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Magic of high-order van Hove singularity
Noah F.Q. Yuan 1, Hiroki Isobe1 & Liang Fu1*

The van Hove singularity in density of states generally exists in periodic systems due to the

presence of saddle points of energy dispersion in momentum space. We introduce a new

type of van Hove singularity in two dimensions, resulting from high-order saddle points and

exhibiting power-law divergent density of states. We show that high-order van Hove sin-

gularity can be generally achieved by tuning the band structure with a single parameter in

moiré superlattices, such as twisted bilayer graphene by tuning twist angle or applying

pressure, and trilayer graphene by applying vertical electric field. Correlation effects from

high-order van Hove singularity near Fermi level are also discussed.
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The recent discovery of unconventional insulating states and
superconductivity in twisted bilayer graphene (TBG)1,2 has
attracted enormous interest. At ambient pressure, these

intriguing phenomena of correlated electrons only occur near a
specific twist angle θ � 1:1�, widely referred to as the magic
angle. The existence of such a magic angle was first predicted
from band structure calculations. Based on a continuum model3,4,
Bistritzer and MacDonald showed5 that the lowest moiré bands in
TBG become exceptionally flat at this magic angle, and are hence
expected to exhibit strong electron correlation. This pioneering
work inspired a large body of experimental works in recent years,
which culminated in the discovery reported in refs. 1,2. The origin
of magic-angle phenomena, i.e., the emergence of super-
conductivity and correlated insulator, is now under intensive
study6–25.

While the reduction of bandwidth is undoubtedly important, it
is evident that the phenomenology of magic-angle TBG cannot be
ascribed to a completely flat band. Quantum oscillation at low
magnetic fields reveals doping-dependent Fermi surfaces within
the narrow moiré band. Detailed scanning tunneling spectroscopy
(STS) studies26–28 and compressibility measurements29 show that
the moiré bandwidth at a magic angle is a few tens of meV, larger
than what previous calculations found5,30–35. Moreover, there is
no direct evidence from existing STS measurements at various
twist angles that the moiré band is exceptionally flat right at the
magic angle (see also ref. 28). These experimental results moti-
vated us to consider additional feature of electronic structure
which may create favorable condition for correlated electron
phenomena in magic-angle TBG.

One such feature is the van Hove singularity (VHS) in moiré
bands. The importance of VHS has already been recognized in
our theory of correlated TBG36,37 and related studies38–44 using
the weak coupling approach. Generally speaking, VHS with
divergent density of states (DOS) in two-dimensional systems are
associated with saddle points of energy dispersion in k space.
When a VHS is close to Fermi energy, the increased DOS
amplifies electron correlation, resulting in various ordering
instabilities, such as density wave and superconductivity at low
temperature36. Indeed, the two recent STS measurements on gate-
tunable TBG around magic angle26,27 find that when the VHS

shifts to the Fermi level under gating (the corresponding density
is within 10% of half filling), the VHS peak in tunneling density of
states splits into two new peaks (see also ref. 45). These findings
clearly demonstrate the prominent role of VHS in magic-angle
TBG. However, it is also known from general consideration and
previous STS measurements46–48 that VHS are present at all twist
angles. It is therefore unclear whether VHS at magic angle is
anything special.

In this work, we propose a new perspective that relates magic
angle to a new type of VHS in the single-particle energy spectrum
of TBG. We show that as the twist angle decreases below a critical
value θc, the van Hove saddle point—which marks the change of
topology in Fermi surface (Lifshitz transition)—undergoes a
topological transition whereby a single saddle point splits into
two new ones. Right at θc, the saddle point changes from second-
order to higher-order; the DOS at VHS is significantly enhanced
from logarithmic to power-law divergence, which promises
stronger electron correlation. We propose that proximity to such
“high-order van Hove singularity”, which requires tuning to the
critical twist angle or pressure, is an important factor responsible
for correlated electron phenomena in TBG near half filling.

