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Enhancing the dipolar coupling of a S-T0 qubit
with a transverse sweet spot
J.C. Abadillo-Uriel 1*, M.A. Eriksson1, S.N. Coppersmith 1,2 & Mark Friesen 1

A fundamental challenge for quantum dot spin qubits is to extend the strength and range of

qubit interactions while suppressing their coupling to the environment, since both effects

have electrical origins. Key tools include the ability to take advantage of physical resources in

different regimes, and to access optimal working points, sweet spots, where dephasing is

minimized. Here, we explore an important resource for singlet-triplet qubits: a transverse

sweet spot (TSS) that enables transitions between qubit states, a strong dipolar coupling, and

leading-order protection from electrical fluctuations. Of particular interest is the possibility of

transitioning between the TSS and symmetric operating points while remaining continuously

protected. This arrangement is ideal for coupling qubits to a microwave cavity, because it

combines tunability of the coupling with noise insensitivity. We perform simulations with

1=f -type electrical noise, demonstrating that two-qubit gates mediated by a resonator can

achieve fidelities >99% under realistic conditions.
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Recent advances in semiconducting spin qubits1,2 have
enabled single-qubit gates with high fidelities3–7, and two-
qubit exchange-based gates8–12 with fidelities >94%13.

While these exchange gates are relatively fast, their interaction
range is limited—typically to nearest neighbors. One method for
increasing the interaction range is to insert an intermediary
coupler, such as a superconducting microwave cavity14–20.
However, strong qubit-resonator couplings have been difficult to
realize, due to the small magnetic dipole of the spins21–23, which
results in slow qubit gates. A common strategy for enhancing this
coupling involves hybridizing the spin and charge degrees of
freedom via the spin-orbit interaction, which arises naturally in
GaAs, and can be induced by micromagnets in Si24,25. In this
way, strong coupling has been achieved in both GaAs and Si26–28.
However the gates are still slow and susceptible to electrical
(charge) noise, motivating a search for alternative methods to
enhance the qubit charge dipole, as well as sweet spots to suppress
the effects of noise.

For singlet-triplet spin qubits29–31, a useful sweet spot has been
identified in the S-T� subspace32. For the S-T0 qubit, recent
attention has focused on a sweet spot known as the symmetric
operating point (SOP), due to its favorable coherence
properties33,34. The position of the SOP—as far as possible from
the (2, 0)-(1, 1) or (1, 1)-(0, 2) charging transitions—reduces its
sensitivity to charge noise, but also suppresses its charge dipole
moment. In this regime, the weak dipole coupling is mainly
longitudinal in form35,36, enabling Z rotations and two-qubit
CPHASE gates. In contrast, the charge dipole increases near a
charging transition—particularly its transverse component,
enabling X rotations and two-qubit iSWAP gates. In this regime,
when the inter-dot Zeeman energy difference (or gradient) ΔB ¼
gμBðBL � BRÞ is larger than the tunnel coupling, the transverse
coupling can dominate over the longitudinal coupling37–40;
however, the qubit also becomes more sensitive to charge noise.

In this work, we investigate a family of sweet spots, with strong
transverse couplings, located far from the SOP. We show that
these transversely coupled sweet spots (TSS) represent an inter-
esting working regime for singlet-triplet qubits that can be
exploited to perform high-fidelity single-qubit gates with AC
electrical driving fields, or to enable capacitively coupled two-
qubit gates. (Here, we focus on two-qubit gates mediated by a
superconducting cavity.) We describe protocols for one and two-
qubit gate operations that provide constant noise protection, even
while transitioning between operating points. This allows us to
take advantage of the resources available in different working
regimes, and greatly enhances the toolbox for operating singlet-
triplet qubits.

Results
TSS and SOP sweet spots. We initially assume that the global
magnetic field B is large enough that the polarized triplet states
may be ignored. We include the polarized triplets later; however,
the simpler model serves to illustrate the key physics. We
restrict our analysis to Si parameters. In this case, the
Hubbard Hamiltonian of a singlet-triplet qubit in the basis
f Sð1; 1Þj i; T0ð1; 1Þj i; Sð0; 2Þj i; Sð2; 0Þj ig is given by41

HST ¼

0 ΔB
ffiffiffi
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where τ is the tunnel coupling between the two sides of the
double dot (Fig. 1), ε is the detuning between dots, and U is the
charging energy for doubly occupied states. Here we define ε ¼ 0

as the position of the Sð1; 1Þj i– Sð0; 2Þj i charging transition, with
the SOP located at ε ¼ �U .

