we devised a
dynamic ecosystem model using a systematic, bottom-up fashion
(Methods, Supplementary Information 1). Briefly, we first
constructed models of Cα and Cβ monocultures (Supplementary
Equations 1-2, Supplementary Fig. 3b), and used them as
modules to derive a model of Cα-Cβ co-culture incorporating
variability (Supplementary Equation 4) with their parameters
specified with experiments (Supplementary Fig. 8). We then
constructed a model of lcnA-producing Ks monoculture
(Supplementary Equation 5) and determined its parameters
experimentally (Supplementary Fig. 9a, b). Finally, by merging
the models of the Cα-Cβ co-culture model with the Ks
monoculture and characterizing the inhibitions between the
modules (Supplementary Equations 6-7, Supplementary Fig. 9c-
f), we obtained a model for the Cα-Cβ-Ks consortium
(Supplementary Equation 9). For batch fermentations starting
from a fixed (Cα+Cβ):Ks ratio (2:1), the model predicted that
the ecosystem evolves temporally into Ks dominance at
imbalanced cooperator partitions and Ks subordinate at close
partitions (Fig. 3c), suggesting that the variations of cooperation
can modulate the succession of the consortium dramatically.

To test the predictions, we experimentally assembled the
consortium by mixing Cα, Cβ and Ks with altered initial ratios
but a fixed total OD (10−2) as our model construction (Methods).
Consistent with the predictions, our fermentations showed that
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Fig. 2 Characterization of cooperation variations. a Representative inhibition zones formed by different ratios of supernatant mixes from the Cα0 and Cβ0
monocultures (top row) and the supernatants of the Cα0-Cβ0 co-cultures growing from different initial ratios (bottom row). b Relative lcnG levels in the
monoculture supernatant mixes (white bars) and the co-culture supernatants (blue bars) (n= 3). Here, the lcnG concentration is normalized by the lcnG
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is a Cα variant that has a doubled peptide α productivity compared to Cα0. Cβ0v1/3 and Cβ0v1/5 are two Cβ0 variants, whose peptide β productivities are 1/3
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means and s.d. In panels a and f, scale bars, 3 mm. Source Data available in the source data file.
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the Ks percentage indeed increased over time and eventually
became dominant when the Cα:Cβ ratio was extremely
imbalanced (30:1 and 1:30); in contrast, when their abundances
were close (3:1, 1:1, and 1:3), the Ks percentage declined
monotonically and diminished eventually (Fig. 3d). Opposite
with the Ks percentage, the relative abundances of Cα and Cβ
both decreased at imbalanced Cα:Cβ ratios (30:1 and 1:30) but
increased when the ratio is close (3:1, 1:1, and 1:3) (Supplemen-
tary Fig. 10a, b). Meanwhile, although the total OD of the
ecosystem remained largely consistent regardless of the Cα:Cβ
ratios (Supplementary Fig. 8, circles), the lcnG level changed
significantly (Supplementary Fig. 8, bars): it remained limited
throughout the fermentations in imbalanced scenarios but
accumulated rapidly at the balanced cases, consistent with our
previous characterization (Fig. 2a–c). The correspondence

between higher lcnG production (Supplementary Fig. 8) and
lower Ks abundance (Fig. 3c, d) suggested a strong correlation
between cooperation variations and diversified ecosystem
succession.

To further confirm that it is a causal relationship between
interaction variations and diversified succession, we designed a Ks
variant, named Kr, which is resistant to lcnG co-produced by Cα
and Cβ and deficient in producing lcnA. Experimentally, Kr was
established by removing the lcnA biosynthetic pathway from Ks
while introducing the lcnG immunity gene lagC (Fig. 3e,
Supplementary Fig. 11). The mixture of Cα, Cβ and Kr formed
a control consortium where the cooperation and competition are
both abolished (Fig. 3f). Our mathematical model (Methods,
Supplementary Equation 11) predicted that, upon the same
alterations of the initial Cα:Cβ ratio, the structure of the
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Fig. 3 Succession of a three-strain ecosystem driven by cooperation variations from labor partition. a Design of a competitive third strain Ks. The lcnA
biosynthesis pathway, including the genes lcnA, lceA, lciA, and lcmA, is placed under constitutive promoters for constant lcnA secretion. The gene gusA3 is
also introduced for colorimetric quantification. b A three-strain consortium composed of Cα, Cβ, and Ks. Cα and Cβ cooperate to produce lcnG that inhibits
Ks; in turn, Ks secrets lcnA to oppose Cα and Cβ. c, dModel-predicted (c) and experimentally measured (d) temporal dynamics of the Ks abundance in the
Cα-Cβ-Ks ecosystem. The initial Cα:Cβ partition was varied across 30:1 to 1:30, but the total (Cα+Cβ): Ks ratio was fixed as 2:1. e Design of a control
strain Kr. L. lactisMG1363 is loaded with the constitutively expressed lagC, the lcnG immunity gene, to confer resistance to lcnG and gusA3 for colorimetric
quantification. f A three-strain ecosystem composed of Cα, Cβ and Kr. As Kr is deficient in lcnA production but resistant to lcnG, the consortium does not
have active bacteriocin-mediated interactions. g, h Model predictions (g) and experimental measures (h) of temporal dynamics of the Kr strain in the Cα-
Cβ-Kr ecosystem. The initial Cα:Cβ partition was varied across 30:1 to 1:30, but the total (Cα+Cβ): Kr ratio was fixed as 2:1. Source Data available in the
source data file.
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consortium remains largely invariant (Fig. 3g), which was
subsequently verified by co-culture experiments (Fig. 3h, Supple-
mentary Fig. 10c, d). In this case, varying initial cooperator
partition continued to generate the variation of lcnG production
as in the Cα-Cβ-Ks consortium (Fig. 2a–c); however, due to Kr’s
resistance to lcnG, the variation was ‘insulated’ and not
propagated to ecosystem succession, leading to the invariant
community structure. These results confirmed that it is indeed
the variations of interaction that cause the diversification of
ecosystem development.

