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Symmetry-protected hierarchy of anomalous
multipole topological band gaps in nonsymmorphic
metacrystals
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Yan-Feng Chen1,4* & Jian-Hua Jiang2*

Symmetry and topology are two fundamental aspects of many quantum states of matter.

Recently new topological materials, higher-order topological insulators, were discovered,

featuring bulk–edge–corner correspondence that goes beyond the conventional topological

paradigms. Here we discover experimentally that the nonsymmorphic p4g acoustic meta-

crystals host a symmetry-protected hierarchy of topological multipoles: the lowest band gap

has a quantized Wannier dipole and can mimic the quantum spin Hall effect, whereas the

second band gap exhibits quadrupole topology with anomalous Wannier bands. Such a

topological hierarchy allows us to observe experimentally distinct, multiplexed topological

phenomena and to reveal a topological transition triggered by the geometry transition from

the p4g group to the C4v group, which demonstrates elegantly the fundamental interplay

between symmetry and topology. Our study demonstrates that classical systems with con-

trollable geometry can serve as powerful simulators for the discovery of novel topological

states of matter and their phase transitions.
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Symmetry and topology are two fundamental paradigms in
the classification of matters. The fundamental interplay and
relation between symmetry and topology have been intri-

guing for physicists for decades, since the discovery of the
quantum Hall effects. Historically, the first model demonstrating
the beautiful relation between symmetry and topology is the
Su–Schrieffer–Heeger model1, which shows that quantized dipole
polarization of an insulator with chiral symmetry has nontrivial
consequences on the edges2 and serves as a fundamental example
of charge fractionalization due to symmetry and topological
principles3.

In quantum mechanics, the bulk dipole polarization of a
crystalline insulator is quantified through the Berry phase of the
filled Bloch bands4,5. In the Bloch–Wannier representation, such
a dipole polarization is calibrated by the displacement of the
Wannier center with respect to the center of the unit-cell. When
generalized to two-dimensional (2D) and three-dimensional (3D)
insulators, such quantum description of the dipole polarization
can be connected, respectively, to the Hall conductance and
magneto-electric polarizability, which characterize the topological
responses of the 2D quantum Hall insulators and the 3D time-
reversal invariant topological insulators, respectively6–8. Recently,
quadrupole and octupole topological insulators were proposed8,9,
which extend band topology from dipole polarization to quad-
rupole and octupole polarizations in the Bloch–Wannier repre-
sentation. For instance, a 2D quadrupole topological insulator
(QTI)8–12 supports gapped edge states with quantized edge
polarizations and in-gap corner states at the edge-terminating
corners, demonstrating the higher-order band topology8–23. A
hallmark of the quadrupole topology is that, counterintuitively,
the corner charge is not an addictive function of the edge
polarizations but determined solely by the bulk quadrupole
topology. As a consequence, each corner hosts only one locaca-
lized mode with a fractional charge of 1

2, despite that the polar-
izations of the edges terminated at the corner add up to a trivial
corner charge of 08,9.

The emergence of quadrupole topology in a crystalline insu-
lator requires a few fundamental conditions. In the
literature8–12,23, these conditions are as follows: (i) a pair of
mirror symmetries that quantize the Wannier dipole and Wan-
nier quadrupole, and make the former vanishing, and (ii) at least
two occupied bands for the realization of cancelling dipole
moments. The QTI proposed in ref. 8 is based on a square-lattice
tight-binding model with π-flux per plaquette, which needs both
positive and negative nearest-neighbor couplings. Such require-
ments impose challenges for experimental realizations. Up till
now, only a few physical systems have realized the QTI
phase10–12. The 3D octupole topological insulator is even more
challenging to be realized due to its complex tight-binding
configurations.