A typical energy level diagram for HST is shown in Fig. 2a for
τ ≳ΔB (solid lines); here we have assumed large values of τ and
ΔB to help visualize the key features of the plot. In this regime,
the qubit energy splitting, _ωq ¼ E1 � E0, has positive curvature
and there is only one sweet spot, located at the SOP (Fig. 2b).
Here, the qubit states are largely unperturbed from Sð1; 1Þj i and
T0ð1; 1Þj i. In contrast, when τ falls below a critical value,
τcrit � 1:37ΔB, a dip emerges in the energy dispersion near
ε ¼ 0, representing a sweet spot—the TSS. In this case, the
energy levels become strongly hybridized and bent (dashed lines
in Fig. 2a), yielding eigenstates that resemble "#j i and #"j i. (Note
that mirror-symmetric features are also observed near ε ¼ �2U .
However, since we focus here on the regime near ε ¼ 0, the
magnitude of U and the presence of Sð2; 0Þj i have almost no
effect on the results reported below. For convenience, we
therefore set U ¼ 3 meV and ignore it for the remainder of this
work.) When τ � τcrit, it is not obvious which type of behavior
will dominate: τ-like behavior (positive dispersion curvature) or
ΔB-like behavior (a TSS). Interestingly, for a small range of
τ � τcrit, both features are present, resulting in the emergence of
an additional peak feature in the energy dispersion (Fig. 2b, lower
inset), which we refer to as the alternative transverse sweet spot
(ATSS). As its name indicates, the ATSS also has a transverse
coupling, and its position on the ε axis may occur anywhere
between the SOP and the TSS, depending on the value of τ
(Fig. 2b, upper inset). At a second critical value of τ, τSSS �ffiffiffiffiffiffiffiffi

3=2
p

ΔB � 1:22ΔB (the super sweet spot), the ATSS merges
with the SOP. For τ < τSSS, the curvature of the energy dispersion
at the SOP becomes negative, and only two sweet spots remain—
the SOP and the TSS.

The extent to which the TSS, ATSS, and SOP sweet spots are
protected from charge noise depends on the flatness of the energy
dispersion, which is determined in part by the order of the sweet
spot: a sweet spot is classified as nth-order if ∂mωq=∂ε

m ¼ 0 for
all m � n. The SOP is a first-order sweet spot. However in
Supplementary Note 1 (See Supplementary Materials for details),
we show that higher derivatives of the energy dispersion can be

BL BR

g0

ΔB

τ

ε

ωr

Fig. 1 Double-dot device schematic, including an optional coupling to a
superconducting microwave resonator. A singlet-triplet qubit is formed in
a double dot containing two electrons. ε is the detuning between the two
sides of the device, τ is the corresponding tunnel coupling, ΔB is the
Zeeman energy associated with the inter-dot magnetic field difference (or
gradient), and g0 is the optional capacitive coupling between a qubit
plunger gate and the anti-node of a resonator of frequency ωr , which can be
used to mediate two-qubit gate operations.
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very small, in terms of the parameter ðΔB=UÞm � 1, yielding an
approximate ninth-order sweet spot when τ ¼ τSSS (and an exact
third-order sweet spot), which accounts for the extreme flatness
of the energy dispersion.

While single-qubit gates can be performed at the SOP, using
the tunnel coupling τ as a control parameter33,34, the absence of a
charge dipole moment makes it more difficult to implement
resonator-mediated gates36. On the other hand, for the same
reason, the SOP makes a useful idling point for qubits coupled to
a cavity. At the special point, τ ¼ τSSS, the extreme flatness of the
energy dispersion makes the SOP an excellent idling point. The
dipole moment of the ATSS is also small, as discussed below, and
the sweet spot is relatively broad, making it an alternative
candidate for idling. The position of the ATSS varies rapidly as
function of τ (Fig. 2b, upper inset), which could present a
challenge for controlling the qubit; however recent experiments
have demonstrated fast and accurate control over both τ and
ε9,33,34,42. The TSS forms a narrower sweet spot (Fig. 2b), and its
charge dipole is large, which increases its sensitivity to charge
noise, but makes it a good candidate for performing gate
operations and coupling to a cavity. In principle, it is possible to
adiabatically transition between the TSS and the ATSS, and then
the SOP, by simultaneously adjusting the parameters τ and ε
(Fig. 2b, upper inset), even while ΔB remains fixed, as is typical in
a given experiment. We now explore these possibilities in greater
detail.