To examine if the modulation of ecosystem succession by
interaction variability is specific to the origin of variation, we
investigated the dynamics of the Cα-Cβ-Ks consortium upon
fluctuations in sampling, another source of variation we
characterized. Mathematically, we used a bottom-up strategy to
create a corresponding dynamic model by introducing sampling-
induced variations into the previous Cα-Cβ co-culture module
(Supplementary Equation 4) and Ks monoculture module
(Supplementary Equation 5) with experimentally derived para-
meters (Supplementary Tables 7 and 8) and combining the
resulting modules into a single model (Methods). Using the
model that encapsulates variations from sampling, we conducted
multiple repeats of computational batch fermentations for the
consortium starting with the 1:1:1 ratio but different initial ODs.
In parallel, we experimentally mixed the strains Cα, Cβ and Ks in
1:1:1 ratio to form the consortium, inoculated them into ten
replicates at specific initial total ODs (10−2, 10−4, 10−6, and 10
−8) and measured their population dynamics over time
(Methods). Notably, due to the difference in initial conditions,
the culturing time and sampling time were altered accordingly to
enable a consistent and proper comparison (Supplementary
Fig. 12).

Our model predictions and subsequent experiments showed
that the Ks fraction consistently declined over time at high initial
ODs (e.g., 10−2 and 10−4) across all replicates (Fig. 4a–f),
suggesting that Cα and Cβ robustly outperformed Ks. Conversely,
when the initial OD was low (10−6 and 10−8), the consortium
exhibited two divergent modes of succession (Fig. 4c–d, g–h): the
Ks fraction declined monotonically as in the high initial OD
cases; alternatively, it increased over time and dominated the
population. Furthermore, comparison of all four cases suggested

that the chance of Ks dominance increased with reducing initial
OD. To directly visualize such succession outcomes, we further
collected the co-cultures at the end of fermentations and
performed colorimetric assays by adding X-Gluc to the co-
cultures (Methods). Because Ks encodes beta-glucuronidase
which can produce a clear blue green color, the colors of the
treated supernatants (Fig. 4i) reflected the Ks dominance in
individual experiments. Linking to the characterization of
sampling-induced variations (Fig. 2e, Supplementary Tables 7,
8), these results confirmed that increasing sampling-induced
variations equally drives the consortium into divergent outcomes.
Supporting the statement, we computationally turned off the
sampling-induced variations in our mathematical model and
found that, without the variations, Ks persistently declined
regardless of initial ODs (Fig. 4a–d, bold lines). The theory-
experiment consistency suggested that incorporating variability
into ecosystem modeling provides a predictive capacity over
community behaviors.

Construction of pH-dependent competition and cooperation.
To examine if variability-modulated ecosystem succession is
general to different cellular interactions, we designed a new
cooperation-competition consortium composed of the coopera-
tors—Cα and Cβ—and Kp, a strain that opposes Cα and Cβ and
resists their killing in a pH-dependent manner. Using L. lactis
MG1363 as the host, the pH-dependent Kp-to-Cα/Cβ inhibition
was created by applying a pH-inducible promoter P77464 to
control lcnA, the precursor gene of the lcnA pathway and the
constitutive promoters P1 and P2 to drive the rest genes (lceA,
lcmA, and lciA) in the pathway (Fig. 5a). Similarly, the pH-
dependent resistance to Cα/Cβ-to-Kp inhibition was enabled by
using the promoter P774 to drive lagC, the immunity gene of lcnG
co-produced by Cα and Cβ. Additionally, gusA363 was con-
stitutively expressed to enable colorimetric quantification of the
strain.

Previous studies showed that the promoter P774 is active when
the environmental pH is below 6.5 but switched to be inactive
when above 764. Thus, Kp’s lcnA production (i.e., inhibition over
Cα and Cβ) and LagC production (i.e., resistance to killing by Cα
and Cβ) are no longer constant but, instead, vary with the
environment. Importantly, these strains are all derived from L.
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lactis which naturally produces a large amount of lactic acid and,
thus, can lower the pH of culture in fermentation, which suggests
that both the Kp-to-Cα/Cβ and Cα/Cβ-to-Kp inhibitions can be
highly dynamic even in simple batch fermentation.

To validate the interactions, we grew Kp monoculture under
three settings: pH ≥ 7, pH ≤ 6, and no pH control (Methods)
(Fig. 5b and Supplementary Fig. 13). Our results (Fig. 5c and
Supplementary Fig. 14) showed that the size of the lcnA
inhibition zones (Methods) remains undetectable during the
pH ≥ 7 fermentation, suggesting no lcnA production. By contrast,
in the pH ≤ 6 fermentation, lcnA was detected as early as 3 h after
fermentation and the culture yielded the highest lcnA level. For
the case of no pH control, lcnA was detected after 4 h of
fermentation and eventually accumulated to a medium level.
These results confirmed that lcnA production (Kp-to Cα/Cβ
inhibition) is highly correlated with the environmental pH. To
confirm the pH-dependence of the Cα/Cβ-to-Kp inhibition, we
cultured Kp and Ks in pH-defined media mixed with the
supernatant of the corresponding Cα-Cβ or Cα-Cβ’ co-cultures
(Cβ’ is a Cβ variant deficient in β subunit production), and
compared their relative growth rates (Methods, Supplementary
Fig. 9e, f and 15). The results (Fig. 5d) showed that Kp grew better
than Ks in all three conditions despite a higher load due to lagC
production, demonstrating that Kp gained a resistance to lcnG.
Additionally, the results (Fig. 5d, blue bars) showed that Kp grew
best at pH ≤ 6 and worst at pH ≥ 7, confirming pH modulates
Kp’s resistance to lcnG. Equivalently, the results suggested that
both the growth of Cα and Cβ monoculture (Supplementary
Fig. 16) and the strength of Cα-Cβ cooperation are indeed
modulated by pH (Supplementary Fig. 17).