We demonstrate by topological argument that high-order VHS
can be generally achieved by tuning the band structure with just a
single control parameter. For TBG, besides twist angle, pressure
can also induce superconductivity at a twist angle larger than
1:1�49. By tracking the evolution of the moiré band with twist
angle and pressure, we locate the high-order VHS in experi-
mentally relevant parameter regime and predict its key feature, a
distinctive asymmetric peak in DOS. This feature compares well
with the experimentally observed VHS peak in magic-angle TBG,
as shown in Fig. 1. We also discuss the splitting of VHS peak by
nematic or density wave order.

Results
Ordinary and high-order VHS. In two-dimensional (2D) elec-
tron systems with energy dispersion EðkÞ, an ordinary VHS with
logarithmically diverging DOS occurs at a saddle point ks,
determined by

∇kE ¼ 0 and detD < 0; ð1Þ
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Fig. 1 Theoretical fit to the tunneling conductance measurement26. a Open circles are tunneling conductance G of twisted bilayer graphene at twist angle
1:10�, and solid lines are fitting according to Eq. (5) with details given in the Supplementary Material Sec. I. Dashed lines denote singularity energies,
indicating the asymmetry of conductance peaks. b The peak at Ev ¼ 16:72meV plotted in logarithmic scales. Electron and hole sides of the peak fall into
two parallel lines with the same slope �1=4 and asymmetry ratio η ¼ 1:32 � ffiffiffi

2
p

. The only parameter in b is the background offset Gc ¼ 57:6 nS.
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where Dij � 1
2 ∂i∂jE is the 2 ´ 2 Hessian matrix of E at ks. Since D

is symmetric by definition, we can rotate the axes to diagonalize D
and Taylor expand the energy dispersion near ks as
E � Ev ¼ �αp2x þ βp2y , where Ev is the VHS energy, the
momentum p ¼ k � ks is measured from the saddle point, and
the coefficients �α, β are the two eigenvalues of D with
�αβ ¼ detD < 0. This dispersion describes two pieces of Fermi
contours that intersect at the saddle point ks. It is known from a
topological consideration that due to the periodicity of EðkÞ on
the Brillouin zone (a torus), van Hove saddle points appear quite
generally in energy bands of two-dimensional materials50.

We now introduce the concept of high-order VHS associated
with a high-order saddle point defined by the following condition:

∇kE ¼ 0 and detD ¼ 0; ð2Þ

which imply αβ ¼ 0. There exist two types of high-order VHS.
The first type corresponds to α ¼ β ¼ 0, i.e., D ¼ 0. The Taylor
expansion of EðkÞ around such saddle point then starts from at
least the third order, and describes an intersection of three or
more Fermi surfaces at a common k point51. Such high-order
VHS (type-I) is also referred to as multicritical VHS in the recent
literature52–54.

Here we focus instead on a new type of high-order VHS
relevant for TBG, where the Hessian matrix D has a single zero
eigenvalue (β ¼ 0), while the other eigenvalue is nonzero (α ≠ 0).
Then in the Taylor expansion of EðkÞ, besides the single second-
order term α we must also include higher order terms in order to
capture the Fermi contours nearby. Importantly, unlike the
previous case, type-II high-order VHS still describes the touching
of two Fermi surfaces, but they touch tangentially (generally
speaking) rather than intersect at a finite angle as in the case of
ordinary VHS.

VHS in TBG. We now turn to VHS in TBG, whose low-energy
moiré bands arise from inter-layer coupling of Dirac states on the
two graphene layers. Since single-particle scattering between K
and K0 points requires large momentum transfer, it is suppressed
at small twist angles due to the long wavelength of moiré
potential. In the absence of valley hybridization, the moiré bands
from K and K0 valleys are decoupled3–5,55, with energy disper-
sions denoted by EþðkÞ and E�ðkÞ, respectively. Time-reversal
symmetry implies E�ðkÞ ¼ Eþð�kÞ, so it suffices to consider
EþðkÞ only in the following.