In this study, using 3D-printed acoustic metamaterials with
controllable geometry, we demonstrate a pathway toward topo-
logical multipoles. We use a symmetry-based approach to achieve
such a goal, where the p4g crystalline symmetry plays an essential
role. We find that 2D sonic crystals (SCs) with the p4g crystalline
symmetry can realize a symmetry-protected hierarchy of topo-
logical Wannier multipoles without fine-tuning (in fact, even
without the guidance from any tight-binding model). In our SCs,
the lowest acoustic band gap has a quantized Wannier dipole
(denoted as the “dipole topological band gap” in Fig. 1a), whereas
the second band gap has an anomalous Wannier quadrupole
(denoted as the “quadrupole topological band gap” in Fig. 1a),
which cannot be described by any existing theoretical model (but
can be verified using Wannier bands and various other char-
acteristics; see Supplementary Notes 1–4). In the literature, the
topological Wannier dipole and Wannier quadrupole are

quantized by the mirror symmetries. Counterintuitively, here,
the topological Wannier multipoles are quantized without
mirror symmetry but by the nonsymmorphic glide symmetries.
Moreover, the anomalous quadrupole topology can be annihi-
lated when the symmetry of the SC is tuned from the non-
symmorphic p4g group to the C4v point group by controlling the
geometry of the acoustic metacrystal. The quadrupole band
topology vanishes exactly at the symmetry transition point, which
thus illustrates directly the fundamental interplay between sym-
metry and topology. We observe for the first time the symmetry-
protected hierarchy of topological multipoles in acoustic meta-
crystals by changing the acoustic frequency, which allows mul-
tiplexing topological phenomena as benefited by the fact that
there is no fermionic band-filling in acoustic systems.

Results
Acoustic metacrystals. The square-lattice SC (lattice constant
a= 2 cm) has four arch-shaped scatterers in each unit-cell, which
are made of photosensitive resin (bulk modulus 2765MPa, mass
density 1.3 g/cm3, serving as “hard walls” for acoustic waves). The
SC is fabricated using the commercial 3D-printing technology
(see Methods). The geometries of the four scatterers are identical
and are characterized by the arch height h, the arm length l, and
the arm width w, which can be tuned to tailor the acoustic bands
and their topology (Fig. 1a). Those scatterers are arranged in such
a way that the SC has two orthogonal glide symmetries, Gx= {mx|
τy} and Gy= {my|τx} where mx :¼ x ! a

2 � x, my :¼ y ! a
2 � y,

τy :¼ y ! y þ a
2 and τx :¼ x ! x þ a

2 with a being the lattice
constant. With the inversion (i.e., parity) and the C4 rotation
symmetries, the system has a nonsymmorphic space group of p4g.
Plastic cladding boards above and below the SC structure lead to
a quasi-2D acoustic system, with acoustic dispersions very close
to the 2D limit for the low-lying bands (see Supplementary
Note 5 for supporting data). The acoustic bands (Fig. 1b) are
obtained by solving the acoustic wave equation, ∇2P ¼ ρ

κ
∂2

∂t2 P
(ρ and κ are the mass density and bulk modulus, respectively) for
the acoustic pressure P, using a commercial finite-element soft-
ware (see Methods). With excellent controllability and versatile
measurement methods, macroscopic SCs have manifested them-
selves as an appealing platform for the study of topological
phenomena in classical waves24–35. Here we exploit such
advantages for the discovery of the symmetry-protected hierarchy
of topological multipoles.

Symmetries and their consequences. At this point, it is impor-
tant to point out a number of nontrivial consequences of the p4g
symmetry. First, the glide symmetries result in band-sticking
effects at Brillouin zone (BZ) boundaries36–39, leading to double
degeneracy for all Bloch bands on the MX and MY lines in the BZ
(Fig. 1b). This can be elucidated by introducing the anti-unitary
operators Θi � GiT ði ¼ x; yÞ with T being the time-reversal
operator. As shown in refs. 36–39, it is straightforward to show
that Θ2

xΨn;k ¼ �Ψn;k for kx= π/a and Θ2
yΨn;k ¼ �Ψn;k for ky=

π/a, for any acoustic Bloch wavefunction Ψn,k (here n and k are
the band index and wavevector, respectively). As an analog to the
Kramers theorem, these properties lead to double degeneracy at
the BZ boundaries (i.e., the MX and MY lines). In this way, the
glide symmetries “glue” the first and second (the third and
fourth) bands together. Second, in a p4g crystal, the dipole
moment is quantized as p ¼ 1

2 ;
1
2

� �
, if there are an odd number of

bands with parity inversion between the Γ and X points, whereas
p= (0, 0), if there are an even number of such bands9. From
Fig. 1b, we conclude that the first acoustic band gap has a
quantized dipole moment of p ¼ 1

2 ;
1
2

� �
, whereas the second
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acoustic band gap has a cancelled, vanishing dipole moment.
Such a vanishing dipole moment is necessary for the emergence
of the QTI. We prove in the Supplementary Notes 1 and 2 that
the quadrupole topological index is quantized by the glide sym-
metries, revealing the picture of symmetry-protected band
topology. The resultant anomalous QTI requires at least four
bands below the topological band gap and thus a Wannier
representation larger than that of the conventional QTIs, which
have only two bands below the quadrupole topological band gap.
These characteristics are distinctive for the anomalous QTIs
protected by the glide symmetries39.