These results further implied that, subject to environmental
pH, the Cα-Cβ-Kp ecosystem can exhibit multiple modes of

interaction. When pH ≥ 7, Cα and Cβ cooperatively inhibit Kp
(Fig. 6a); when pH ≤ 6, Kp inhibits Cα and Cβ (Fig. 6b); by
contrast, when there is no pH control, Cα and Cβ inhibit Kp
initially but, later, are suppressed by Kp (Fig. 6c).

Dynamics jointly regulated by multiple interaction variations.
To illustrate how the Cα-Cβ-Kp consortium evolves upon both
cooperation and competition variations, we assembled a dynamic
community model (Supplementary Equation 17) from the bottom
up (Methods). Then we used the model to explore the succession
of the consortium when its interaction strengths vary due to
simultaneous pH and cooperator partition alterations. In parallel,
we performed Cα-Cβ-Kp co-culture experiments under the
conditions identical to the computational test (Methods).

For the consortium starting from a fixed initial (Cα+ Cβ):Kp
ratio (2:1), the model predicted and subsequent experiments
confirmed that, when pH was controlled above 7, Kp abundance
declined gradually over fermentation for different initial Cα:Cβ
ratios but reached to the lowest at 1:1 (Fig. 6d, g). In contrast,
when pH was below 6, Kp became increasingly dominant over
time for all Cα:Cβ ratios but augmented the most at unbalanced
cases (30:1 and 1:30) (Fig. 6e, h). When there was no pH control,
the consortium succession displayed two distinct patterns: At
unbalanced ratios, Kp evolved to be dominant as the case of pH ≤
6 but, at close ratios, Kp abundance declined over time as the
pH ≥ 7 case (Fig. 6f, i).

Although seemingly diversified, these successions can be
elucidated by considering the multiple interaction variations
caused by pH modulation and labor partition. First, the
systematic shift of the Kp abundance from consistent decrease
(Fig. 6d, g) to consistent increase (Fig. 6e, h) and divergent
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development (Fig. 6f, i) originated from the pH-induced variation
of the interactions: At pH ≥ 7, Kp-to-Cα/Cβ inhibition was
abolished but Cα/Cβ-to-Kp inhibition remained potent; at pH ≤
6, Kp-to-Cα/Cβ inhibition became effective (Supplementary
Fig. 18) but Cα/Cβ-to-Kp inhibition was significantly reduced;
when there was no pH control, Cα and Cβ inhibited Kp at
beginning but were later suppressed by Kp (Fig. 6a–c). Second,
within a single pH setting, the final Kp abundance was lower at
close Cα:Cβ partitions (e.g. 1:1) than at imbalanced (e.g., 30:1 and
1:30) because Cα and Cβ had a stronger lcnG productivity when
their partitions are close (Supplementary Fig. 17). These results
showed that for ecosystems containing multiple variable interac-
tions, at least for those we tested, their succession is determined
jointly by all of the variations but not by any one of them. Of
note, the divergent dynamics in the absence of pH control
(Fig. 6f, i) exemplified the superposition of pH and labor partition
effects: At imbalanced Cα:Cβ partitions, Cα and Cβ had the
potential to kill Kp at beginning but their lcnG yield was too low;
later, Kp gained the lcnG resistance and further secreted lcnA to
kill Cα and Cβ, leading to the monotonic increase of Kp
abundance. In contrast, at the close partitions, Cα and Cβ
produced significant lcnG to efficiently inhibit Kp during the
initial fermentation and the lcnG remained in the culture
continued to suppress Kp even though the interaction topology
was later altered.

To further demonstrate this finding, we conducted additional
assays for the consortium by varying pH and initial total OD.
Here, the model and the experimental setups were the same as
previous except for the initial conditions (Methods). Accordingly,
the sources of variation became pH modulation and random
sampling. Our results showed that, at pH ≥ 7, the Kp abundance
consistently reduced at high initial ODs (Fig. 7a–f), owing to the
cooperative inhibition of Cα and Cβ to Kp; However, at low
initial ODs, it could also remain largely invariant in some
replicates (Fig. 7c–d, g–h) since increasing variations at random
sampling abolished the cooperation (Fig. 2e–f). By contrast, in the
absence of sampling-induced variations, the Kp abundance
always declined regardless of initial ODs (Fig. 7a–d, bold lines).
At pH ≤ 6, Kp became increasingly dominant regardless of initial
ODs (Fig. 7i–l, m–p), because Kp constitutively suppressed Cα
and Cβ and such a suppression was not affected by the
fluctuations of Cα:Cβ ratios. These results are consistent with
the ecosystem succession when sampling-induced variations were
eliminated (Fig. 7i–l, bold lines). When there was no pH control,
Kp declined minorly to a plateau at high initial ODs (Fig. 7q–r,
u–v), attributed to the factors that Cα and Cβ collaborated to
suppress Kp initially but were later suppressed by Kp due to pH
reduction. At low initial ODs, it declined as the high initial OD
case or diverged to be dominant (Fig. 7s–t, w–x) because
increasing randomness diminished the Cα/Cβ-to-Kp inhibition at

0 h 2 h 4 h 6 h 8 h

a b c

0

20

40

60

80

100

Cα:Cβ ratio Cα:Cβ ratio Cα:Cβ ratio

g

0

20

40

60

80

100

h

0

20

40

60

80

100

i

Culture

Topology

Experiment

Modelingf

No control (dynamic)