The number and location of VHS points in TBG depend on the
twist angle. For example, the band structure calculation for
θ ¼ 2�56 reveals the existence of three symmetry-related van
Hove saddle points on ΓM lines in the mini-Brillouin zone
(MBZ), shown in Fig. 2a. Across the VHS energy, the Fermi
contour changes from two disjoint Dirac pockets around MBZ
corners to a single pocket enclosing the MBZ center. This leads to
the conversion between electron and hole charge carriers, as
evidenced by the sign change of Hall coefficient56. On the other
hand, at θ ¼ 1:05�, on each ΓM line there is a local energy
maximum—instead of saddle point—in the moiré valence band.
As doping increases, an additional hole pocket (not present at
θ ¼ 2�) emerges out of each energy maximum and eventually
intersects two Dirac pockets at two new saddle points on opposite
sides of ΓM32. In such band structure there are a total of 6 VHS
points, shown in Fig. 2c.

By continuity, we deduce from this change in the number of
VHS points that a topological transition of saddle points must
occur, at a hitherto unknown critical twist angle, in such a way
that a saddle point on ΓM (denoted by Λ0) splits into a pair of
new ones off ΓM (denoted by Λ± ). Importantly, the behavior of

these VHS points in the vicinity of this transition is solely
governed by the local energy dispersion near Λ0.

We now expand EðkÞ near Λ0 to higher orders:

E � Ev ¼ �αp2x þ βp2y þ γpxp
2
y þ κp4y þ ¼ ; ð3Þ

where px (py) is parallel (perpendicular) to ΓM line. In the
expansion (3), first-order terms vanish because Λ0 has by
definition zero Fermi velocity. Moreover, only even power terms
of py are allowed because of the two-fold rotation symmetry of
TBG, which acts within each valley and maps ðpx; pyÞ to
ðpx;�pyÞ. The third-order γ term and fourth-order κ term are
essential to describe the splitting of VHS across the transition,
which we shall show below along with the relation to scaling
properties.

The behavior of VHS and Fermi contour of the energy
dispersion (3) depends crucially on the sign of β. For β > 0, p ¼ 0
(i.e., Λ0) is an ordinary van Hove saddle point with logarithmic
divergent DOS. The Fermi contour at the VHS energy consists of
two curves that approach straight lines py=px ¼ ±

ffiffiffiffiffiffiffiffi
α=β

p
as

p ! 0, intersecting at a finite angle φ ¼ 2 arctanð ffiffiffiffiffiffiffiffi
β=α

p Þ as
shown in Fig. 2d. This behavior corresponds to the VHS in the
calculated band structure of TBG at θ ¼ 2�. When β ! 0þ, φ !
0 so that the two Fermi contours at the VHS energy tend to touch
tangentially. On the other hand, for β < 0, p ¼ 0 becomes a local
energy maximum, while two new saddle points appear at
momenta

Λ± ¼ ð�βγ=~γ2; ±
ffiffiffiffiffiffiffiffiffiffiffiffi
�2αβ

p
=~γÞ ð4Þ

whose energy is shifted from Ev by δ ¼ �αβ2=~γ2 < 0, where
~γ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γ2 þ 4ακ
p

. Throughout this manuscript we consider the
regime γ2 þ 4ακ > 0 so that ~γ is always real and positive, and two
split saddle points Λ± are well-defined. Λþ and Λ� are a pair of
ordinary VHS points related by two-fold rotation, whose Fermi
contours are two parabolas 2αðpx � β=~γÞ ¼ ðγ±~γÞp2y , see Fig. 2f.
This behavior corresponds to the VHS in the calculated band
structure at θ ¼ 1:05�. In the limit β ! 0�, Λ± approaches Λ0.

Our unified description of two regimes of ordinary VHS (Λ0
and Λ± ) using a single local energy dispersion (3) implies that the
transition between them corresponds to the sign change of β. In
this process, energy contours at VHS changes from intersecting at
one point Λ0 (Fig. 2d and e) to two points Λ± (Fig. 2f). Right at
β ¼ 0, p ¼ 0 becomes a high-order VHS point. The Fermi
contour in its vicinity consists of two parabolas 2αpx ¼ ðγ± ~γÞp2y ,
touching each other tangentially at p ¼ 0. In the special case with
κ ¼ 0, one of the parabolas become a straight line, as shown in
Fig. 2e.