Wannier bands for the second band gap. We use the Wannier
bands8,9 to characterize the quadrupole topology. The Wannier
bands are, e.g., the ky dependence of the Wannier centers

υ nð Þ
x ðn ¼ 1; 2; 3; 4Þ, which are obtained through the Berry phases
ϕn of the first four acoustic bands associated with the Wilson-loop
in the BZ (kx runs from 0 to 2π, for each ky), following the

relation υ nð Þ
x ¼ ϕn=2π (see Supplementary Note 3 for calculation

details). Therefore, the Wannier bands are modulo 1 quantities,
as the Berry phases ϕn are modulo 2π quantities. In our non-
symmorphic SCs, the Wannier bands are gapped and non-
degenerate with two Wannier bands below (above) the
polarization gap at υx ¼ 0, labeled as “1” and “2” (“3” and “4”) in
Fig. 1c. The two Wannier bands below the polarization gap can
form two different sectors: the “sum” sector that corresponds to
the sum of the two Wannier bands (labeled as “1+ 2” in Figs. 1d
and 1e) and the “difference” sector for the difference between
them (labeled as “1− 2” in Fig. 1d, e). Similarly, the sum and
difference sectors can be defined for the two Wannier bands
above the polarization gap (labeled as “4+ 3” and “4− 3” in

Fig. 1d, e). Interestingly, the difference sector has gapped Wan-
nier bands (see “1− 2” and “4− 3” in Fig. 1d, e) and quantized
nested Wannier bands, thus yielding a nontrivial quadrupole
topological index qxy ¼ 1

2 (see Supplementary Notes 1 and 3 for
details and the rigorous proof). In contrast, the sum sector has
gapless Wannier bands and yields quantized, cancelling dipole
moments (note that the dipole moments in 1+ 2 and 3+ 4 sec-
tors cancel with each other). These features signify a novel
anomalous QTI protected by the p4g crystalline group. The
intriguing nature of this anomalous QTI (Wannier bands and
nested Wannier bands, as well as their evolution and transitions,
bulk–edge–corner correspondence and other properties) is ela-
borated detailedly in Supplementary Notes 1–10.