Experiment

0
20
40
60
80

100

Experiment

Modelingd

K
p 

R
el

a.
 A

bu
nd

. (
%

)

0
20
40
60
80

100

0 8(0) 8

30:1 10:1 3:1 1:1 1:3 1:10 1:30

Time (h)

Modelinge

0
20
40
60
80

100

Time (h)

Cα

Cβ

Kp

lcnA

lcnA

6Acidification

Transfer
Cα

Cβ

KplcnG
Cα

Cβ

Kp

lcnA

lcnA

Cα

Cβ

KplcnG

30:1 10:1 3:1 1:1 1:3 1:10 1:30

8(0) 8(0) 8(0) 8(0) 8(0) 0 8(0) 8

30:1 10:1 3:1 1:1 1:3 1:10 1:30

8(0) 8(0) 8(0) 8(0) 8(0)

30:1 10:1 3:1 1:1 1:3 1:10 1:30

0 8(0) 88(0) 8(0) 8(0) 8(0) 8(0)

Time (h)

30:1 10:1 3:1 1:1 1:3 1:10 1:30 30:1 10:1 3:1 1:1 1:3 1:10 1:30

pH ≥ 7 (off) pH ≤ 6 (on)

pH > 6.5 pH < 6.5

pH ≥ 7 (off)

pH ≥ 7 (off)

pH ≤ 6 (on)

pH ≤ 6 (on)

No control (dynamic)

No control (dynamic)

K
p 

R
el

a.
 A

bu
nd

. (
%

)

K
p 

R
el

a.
 A

bu
nd

. (
%

)
K

p 
R

el
a.

 A
bu

nd
. (

%
)

K
p 

R
el

a.
 A

bu
nd

. (
%

)
K

p 
R

el
a.

 A
bu

nd
. (

%
)

Fig. 6 Ecosystem dynamics jointly regulated by cooperation variations and competition variations. a–c Interaction topology of the Cα-Cβ-Kp ecosystem
in different pH settings. At pH≥ 7 (a), the promoter P774 remains inactive (i.e., ‘Off’ state), which abolishes Kp-to-Cα/Cβ inhibition while allowing Cα and
Cβ to suppress Kp. At pH≤ 6 (b), the promoter P774 is active (i.e., ‘On’ state), leading to effective Kp-to-Cα/Cβ inhibition but diminished Cα/Cβ-to-Kp
suppression. Where there is no pH control (c), the promoter dynamically transits from inactive to active (i.e., ‘Dynamic’ state) with pH reduction upon
fermentation. As a result, the interaction network switches from Cα/Cβ killing Kp to Kp killing Cα/Cβ. d-i Model-predicted (d–f) and experimentally
measured (g–i) temporal evolution of Kp abundance in three pH-defined settings and under varied initial Cα:Cβ partitions. Although Cα:Cβ ratio was varied
from 30:1 to 1:30, the total Cα and Cβ concentration was kept at 2:1 ratio with the Kp concentration. Source Data available in the source data file.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-13986-6

8 NATURE COMMUNICATIONS |          (2020) 11:309 | https://doi.org/10.1038/s41467-019-13986-6 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


fe g h

o pm n

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

0 2 4 6 8

Time (h) Time (h)

0 9 11 13 15

Time (h)

0 12 14 16 18

Time (h)

0

20

40

60

80

100

Time (h)

0

20

40

60

80

100

Time (h)

0

20

40

60

80

100

Time (h)

0

20

40

60

80

100

Time (h)

u v w x

a

0

20

40

60

80

100

0 2 4 6 8

Time (h)

M
od

el
in

g
E

xp
er

im
en

t

0

20

40

60

80

100

0 2 4 6 8

Time (h)

0

20

40

60

80

100

0 13 15

Time (h)

9

d

0

20

40

60

80

100

0

Time (h)

2018 22

i

0

20

40

60

80

100

M
od

el
in

g
E

xp
er

im
en

t

0 2 4 6 8

Time (h)

j

0

20

40

60

80

100

Time (h)

k

0

20

40

60

80

100

Time (h)

l

0

20

40

60

80

100

0 12 16

Time (h)

18

0

20

40

60

80

100
q

M
od

el
in

g
E

xp
er

im
en

t

0 2 4 6 8

Time (h)

0

20

40

60

80

100
r

Time (h)

0

20

40

60

80

100
s

Time (h)

0

20

40

60

80

100
t

Time (h)

18

K
p 

R
el

a.
 A

bu
nd

. (
%

)

K
p 

R
el

a.
 A

bu
nd

. (
%

)

K
p 

R
el

a.
 A

bu
nd

. (
%

)

K
p 

R
el

a.
 A

bu
nd

. (
%

)

K
p 

R
el

a.
 A

bu
nd

. (
%

)

K
p 

R
el

a.
 A

bu
nd

. (
%

)

K
p 

R
el

a.
 A

bu
nd

. (
%

)

K
p 

R
el

a.
 A

bu
nd

. (
%

)

K
p 

R
el

a.
 A

bu
nd

. (
%

)

K
p 

R
el

a.
 A

bu
nd

. (
%

)

K
p 

R
el

a.
 A

bu
nd

. (
%

)

K
p 

R
el

a.
 A

bu
nd

. (
%

)

K
p 

R
el

a.
 A

bu
nd

. (
%

)

K
p 

R
el

a.
 A

bu
nd

. (
%

)

K
p 

R
el

a.
 A

bu
nd

. (
%

)

K
p 

R
el

a.
 A

bu
nd

. (
%

)

K
p 

R
el

a.
 A

bu
nd

. (
%

)