The DOS can be used as an indicator of this topological
transition of VHS. For the energy dispersion (3), we find the DOS
analytically

ρðEÞ ¼ �1
π

Im
Z

d2p

ð2πÞ2
1

E þ i0þ � EðpÞ

¼ sgn ðαβÞffiffiffi
2

p
απ2

Re
1ffiffiffiffiffi
z�

p K 1� zþ
z�

� �
� 2iffiffiffiffiffi

zþ
p K

z�
zþ

� �
Θð�αβÞ

" #
;

ð5Þ
where z ± ¼ ðβ=αÞ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðβ=αÞ2 þ ε

q
and ε ¼ ~γ2ðE � EvÞ=α3 is

energy deviation from VHS in dimensionless unit. The integra-
tion over p is extended to infinity. Here KðzÞ is the complete
elliptic integral of the first kind, sgnðrÞ is the sign function
defined as sgnðrÞ ¼ �1 for r < 0 and 1 for r � 0, and ΘðrÞ �
1
2 ½1� sgnð�rÞ� is the step function so that Θð0Þ ¼ 0.
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The DOS with different β in Eq. (5) are shown in Fig. 3a. In the
following we will discuss the asymptotic behavior of the DOS
near ordinary and high-order VHS. When α > 0 and β ≠ 0, the
DOS diverges logarithmically at ordinary VHS:

ρðEÞ ¼ 1

4π2
ffiffiffiffiffiffiffiffi
αjβjp ´

log Λ
jE�Ev j β> 0ffiffiffi

2
p

log Λ
jE�Ev�δj β< 0

(
ð6Þ

where Λ ¼ 64αβ2=~γ2 is the high-energy cutoff. In the limit
β ! 0, the prefactor in Eq. (6) diverges as 1=

ffiffiffiffiffiffijβjp
, indicating a

strong increase of DOS as the VHS approaches a high-order one.
Right at the transition point β ¼ 0, we find power-law divergent
DOS near high-order VHS

ρðEÞ ¼ Cffiffiffiffiffiffiffiffiffi
4α~γ24

p ´
ðE � EvÞ�

1
4 E >Evffiffiffi

2
p ðEv � EÞ�1

4 E <Ev

(
ð7Þ

where C ¼ ð2πÞ�5
2Γð14Þ

2 ¼ 0:133. This power-law divergence with
exponent �1=4 is stronger than the logarithmic divergence at
ordinary VHS. Another key difference is that the diverging part of
DOS around this high-order VHS is inherently asymmetric with
respect to Ev, as reflected by the

ffiffiffi
2

p
factor in Eq. (7). This is in

contrast with ordinary VHS where the DOS above and below are
asymptotically symmetric. Using Eq. (5), we can fit the
experimental data of tunneling conductance in ref. 26 with finite
broadening, as shown in Fig. 1a and Supplementary Material
Sec. I.

At the high-order VHS (β ¼ 0), the dispersion has the
following scaling invariance

Eðλ1
2px; λ

1
4pyÞ ¼ λEðpx; pyÞ ð8Þ

with arbitrary λ > 0. Here we set Ev ¼ 0 for simplicity. Including
higher order terms or the third and fourth order terms other than
γ; κ in Taylor expansion (3) will break scaling invariance (8).
Notice that the scaling dimensions along px and py directions are
different ½px� ¼ 1

2 ; ½py� ¼ 1
4, with scaling dimension of energy

½E� ¼ 1. From the scaling invariance (8) we immediately obtain
the scaling dimension of DOS as ½ρ� ¼ ½px� þ ½py� � ½E� ¼ � 1

4, the
same as Eq. (7). To directly reveal the power-law behavior of
experimental data, in Fig. 1b we plot energy deviation jE � Evj
and experimental DOS including background contribution both
in logarithmic scale. In the log-log plot, two sides of the high-
order VHS peak form two parallel lines with the same slope
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�1=4, and the particle-hole asymmetry ratio is 1.32 close to
ffiffiffi
2

p
,

which are both consistent with Eq. (7).
Besides α and β, the Fermi contours in momentum space

depend on both γ and κ, while the DOS in energy domain
depends only on ~γ. This is because the same scaling dimension of
px and p2y allows the nonlinear transform

~px ¼ px �
γ

2α
p2y ; ~py ¼ py; ð9Þ

under which the dispersion (3) becomes E � Ev ¼ �α~p2xþ
β~p2y þ ~γ2~p4y=ð4αÞ. The nonlinear transform (9) changes the shape
of Fermi contours while it preserves area element and hence
leaves DOS in Eq. (5) invariant.