Interplay between symmetry and topology. To illustrate the
relation between symmetry and topology in our acoustic meta-
crystals, we study the topological phase transition for the second
acoustic gap, which is solely triggered by tuning the geometry of
the metacrystal. As shown in Fig. 2a, the continuous geometry
transition is as follows: first decrease the arch height h of the
arch-shaped scatterers to 0 (indicated by the first three struc-
tures), then reduce the arm length l of the scatterers (indicated by
the fourth structure), and finally increase the arm width w of the
scatterers (indicated by the fifth structure). During this trans-
formation, at h= 0, the symmetry of the SC undergoes a tran-
sition from the nonsymmorphic p4g group symmetry to
symmorphic C4v point group symmetry. We find that the topo-
logical transition for the second band gap takes place exactly at
such a geometry transition (indicated by the third structure),
which elegantly reveals the fundamental interplay between sym-
metry and topology.
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Fig. 1 Symmetry-protected hierarchy of anomalous topological multipoles in nonsymmorphic sonic crystals. a A bird’s-eye view of the 2D
nonsymmorphic sonic crystal cladded by plastic boards from below and above (not shown). The inset illustrates the unit-cell structure with four arch-
shaped scatterers made of photosensitive resin (an acoustically rigid material). b Acoustic bands and the hierarchy of multipole topological band gaps. The
dipole and (anomalous) quadrupole are quantized and protected by the glide symmetries in the p4g group. Inset: Brillouin zone. Symbols +/− represent
even/odd parity, respectively, at the Γ and X points in the Brillouin zone. c Gapped and nondegenerate Wannier bands for the anomalous quadrupole
topological gap. d Wannier bands for the sum (“1+ 2” and “4+ 3”) and difference (“1− 2” and “4− 3”) sectors. e Schematic illustration of the linear
combinations of the Wannier orbits in different sectors (“1+ 2” and “1− 2”), which respectively yield the dipole topology and the anomalous quadrupole
topology. Unit-cell geometry parameters are h= 0.21a, l= 0.42a, w= 0.1a, and a= 2 cm.
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The local density-of-states for the corner, edge, and bulk
regions (illustrated in the inset of Fig. 2b) can be used to reveal
the spectral features of the topological transition accompanying
the geometry transformation. The calculated densities-of-states
(see Supplementary Note 6 for calculation details) are presented
in Fig. 2b–f, corresponding to the five structures illustrated in
Fig. 2a. It is seen from Fig. 2b, c that the p4g SCs exhibit
distinguishable features of the quadrupole topological band gap:
the emergence of gapped edge states in the bulk band gap and the
sharp peak of corner states within the edge gap. At the transition
from the p4g nonsymmorphic symmetry to the C4v point group
symmetry, the bulk band gap closes and the corner states merge
into the bulk spectrum (see Fig. 2d). For the gapless case (Fig. 2e),
there is no spectral feature of the corner states. In the structure
with the trivial band gap (Fig. 2f), the edge density-of-states does
not exhibit a spectral gap and no corner state is found. Moreover,
outside the bulk band gap, the ratio between the corner, edge, and
bulk densities-of-states is around 0.1:0.6:1, which is the ratio
between the areas of the corner, edge, and bulk regions. Within
the bulk band gap, the ratio between the corner and edge states is
about the ratio between the areas of the corner and edge regions.
These observations indicate that the corner and edge densities-of-
states outside the bulk band gap are due to the extended bulk
states, whereas the corner density-of-states within the bulk band
gap is associated with edge states spreading into the corner
regions. The above spectral features verify that the second
acoustic band gaps of the C4v SCs do not support corner states
and thus indicate their distinct band topology compared with
the p4g SCs. Furthermore, as shown in the Supplementary Note 6,
the topological transition is also characterized by the close of the

Wannier gap as well as the band structure signatures (including
both calculation and comparable experimental results). These
results confirm the topological transition from the quadrupole
topological band gap to the trivial band gap.

Quadrupole topological edge and corner states. We now study
the anomalous quadrupole topology by directly measuring the
resultant edge and corner states in the second band gap. We first
measure the edge states induced by the quadrupole topology.
Unlike electronic states in tight-binding models, here the acoustic
waves propagate in the air regions among the plastic scatterers in
our SCs. To ensure a physical edge, we introduce an air channel
of width 0.25a between the SC and the hard-wall boundary made
of photosensitive resin. This method is commonly used in the
study of topological edge states in SCs31,32,35,40. The width of
such an air channel is so narrow that the waveguide effect of the
air channel (which can appear only for frequencies larger than
34 kHz) is excluded for the emergence of the edge states. In fact,
the edge and corner states emerge for other widths of the air
channel as well. For instance, for the SC in Fig. 1a the edge and
corner states emerge for the air channel of width ranging from
0.2a to 0.5a. This demonstrates that the emergence of the corner
states is insensitive to the width of the air channel. However, the
width of the air channel does affect the frequency of the corner
states. We determine the width of the air channel to ensure that
the corner states merge into the bulk bands precisely at the
topological transition point. In this way, the geometry effect of
the air channel on the topological phenomena is minimized.

The experimental dispersions of the edge states are derived from
the Fourier transformations of the measured frequency-dependent
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acoustic pressure profiles along the edge (see Methods). The
obtained edge dispersions agree fairly well with the calculation,
demonstrating the emergence of gapped edge states due to
quadrupole topology (Fig. 3a). In these measurements, the
acoustic pressure profiles for the edge states are detected under
the acoustic excitation from a point-like source located at the
middle of the edge (Fig. 3b). The simulated acoustic pressure
profile with a point source excitation under the same conditions is
presented in Fig. 3c for comparison. Although the acoustic energy
loss is ignored in the simulation, the measured dispersion of the
edge states still agrees well with the simulation results,
demonstrating that the effect of acoustic energy dissipation is
rather small in our experiments. The robustness of the edge states
against disorder is studied via numerical simulations in the
Supplementary Note 7. Interestingly, we find that the edge states
carry finite orbital angular momenta (OAM), which are
manifested in two complementary ways: the phase and energy-
flow distributions of the acoustic pressure fields. The phase
distributions exhibit phase singularities and phase vortices,
indicating finite OAM. The two edge states (labeled by the red
and blue dots in Fig. 3a), which are time-reversal partners, have
opposite phase winding properties, indicating opposite OAM. In
addition, the distributions of the energy flow of the acoustic
pressure fields (see Methods) also indicate the finite, opposite
OAM for those edge states. Figure 3a also shows that the
quadrupole topological gap ranges from 10.9 kHz to 15.7 kHz,