K
p 

R
el

a.
 A

bu
nd

. (
%

)

K
p 

R
el

a.
 A

bu
nd

. (
%

)

K
p 

R
el

a.
 A

bu
nd

. (
%

)

9 13

0

20

40

60

80

100

0 12 14 16 18

Time (h)

K
p 

R
el

a.
 A

bu
nd

. (
%

)

b c

0

20

40

60

80

100

0 9 11 13 15

Time (h)

K
p 

R
el

a.
 A

bu
nd

. (
%

)

0

20

40

60

80

100

0 2 4 6 8

Time (h)

K
p 

R
el

a.
 A

bu
nd

. (
%

)

0

20

40

60

80

100

0 2 4 6 8

Time (h)

K
p 

R
el

a.
 A

bu
nd

. (
%

)

0 2 4 6 8 0 9 11 13 15 0 12 14 16 18

0 11 15 14

0 1412 160 9 11 13 15

10

10

0 2 4 6 8 10

0 2 4 6 8 10

0 2 4 6 8 10

0 2 4 6 8 10

1611

N
o 

co
nt

ro
l

pH
 ≥

 7
pH

 ≤
 6

pH
 ≥

 7
pH

 ≤
 6

N
o 

co
nt

ro
l

Initial OD=10–2 Initial OD=10–4 Initial OD=10–6 Initial OD=10–8

Fig. 7 Model-predicted and experimentally measured succession of the Cα-Cβ-Kp ecosystem for varied pH conditions and initial densities. a–h
Predicted (a–d) and experimentally measured (e–h) time courses of Kp abundance in the Cα-Cβ-Kp consortium when pH≥ 7. i–p Predicted (i–l) and
measured (m–p) time courses of Kp abundance in the Cα-Cβ-Kp consortium when pH≤ 6. q–x Predicted (q–t) and measured (u–x) time courses of Kp
abundance in the Cα-Cβ-Kp consortium when there is no pH control. For both model predictions and experimental measurements, the co-culture was
inoculated at 1:1:1 ratio but the initial OD was varied from 10−2 (first column) to 10−4 (second column), 10−6 (third column) and 10−8 (fourth column). For
each condition, a total of 100 simulation replicates and 10 experimental replicates were performed. For comparison, the deterministic dynamics of Kp
without sampling-induced variability were displayed with bold lines in a–d, i–l, and q–t. Source Data available in the source data file.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-13986-6 ARTICLE

NATURE COMMUNICATIONS |          (2020) 11:309 | https://doi.org/10.1038/s41467-019-13986-6 | www.nature.com/naturecommunications 9

www.nature.com/naturecommunications
www.nature.com/naturecommunications


the beginning but did not affect Kp-to-Cα/Cβ suppression later.
For comparison, in the absence of variation, there was no Kp
dominance under all initial conditions (Fig. 7q–t, bold lines).
These results demonstrated again that it is the joint regulation
from multiple interaction variations that determines the
dynamics of the ecosystems.

To quantitatively evaluate the capacity of the variability-
incorporated modeling scheme, we calculated relative errors,
defined as the differences between simulation and experimental
results divided by experimental measures, for all of the
simulations and experimental data above. The results (Supple-
mentary Fig. 19) showed that, for most of the comparisons, the
simulations agree quantitatively with experimental measures
with the mean absolute relative errors (MARE) falling within
the range of (0, 0.2) (panels a–d, g). For a subset of the cases,
the models have larger relative errors but yet qualitatively agree
well with the experimental findings (panels e, f, h). The
encouraging agreements between the simulations and experi-
ments demonstrated that incorporating interaction variability
into ecosystem modeling is a promising strategy for quantita-
tive and predictive understanding of complex community
behaviors. Meanwhile, the discrepancies in certain cases suggest
that the current models may need to consider additional
processes involved in the experimental ecosystems, such as the
nonlinearity observed during parameter fitting in Supplemen-
tary Fig. 8, in order to achieve a better modeling-experiment
agreement.

Discussion
Microbial interactions are often modeled invariant20; however, in
nature, they constantly fluctuate over time and such fluctuations
in strength are shown to be profound to ecosystem behaviors17–
32. Using synthetic microbial consortia as simple and reliable
platforms, we showed that increasing variations of interaction
diversifies an ecosystem’s succession into distinct outcomes. We
also showed that, when there are multiple variable
interactions18,19,25, these variations collectively, but not a single
one, regulate the behaviors of a community. Together, our results
established interaction variability as a critical modulator of eco-
system behaviors.

Our synthetic ecosystems are relatively simple as they contain
only a competition and a cooperation. Yet, their dynamics can be
dramatically modulated by the variations of interaction. In native
ecologies, there are significantly more cellular interactions and
more microbial and environmental factors that modulate cellular
interactions. We thus speculate that interaction variability is not
specific to our synthetic systems and potentially a universal
determinant for microbial ecosystem succession.

Searching for assembly rules has been invaluable to our
understanding of community organization65–67. In our study, we
observed the diversification of ecosystem succession with
increasing variations, which illustrates the intrinsic complexity
and context-dependence nature of community behaviors. This
finding implies that, in certain scenarios, qualitative rules may not
be sufficient to specify the assembly of a community; instead,
quantitative and systematic characterizations are needed. The
result might also partially explain the current difficulty in pre-
dicting microbial ecosystem behaviors, an existing key challenge
in microbial ecology4.

Lastly, our study shows encouraging consistence between
experiment and mathematical modeling, which illustrates the
promise of variability-cast ecosystem modeling for bottom-up
predictions of the structure and dynamics of microbial ecosys-
tems. Together, this work provides fundamental insights into the
organization of microbial communities and also the de novo

engineering of microbial consortia for various biotechnological
applications.