We have thus established by continuity argument the
existence of high-order VHS in the moiré band of TBG at a
certain critical twist angle θc. The value of θc depends on the
model we employ. As an illustrative example, we consider the
continuum model3–5,32 of TBG, where approximate particle-
hole symmetry holds, and the Fermi surface topology is solely
determined by two dimensionless parameters
g ¼ λu=v; g 0 ¼ λu0=v. Here u and u0 denote interlayer hoppings
in AA and AB regions respectively, v is the monolayer Dirac
velocity and λ is the moiré wavelength. We further fix the ratio
g 0=g ¼ u0=u ¼ 1:2 as calculated for corrugated structure at
θ 	 1�32. At given g 2 ½1; 2�, we calculate the Taylor coefficients
α; β; γ; κ by numerical derivatives of energy with respect to
momentum at VHS on the hole side, and the result is shown in
Fig. 3b. It can be found that γ2 þ 4ακ is always positive when
g 2 ½1; 2�, and across gc � 1:995, β changes sign (Fig. 3b inset)
while α; γ; κ do not. With appropriate and reasonable values of
u and v, from gc we can obtain the critical twist angle θc � 1�,
consistent with experiments. Details of continuum model can
be found in the Supplementary Material Sec. II. We may
include more ingredients such as lattice relaxation31,57,58 and
strain59 to better describe TBG, thus the Fermi surface topology
will depend on more details of the model. Nevertheless, the
existence of high-order VHS and critical twist angle θc is
robust59.

Many-body phenomena near high-order VHS. When chemical
potential is near high-order VHS, many-body effects can be
drastic as the strongly diverging DOS leads to divergences in
noninteracting susceptibilities of various channels. This signals a
strong tendency to various broken symmetry states around van
Hove filling, when electron-electron interaction is taken into
account. Indeed, the recent STS measurements found that when
the Fermi energy approaches the van Hove energy under doping,
the VHS peak in DOS splits into two new ones26,27.

A detailed analysis of interacting electrons near high-order
VHS is beyond the scope of this work. Instead we discuss two
possible scenarios for the observed splitting of the VHS peak near
the Fermi energy.

First, strains in experimental samples can split DOS peak by
breaking rotation symmetries which relate VHS along different
directions. Though the energy splitting due to strain may be small
at single-particle level, Coulomb interaction U can give rise to the
Stoner-type enhancement factor ð1� UχsÞ�1 within the random
phase approximation (RPA). Since the noninteracting suscept-
ibility χs reflects the divergent DOS, strain effect on high-order
VHS can be greatly enhanced by interaction.

Second, an intervalley density wave order can split a DOS peak
by spontaneously breaking translation symmetry. To show such a
density wave instability, we calculate intervalley susceptibility
χðqÞ with finite momentum q. There are in total six high-order
VHS from two valleys, located at three ΓM lines (Fig. 4a). When

we consider two high-order VHS along the same ΓM line but
from opposite valleys, χðqÞ is sharply enhanced near wave vector
q ¼ Q due to the power-law divergent DOS from both valleys,
where Q ¼ 2ks is the momentum separation between the two
VHS (Fig. 4a). As a result, when approaching low temperatures,
the intervalley susceptibility χðQÞ of high-order VHS diverges
more rapidly than logarithm (Fig. 4b), indicating a stronger
tendency toward density wave instability than one with ordinary
VHS. The DOS peak at VHS energy Ev is split into two in the
presence of intervalley density wave (Fig. 4c).

Discussion
To summarize, we propose that the proximity to high-order
VHS underlies correlated electron phenomena in TBG near
magic angle. We reveal a distinctive feature of high-order VHS
—power-law divergent DOS with an asymmetric peak,
which compares well with the recent STS data on magic-angle
TBG. We also discuss nematic and density wave instabilities
due to electron-electron interaction near van Hove filling,
and illustrate the splitting of VHS in these broken symmetry
states.