reaching a gap-to-mid-gap ratio of 37%. The edge band gap
ranges from 12.5 kHz to 15.3 kHz, with a band gap ratio of 20%.
These giant topological gaps lead to very strong wave confine-
ment and enhanced wave intensity for the edge and corner states.

We then measure the corner states in a box-shaped, finite-sized
structure where the SC is surrounded by hard-wall boundaries
(see the inset of Fig. 4a). The calculated acoustic spectrum near
the edge band gap is shown in Fig. 4a. Four degenerate acoustic
modes, with each of them localized at one of the four corners,
emerge in the edge band gap (Fig. 4b, c); this is an important
feature of the quadrupole topology8,9. The robustness of the
corner states against disorders is studied in detail in the
Supplementary Note 7.

To confirm the coexistence of the bulk, edge, and corner
states in our acoustic system, we measure the frequency-
resolved acoustic responses for three different types of
pump–probe configurations. We denote these pump–probe
configurations as the bulk probe, edge probe, and corner probe,
separately. They are illustrated in details in Fig. 4 (see the inset
of Fig. 4b). The measured transmission spectra for those
pump–probe configurations are shown in Fig. 4b, where we
normalize the data to set the peaks of the three curves to unity.
The peak of the corner probe lies within the spectral gap of the
edge probe, while the peaks of the edge probe lie in the spectral
gap of the bulk probe. These spectral features, which are
consistent with the calculated acoustic spectrum in Fig. 4a,
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agree well with the simulation of the pump–probe transmission
in the Supplementary Note 8, even though we do not include
the dissipation in the simulation. Such consistency demon-
strates again that the acoustic dissipation is very small in the
second acoustic band gap. All those results unambiguously
reveal the coexistence of the bulk, edge and corner states as
dictated by the multi-dimensional bulk–edge–corner corre-
spondence. In addition, the peak responses of the edge and
corner probes are much stronger than the peak bulk-response,
reflecting the enhancement of the acoustic field intensity at the
edges and corners due to the emergence of the edge and corner
states. Bearing in mind that the second band gap has vanishing
dipole polarization, these experimental observations are
regarded as the key features of the nontrivial quadrupole band
topology8,9 in our SC. Furthermore, we also measure the
acoustic pressure profile for one corner at the peak frequency of
the corner probe. The measured acoustic pressure profile
(Fig. 4c) agrees well with the theoretical acoustic pressure
profile obtained from the eigen-mode calculation (Fig. 4d). It is
noteworthy that only one corner is measured, as the four
corners are connected by the C4 rotation symmetry and are thus
equivalent (see Fig. 4d). Figure 4 shows only the absolute value
of the acoustic wavefunction, while the real-parts of the corner
wavefunctions from both experiments and simulation are
shown in the Supplementary Note 9. Together with the
pump–probe spectra, those measurements confirm that there
is only one localized mode at each corner within the edge band
gap, which is another important feature of the QTI8,9. It is
noteworthy that the measured transmission spectra in Fig. 4b

exhibit a small frequency blue-shift, compared with the
calculated acoustic spectrum in the 2D limit in Fig. 4a, which
can be associated with the small fabrication imprecision (about
±0.1 mm) and the quasi-2D nature of the experimental system.