Methods
Strain and growth conditions. All strains are derived from L. lactis MG1363 and
grown at 30 °C in M17 broth supplemented with 0.5% (w/v) glucose and 5 μg mL−1

of chloramphenicol (GM17/Cm). Tween 80 was added at a final concentration of
0.1% (v/v) when necessary. Cell cultures are adjusted with 2M NaOH solution
every hour to maintain pH above 7. To achieve pH ≤ 6, cell cultures are adjusted by
1 M HCl every hour. Strains used in this study are described in Supplementary
Table 1.

Plasmid construction. All plasmids used in this study were developed from a L.
lactis-E. coli shuttle vector, pleiss-Nuc68, and described in Supplementary Table 1.
Oligos for plasmid construction are listed in Supplementary Table 2. To generate
the plasmid pleiss-lcnG for lactococcin G production, a 5-kb fragment of lcnG gene
cluster including lagA, lagB, lagC, lagD, and lagE was amplified from the genome of
L. lactis LMG 2081 using primers of lcnG-F and lcnG-R53, and subsequently
assembled with a fragment of pleiss-Nuc amplified with primers Pg-F and Pg-R
using Gibson assembly. The plasmid pleiss-lcnG was then transformed into L. lactis
MG1363 to obtain the lcnG producing strain Cαβ. To construct lcnG subunit
expression plasmids pleiss-Cα0 and pleiss-Cβ0, the α or β coding gene was deleted
from the plasmid pleiss-lcnG by reverse PCR and Gibson assembly using two pairs
of primers: Cα0-F/Cα0-R and Cβ0-F/Cβ0-R. The resulting plasmids were trans-
formed into L. lactis MG1363 to generate strains Cα0 and Cβ0. To enable screening
and counting of cells with different subunits, a gfp or rfp reporter gene, yemGFP or
mCherry was introduced using primers Pcα-F/Pcα-R and Cα-F/Cα-R, generating the
plasmids pleiss-Cα and pleiss-Cβ. These plasmids were subsequently transformed
into L. lactis MG1363 to construct the reporter version of α and β peptide producer
Cα and Cβ. As a control, plasmid pleiss-Cβ’ was generated by deleting the β
precursor gene lagB from the plasmid pleiss-Cβ with primers PCβ’-F, PCβ’-F, Cβ’-F
and Cβ’-R. The resulting plasmid was then transformed into L. lactis MG1363 to
get a β-free variant Cβ’. To increase the productivity of α peptide in Cα0, an
additional copy of expression cassette of α under the control of P4 promoter was
inserted to pleiss-Cα0 using primers Pcα0-P4α-F/ Pcα0-P4α-R and Cα0-P4a-F/ Cα0-P4a-
R69, generating the variant Cα0v2. Cβ0v1/3 and Cβ0v1/5, with approximately 1/3 and
1/5 of the productivity of Cβ0 respectively, were created through inserting simple
short repeat sequence (AT)n into the spacer region of ribosome binding site of β
peptide to weaken the translational initiation rate with primers PCβ0v1/3-F/ PCβ0v1/3-
R, Cβ0v1/3-F/Cβ0v1/3-R, PCβ0v1/5-F/ PCβ0v1/5-R, Cβ0v1/5-F/Cβ0v1/5-R70. The lacto-
coccin A producing plasmid pleiss-lcnA was constructed by assembling the lcnA
gene cluster from the plasmids pFI2396 and pFI2148 with pleiss-Nuc vector62. To
simplify the detection of the lcnA-producing strain, a reporter gene gusA3 was
amplified from the plasmid pTRK89263 and then inserted into pleiss-lcnA using
primers PlcnA-gusA3-F/PlcnA-gusA3-R and lcnA-gusA3-F/lcnA-gusA3-R. The resulting
plasmid pleiss-lcnA-gusA3 was transformed into L. lactis MG1363 to generate the
lcnA-producing strain Ks. Kr, as a control strain for Ks with immunity to lcnG and
a gusA3 reporter, was created by assembling the immunity gene lagC of lcnG and
GusA3 using the primers of PIG-GusA3-F/PIG-GusA3-R and GusA3-F/GusA3-R. To
create the strain with pH-dependent lcnA production and lcnG resistance, plasmid
pleiss-P774-lcnA-gusA3 was firstly created by replacing the lcnA’s native promoter
Plcna of the plasmid pleiss-lcnA-gusA3 with a pH-inducible promoter P77464.
Subsequently, pleiss-P774-lcnA-gusA3 was assembled with the fragment of P774-
lagC using two pairs of primers: Pp774-lcnA-F and Pp774-lcnA-R, P774-lcnA-F and
P774-lcnA-R; Pp774-lagC-F and Pp774-lagC-R, P774-lagC-F and P774-lagC-R, resulting
in the final plasmid pleiss-P774-lcnA-P774-lagC-gusA3. The final plasmid was then
transformed into L. lactis MG1363 to generate the strain Kp.