It is worth examining the similarity and difference between the
two scenarios favoring correlated electron phenomena in TBG:
flat band5 and (high-order) VHS. Both scenarios rely on large
DOS enhancing electron correlation. Obviously, the largest pos-
sible DOS is realized in the limit of a completely flat band60.
However, a completely flat band is difficult to achieve under
realistic conditions. On the other hand, the VHS scenario is more
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likely to be relevant when the bandwidth is not so small in
comparison to electron interaction. In this scenario, the DOS near
Fermi energy matters more than those far away, and it is further
increased by proximity to high-order VHS. Importantly, to
achieve high-order VHS generally requires tuning the band
structure with only a single parameter, whereas to achieve a
completely or extremely flat band usually requires more fine
tuning.

Broadly speaking, moiré superlattices in 2D materials offer an
unprecedented platform for studying correlated electron phe-
nomena near VHS. Electrostatic gating enables doping these
systems to van Hove filling without introducing disorder. The
great tunability of moiré band structure by twist angle, electric
field, strain and other means grants access to high-order VHS,
where the strongly divergent DOS promises a plethora of many-
body phenomena. Such examples include TBG discussed in the
maintext and trilayer graphene on boron nitride discussed in
Supplementary Material Sec. III. The time is coming for creating
strong electron correlation by designing single-particle dispersion
around VHS.

Methods
Fitting of tunneling conductance peaks. In Eq. (5) we assume the dispersion (3)
extends to the whole momentum space, which holds only for a finite momentum
range in realistic systems. Assuming the dispersion over the whole momentum
space as Ep, whose Taylor expansion is Ep in the finite momentum range jpj < Λ,
we find the total DOS of such dispersion can be written as

ρtotðEÞ ¼
Z

d2p

ð2πÞ2 δðE � EpÞ ¼ ρðEÞ þ ρc; ð10Þ

where ρðEÞ is Eq. (5) if the Taylor expansion is Eq. (5), and ρc is the background
contribution

ρc ¼
Z

jpj>Λ

d2p

ð2πÞ2 ½δðE � EpÞ � δðE � EpÞ�: ð11Þ

When DOS of the tip is featureless, the tunneling conductance from the tip to
the sample will be proportional to the total DOS ρtot of the sample. There are two
distinct types of divergent DOS and hence conductance peaks in this work and also
in experimental data. The first type is due to ordinary VHS, which is symmetric
and logarithmic, and another type is due to high-order VHS, which is intrinsically
asymmetric and power-law. These two types of conductance peaks follow different
functional forms as follows (o denotes ordinary VHS and h denotes high-order
VHS)

GoðEÞ ¼ A ´ logjE� Evj � Gc; ð12Þ

GhðEÞ ¼ A ´ReðEv � EÞ�1
4 � Gc; ð13Þ

each with three parameters A;Ev and Gc . Among them, Ev denotes the energy of
conductance peak, and Gc is the background contribution.

In Fig. 1b, we plot conductance data G near the peaks at twist angle 1:10� ,
where energy and conductance are both plot in logarithmic scale. Since the VHS is
high-order, conductance peak is asymmetric and power-law, two sides of the peak
will follow two parallel lines with the same slope −1/4 but different vertical
intercepts.

We make the substitution E ! E þ iη in the expressions above of tunneling
conductance to describe broadening effect. The two sides of the DOS peak of
ordinary VHS are broadened in the same way, while the two sides of the DOS peak
of high-order VHS are broadened differently due to the intrinsic particle-hole
asymmetry. As a result, after broadening, Ev coincides with the DOS peak energy
Em when VHS is ordinary, while for high-order VHS, Ev can deviate from Em as
shown in Fig. 1a.

Mean-field Hamiltonian of interacting high-order VHS. With finite intervalley
density wave order parameter Δ, the low-energy Hamiltonian of two high-order
VHS on the same ΓM line can be written as HðpÞ ¼ Ev � αp2x þ κp4y þ γpxp

2
yτz þ

Δτx ; where Pauli matrices τ act on the valley indices. From this Hamiltonian
Fig. 4c is plotted, with order parameter Δ ¼ 0:01E0 and broadening
η ¼ 5 ´ 10�3E0.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.
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