Quantum spin Hall effect in the first band gap. We now show
that the lowest acoustic band gap (i.e., the dipole topological gap)
can mimic the quantum spin Hall effect (QSHE) and realize
acoustic helical edge states. The double degeneracy at the BZ
boundary induced by the glide symmetries provides an instru-
mental for mimicking pseudospin degeneracy in acoustic systems
which have no internal spin (polarization) degree of freedom. As
shown later, the acoustic pseudospins are emulated by the OAM
of acoustic waves. Following the band-inversion picture in the
Bernevig–Hughes-Zhang model for QSHE41, the nontrivial
topology of the quantum spin Hall insulator is characterized by
the parity inversion at the high-symmetry points in the BZ. In our
SCs, the band inversion can be controlled by rotating the scat-
terers around the center of each quarter of the unit-cell (see the
inset in Fig. 5a for the definition of the rotation angle θ). Differing
from Fig. 2, here, the rotation of the scatterers leads to a sym-
metry transition from the p4g group to the pgg group.

The parity eigenvalues of the lowest two acoustic bands at the Γ,
X, Y, and M points are shown in Fig. 5a, b. The parities at the
high-symmetry points in the BZ are used to determine the
topological properties of the lowest band gap6,7. We notice that
the parity eigenvalues at the Γ point do not change with the
rotation angle. Besides, the X (Y) point always has double
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degeneracy between two bands with opposite parities. The band
inversion with parity switch can take place only at the M point, as
shown in Fig. 5a. Such band inversion happens when the rotation
angles is an integer of 90°, where the odd- and even-parity bands
become degenerate (Fig. 5a, b). It is noteworthy that the flat
dispersion along the ΓX and MY directions at the rotation angle
θ= 90° are due to the fact that the scatterers overlap with each
other and form connected “hard walls” along the y direction and
forbid wave propagation along the x direction, making the
dispersion along kx flat. This feature, which disappears for smaller
scatterers, is not essential for the QSHE as shown in the
Supplementary Note 11.

Figure 5a gives the topological phase diagram for the first
acoustic band gap. For the rotation angle between 90° and 180°,
the band inversion at the M point gives rise to nontrivial band
topology (i.e., the acoustic QSHE). In contrast, for the rotation
angles between 0° and 90°, the parities at the Γ and M points are
the same, indicating trivial band topology. The former is regarded
as the topological phase because the Γ and M points have opposite
parities6,7 for 90° < θ < 180°. As the system always has the C2

symmetry, the topological phase diagram has a periodicity of
180°. We further employ a Hamiltonian analysis of the acoustic
bands near the M point using the k · p method, which reveals that
the above two phases are similar to the QSHE and trivial phases
in the Bernevig–Hughes–Zhang model42, respectively (see
Supplementary Note 12). An alternative topological theory for
the first band gap based on the concept of topological crystalline
insulators is presented in the Supplementary Note 13.

The helical edge states emerge in the lowest acoustic band gap
at the boundary between the SCs with distinct topology (i.e.,
QSHE and normal band gap), as shown in Fig. 5c. The calculated
and measured (using the same method as in Fig. 3) dispersions of

the acoustic edge states are consistent with each other. It is
noticed that the dispersions of the edge states are not well-
captured for the low-frequency part. The reason is that the
decreased group velocity of the edge states in the low-frequency
section leads to longer propagation time and stronger propaga-
tion loss and thus yields reduced fidelity of the recorded real-
space acoustic pressure profiles and the dispersions obtained from
the Fourier transformation of these profiles. The gapless nature of
the acoustic helical edge states is guaranteed by the glide
symmetry on the edge, which protects the double degeneracy at
the ky= π/a point (see Supplementary Note 14 for details)21. The
robustness of the edge states is elaborated via numerical
simulations in the Supplementary Note 15. The pseudospin-
momentum-locking feature of the edge states is illustrated in
Fig. 5d, where both the phase vortices and the rotating energy
flow in the acoustic pressure profiles indicate the finite OAM of
the edge states. The acoustic OAM emulates the pseudospins in
the acoustic helical edge states and the time-reversed states have
opposite pseudospins. In addition, simulation also confirms that
the edge states support one-way transport when excited by
acoustic sources with finite OAM (i.e., pseudospin-selective
excitations; see Supplementary Note 16).