Measurement of lcnG productivity. The agar diffusion assay was performed using
a protocol adapted from a previous study55. Specifically, cultures of lcnG producing
cells were grown in GM17/Cm/Tween broth at 30 °C overnight under corre-
sponding culture conditions. The overnight cultures were inoculated in fresh media
at 1:50 dilution and grown to the early stationary phase. Supernatants were
obtained by centrifuging at 10,000× g for 10 min. Then, 30 μL samples were added
into the wells in a double-layer agar (15 mL of GM17/Cm/Tween with 0.75% agar
for each layer) in which the bottom layer was seeded with 50 μL of overnight
culture of inducer strain L. lactis NZ9000/pleiss-Nuc. After incubation at 30 °C for
8 h, the inhibition zones were characterized by the blank circles around wells. To
establish a standard curve of relative lcnG concentration for quantitatively evalu-
ating samples, the concentration of lcnG in the supernatant of Cαβ culture at the
early stationary phase is defined as 100%. And then the cell-free supernatant of Cαβ
culture was diluted with fresh GM17/Cm/Tween media to the relative lcnG con-
centrations of 90%, 80%, 70%, 60%, 50%, 40%, 30%, 20%, 10%, 5%, 2%, and 1%.
Next, 30 μL of samples were added into the wells in the top layer agar. After
incubation at 30 °C for 8 h, the inhibition zones emerged and a standard curve was
drawn by measuring the diameters of inhibition zones produced by different
relative concentrations of lcnG. Using this curve, the relative concentrations of
lcnG from tested samples were estimated.
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Characterization of variations from labor partition. Monocultures of Cα and Cβ
(Cα0 and Cβ0) were inoculated in GM17/Cm/Tween liquid medium at 30 °C
overnight. Then the optical density at 600 nm (OD) of monocultures were mea-
sured and the co-cultures of Cα and Cβ (Cα0 and Cβ0) were mixed at a variety of
ratios (30:1, 10:1, 3:1, 1:1, 1:3, 1:10, 1:30) with a start total OD600 of 10−2. After 8 h,
the co-culture cells were centrifuged at 10,000× g for 10 min to obtain the co-
culture supernatants. To test the cooperative strength in supernatant mixtures,
overnight monocultures were firstly transformed to fresh GM17/Cm/Tween broth
at the initial OD600 of 10−2 individually. Then supernatants were extracted after
growth for 8 h by centrifuging and mixed at different ratios as mentioned above.
Finally, 30 μL of samples were used to determine the activity of lcnG by agar
diffusion assays to examine the variability of cooperation in co-culture super-
natants and monoculture supernatant mixtures. Additionally, to evaluate the role
of subunit stoichiometric ratio in cooperation variation, monoculture supernatants
were also prepared from Cα0, Cα0v2, Cβ0v1/3, and Cβ0v1/5 as described above and
mixed at ratios from 30:1, 10:1, 3:1, 1:1, 1:3, 1:5, 1:6, 1:10 to 1:30. Among them,
ratios of 1:5 and 1:6 were used for determining the optimal cooperativity between
Cα0 and Cβ0v1/5 (Cα0v2 and Cβ0v1/3). Then, activities of lcnG in these combinations
were determined by agar diffusion assay. Similarly, to measure the cooperative
inhibition from Cα and Cβ to Ks (Kp), three steps were involved. First, starting
media were prepared by mixing 2-fold concentrated GM17/Cm/Tween medium
with equal volume of supernatants from Cα-Cβ co-culture at the early stationary
phase that were filtered with sterile 0.22 μm filter and adjusted to necessary pH.
Second, overnight Ks (Kp) monoculture was inoculated with an initial OD of 10−2

to the starting media. Third, the relative abundances of Ks were measured with
fluorescence microscope from the starting to 8 h of incubation, during which pH
was controlled properly if needed. For comparison, starting media were also pre-
pared by mixing 2-fold concentrated GM17/Cm/Tween medium with equal
volume of supernatants of Cα-Cβ’ co-culture for culturing and measuring Ks (Kp).
Each experimental condition has three replicates (n= 3).

Determination of the maximum dilution rate. To determine the minimum OD600

that is required for cell growth in a fresh medium, monocultures of Cα0, Cβ0, Cα,
Cβ and Ks were serially diluted to an OD600 of 10−2 to 10−13 at 1:10 dilution and
the survival rate of each OD600 was calculated by counting the growing cultures in
twenty replicates of each OD600. After incubation at 30 °C for 24 h, the tubes with
cell growth were counted to calculate the survival rate of different initial OD600.
Our experiment (Supplementary Fig. 5) showed that 10−8 is the minimum OD600

with a 100% survival rate for almost all strains. An inoculation with an initial
OD600 lower than 10−8 could result in failure in growth and would disturb the
studies of small number fluctuations in the community. Therefore, the initial
OD600 after dilution in the serial dilution experiments should be higher than 10−8.

Characterization of cooperation variations from sampling. To examine the
effect of sampling on the variability of Cα-Cβ cooperation, overnight cultures of Cα
and Cβ were washed twice with sterile PBS buffer (pH= 7) and re-suspended in
PBS buffer. Then, the Cα and Cβ suspensions were adjusted to an OD600 of 1.0 with
PBS buffer, and mixed together at 1:1 ratio. The resulting suspension was used as a
start culture and diluted to the OD600 of 10−2, 10−4, 10−6 and 10−8 through serial
1:10 dilutions with PBS buffer. The total volume of a start culture was set at 5 mL.
After being prepared, all samples were centrifuged at 10,000× g for 15 min to
remove supernatants, and 5 mL of fresh GM17/Cm media were subsequently added
for cell growth. At the end of incubation, the supernatants were obtained. Subse-
quently, inhibition zone assays were conducted to determine the strength of
cooperation. As cultures with different initial ODs require different incubation
times, for each initial condition we chose sampling time based on the corre-
sponding growth profile so that the ODs at each time point are comparable across
the samples (Supplementary Fig. 12). Such samplings enable a consistent and
proper comparison. Ten trials were performed for each initial condition.

Three-strain cooperator-varying experiments. The initial total OD600 of three
strains Cα, Cβ and Ks (Kr or Kp) was set at 10−2. The start abundance of Ks (Kr or
Kp) was fixed at 33.3% in the population but the ratios of Cα and Cβ were set at
30:1, 10:1, 3:1, 1:1, 1:3, 1:10, and 1:30. During incubation, samples were taken every
two hours for measuring their ODs and the relative numbers of green (Cα), red
(Cβ), and non-fluorescent cells were counted under an AMG EVOS FL fluores-
cence microscope using green, red and bright field channels. Notably, for the pH-
controlled three-strain experiments, the overnight culture of Kp was washed twice
with sterile PBS buffer (pH= 7) and then inoculated with an OD of 10−2 into fresh
medium with proper different pH controls (pH ≥ 7, pH ≤ 6 and no pH control).
During the course of fermentation, culture samples were collected every hour to
determine environmental pH using pH meter and Kp’s lcnA productivity using the
inhibition zone assay. Each culture condition has three replicates (n= 3). The pH
and inhibition zones were calculated as mean ± s.d.

Three-strain sampling experiments. For the three-strain ecosystem of Cα, Cβ,
and Ks (Kp), Cα and Cβ PBS suspensions were individually adjusted to OD600 of 1
and then mixed at 1:1 ratio; Ks (Kp) PBS suspension was also adjusted to OD600 of

1. Subsequently, both the Cα-Cβ mixture and Ks (Kp) were diluted to the OD600 of
10−2, 10−4, 10−6, and 10−8 with PBS buffer in 1:10 dilution fold. At each con-
centration, the Cα-Cβ mixture and Ks (Kp) monoculture suspensions were mixed
at a 2:1 ratio to reach a final ratio of 1:1:1 for Cα, Cβ and Ks (Kp). The total
volumes of both monoculture and co-culture suspensions were set at 5 mL. The
prepared samples were centrifuged at 10,000× g for 15 min to remove supernatants,
and 5 mL of fresh GM17/Cm media were subsequently added for cell growth. The
co-cultures were then incubated at 30 °C and propagated for 8 (10−2), 9 (10−4), 14
(10−6) and 20 (10−8) hours which was needed for entering the early stationary
phase. To consistently determine cell numbers in different initial ODs (e.g., 10−2,
10−4, 10−6, 10−8), the initial relative abundances of Cα, Cβ and Ks (Kp) were
measured by colony forming unit (CFU) counting instead of flow cytometry,
because flow cytometry typically requires a minimum cell number (104 cells per
mL) in samples. For the samples with an initial OD600 of 10−2 or 10−4, the mixed
suspensions were diluted to around OD600 of 5×10−6 with sterile PBS buffer and 1
mL of the diluted suspension was plated on the GM17/Cm plate supplemented
with X-Gluc for counting Ks (Kp). For the samples with an initial OD600 of 10−6, 1
mL of the mixed suspensions were directly plated without dilution on the GM17/
Cm plate supplemented with X-Gluc. For the samples with an initial OD600 of 10
−8, 5 mL of the mixed suspensions were plated without dilution on the GM17/Cm
plate supplemented with X-Gluc. During the period of incubation, the samples
were taken to measure OD600 and the fraction of Ks (Kp) strain was calculated by
counting the cells under microscope. For the ecosystem of Cα, Cβ and Kp, the
above procedure remained the same except that the diluted co-culture samples
were inoculated into pH-defined media whose pH was adjusted every hour. Ten
trials were performed for each initial condition.

Quantification of lcnA inhibition. To measure the inhibition from Ks to Cα or Cβ,
overnight Ks and Cα or Cβ monoculture were inoculated into fresh GM17/Cm/
Tween media at 1:1 ratio based on OD600. Then, the relative abundances of Ks were
measured from the starting to 8 h of incubation with fluorescence microscope. The
similar procedure was also used to determine the inhibition from Kp to Cα and Cβ
in pH-defined media (pH ≥ 7, pH ≤ 6 and no pH control). Each culture condition
has three replicates (n= 3).

GusA3 enzyme assay. To directly visualize the Ks in three-strain system, GusA3
protein was used as a reporter to produce a blue green color. At the end of growth
in three-strain consortium, a final concentration of 2 mM of 5-bromo-4-chloro-3-
indolyl- β-D-glucuronide (X-Gluc) was added into the cultures and the blue
green color formation was monitored. After incubation at 37 °C for 1 h, the
supernatants were obtained by centrifuging the cultures at 10,000× g for 10 min
and images were taken.

Mathematical modeling. In concert with the experimental ecosystem assembly, a
bottom-up strategy was utilized to construct the dynamic models of the synthetic
ecosystems. Briefly, we first created and characterized growth models of mono-
cultures (Cα, Cβ, Ks, Kr, Kp), then models for the cooperative Cα-Cβ species as
well as their interactions, and finally assembled individual modules into integrated
models that represent complete ecosystems (e.g., Cα-Cβ-Ks, Cα-Cβ-Kr and Cα-Cβ-
Kp consortia). During model construction, ordinary differential equations were
used to quantitatively describe the kinetics of three major classes of variables:
nutrient availability, cell populations and bacteriocins mediating cellular interac-
tions. Parameters were determined using data in the literature or by fitting the
models to our experiments. MATLAB software was used to simulate the models,
produce plots, and fit data for the models. A detailed description of the models is
available in Supplementary Information.

Statistical analysis. All of the experiments were performed for multiple times.
Replicate numbers of the experiments (n) are indicated in the figure legends.
Sample sizes were chosen based on standard experimental requirement in mole-
cular biology. Data are presented as mean ± s.d.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Strains and plasmids constructed in this study are available from the corresponding
author upon request. Data supporting the results in this paper are available within the
paper and its supplementary information files. The source data of Figs. 2b,c,e, 3c,d,g,h,
4a-h, 5b-d, 6d-6i, 7 and Supplementary Figs. 1a, 2c, 3, 5, 7b and 8-19 are provided as a
Source Data file. All other relevant data are available from the author upon reasonable
request.

Code availability
Custom MATLAB codes developed in this study are available from the corresponding
author upon request.
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