Discussion
Beside its significance in fundamental science, the discovery of
symmetry-protected hierarchy of topological multipoles in non-
symmorphic metacrystals also sheds light on material science. As
our symmetry-based approach can realize multipole topological
band gaps without engineering to a target tight-binding model, it
greatly reduces the difficulties and opens more possibilities in
realizing multipole topological phenomena and in exploiting such
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phenomena for the practical applications, such as integrated
topological waveguides (edge states) and cavities (corner states).
Multiplexing topological phenomena in the two topological band
gaps can considerably increase the capacity of topologically-
protected information processing in a single chip. With the
additional advantage that the topological band gaps can be very
large, our symmetry-based approach provides an appealing
pathway toward multipole topological insulators, which can be
generalized to other physical systems (e.g., photonic systems). In
addition, our study establishes a bridge between subwavelength
metamaterials (artificial functional materials that are useful for a
broad range of applications) and topological multipole moments
without relying on tight-binding pictures, which are often absent
in such metamaterials. When generalized to 3D systems, our
symmetry-based approach may offer a possible route towards
octupole topological insulators, a novel topological state of matter
yet to be discovered.

Methods
Experiments. Our SCs consist of arch-shaped scatterers made of photosensitive
resin (modulus 2765MPa, density 1.3 g cm−3). A stereo lithography apparatus
(with a fabrication tolerance of roughly 0.1 mm) is utilized to fabricate the samples.
The vertical height of the sample is 1 cm. Two boards made of photosensitive resin
are used for cladding from the top and the bottom of the sample to form quasi-2D
acoustic systems for the frequency range of interest (i.e., <20 kHz). The measured
edge-state dispersions are obtained by the following procedure. We first scan the
acoustic pressure field distribution along the edge for mono-frequency excitations.
An acoustic transducer is placed under the sample to generate acoustic waves,
which are further guided into the sample through an open channel (with a dia-
meter of 4 mm) at the bottom of the waveguide. The channel is located at the
center of the edge (marked by the red star in Fig. 3b). An acoustic detector (B&K-
4939 1/4 inch microphone), whose position can be controlled by an automatic
stage, is used to probe the spatial dependence of the acoustic pressure from a
circular open window (with a diameter slightly larger than the detector) on the top
of the cladding layer. The data are collected and analyzed by a DAQ card (NI PCI-
6251). The measured acoustic pressure profiles at different frequencies are then
Fourier-transformed to obtain the edge-state dispersions. The Fourier transfor-
mation is implemented by using the Matlab built-in function fft. The transmission
measurements are performed using a similar set-up, but with fixed positions of the
source and the detector when the frequency is varied.

In the experimental measurements, the upper board of the waveguide (which is
attached to an automatic stage) is required to be able to move freely, but without
affecting the stabled samples, to record the acoustic pressure filed data. To
accomplish this goal, we leave a tiny air gap (about 1 mm) between the upper board
and the samples below it. This treatment might affect our measurements and could
be another reason (additional to the fabrication imperfection) that the
measurements are slightly deviated from the simulations on frequencies. In
addition, the condition for the environment atmosphere that varies upon weather
change might also affect the sound speed and the air mass density and is the third
reason to the frequency shift between the experiments and the simulations.

The transmission spectra presented in Fig. 4b are normalized by the maximum
of each measurement (i.e., the bulk probe, edge probe, and corner probe,
respectively), so that they can be plotted at the same quantitative scale. The
original, unnormalized transmission spectra are presented separately in the
Supplementary Note 8. We find that the corner probe yields a much stronger
signal, more than 80 times stronger than the bulk probe, indicating very strong
enhancement of the acoustic wave intensity due to the strongly localized
subwavelength corner mode.

Simulation. Numerical simulations are performed using a commercial finite-
element simulation software (COMSOL MULTIPHYSICS) via the acoustic mod-
ule. The resin objects are treated as hard boundaries. In the eigen-value calcula-
tions, the Floquet periodic boundaries are implemented. The projected band
structures of the ribbon-like supercells and the band spectrum of the box-shaped
supercell are calculated by setting the truncation boundaries as hard boundaries.
For the simulated acoustic-pressure distributions of the edge and corner states, the
frequency-domain study is performed. A point source, located at the center of the
edge (near the corner), is utilized to excite the edge (corner) states. The energy flow
is calculated through the time-averaged Poynting vector of the acoustic fields,
following S ¼ �ð4πρf Þ�1jPj2∇φ, where ρ is the density of air, f is the eigen-
frequency, and |P| and φ are the amplitude and the phase of the acoustic pressure
profile, respectively.

Code availability
We use the commercial software COMSOL MULTIPHYSICS to perform the simulation
and calculations. Request to the details can be addressed to the corresponding authors.

Data availability
The data that support the findings of this study are available from the corresponding
authors upon reasonable request.
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