Characterizing the TSS. The position of the TSS in detuning
space, εSS, depends on all the parameters of the Hamiltonian, but
generally occurs near ε ¼ 0 (Fig. 2b, upper inset). As shown
below, the location of the operating point plays a key role in
determining the qubit behavior, which has two basic types. (1)
When τ ≳ΔB (Fig. 2c), we mainly find that εSS < 0; in this case,
the energy splitting of the lowest non-logical state Sð0; 2Þj i is
approximately resonant with the qubit frequency, resulting in
enhanced leakage. (2) When τ <ΔB (Fig. 2d), we have εSS > 0; in
this case, leakage is suppressed, but the TSS is very narrow, and
the qubit is charge-like. More generally, any qubit property

(e.g., decoherence, coupling, or gate fidelity) depends on the
specific control parameters. We now evaluate and compare these
properties, first for an isolated qubit, then for a qubit coupled
capacitively to a microwave resonator.

We first consider single-qubit gate operations in isolated qubits.
The gates are performed by applying an AC drive to the detuning
parameter. In the presence of charge noise δεðtÞ, the time-
dependent detuning is given by ΔεðtÞ ¼ εAC cosðωtÞ þ δεðtÞ.
From Eq. (1), the resulting interaction is given by

Hint ¼ Δεð� Sð0; 2Þj i Sð0; 2Þh j þ Sð2; 0Þj i Sð2; 0Þh jÞ: ð2Þ
Since the states Sð0; 2Þj i or Sð2; 0Þj i generate the charge dipole in
this system, Hint is proportional to the dimensionless dipole
operator, d̂ ¼ ∂HST=∂ε. In general, Hint can have longitudinal and
transverse components; however at a sweet spot, the longitudinal
component vanishes, by definition.

We begin by solving the total Hamiltonian, defined as
H ¼ HST þ Hint. First, we ignore the state Sð2; 0Þj i in Eq. (1),
since it is very high in energy. We then evaluate H in the
f 0j i; 1j i; Lj ig eigenbasis, which diagonalizes HST, obtaining

Hq ¼
X
n

Enσnn þ Δε
X
n;m

dnmσnm: ð3Þ

Here En are the eigenvalues of HST, σnm ¼ nj i mh j, where
n;m 2 f0; 1; Lg, and dnm ¼ nh jd̂ mj i, where Δε d01 is the
transverse dipole coupling induced by Hint. In Fig. 3a, we plot
numerical solutions for d01, evaluated at the TSS, as a function of
τ and ΔB. The large white triangle in the lower-right portion of
the plot corresponds to τ > τcritðΔBÞ, where no TSS solutions
exist. The general features of the plot can be understood as
follows. When τ � ΔB, the TSS occurs near the charging
transition, which causes Sð0; 2Þj i and Sð1; 1Þj i to strongly
hybridize, and yields an effective charge qubit, for which d01 �
0:5 at the sweet spot. When τ ! τcrit, the TSS moves away from
the charging transition, resulting in a suppressed dipole,
d01 � 10�3–10�4, which vanishes completely at the SOP. To a
good approximation, d01 depends only on the ratio τ=τcrit /
τ=ΔB over the entire plot range of Fig. 3a, yielding a radial plot.
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Fig. 2 Operating regimes of the transversely coupled sweet spot (TSS) of a S−T0 qubit. a Energy level diagrams obtained from Hamiltonian (1) assuming
that the tunnel coupling τ and the field difference between the dots ΔB obey τ >ΔB (solid lines), or τ <ΔB (dashed lines). In both cases we take
ΔB ¼ 0:2U, where U is the double-occupation charging energy. Singlet-triplet qubits are often operated at either the symmetric operating point (SOP),
where ε ¼ �U, or near the Sð1; 1Þ-Sð0; 2Þ charging transition for the singlet state, where ε ¼ 0. b The TSS and the alternative TSS are indicated on the
qubit dispersions ωq, obtained for ΔB=h ¼ 2:5 GHz and several different values of τ. We also assume U ¼ 3meV here, and throughout this work. For
τ � τcrit, a TSS dip forms near ε ¼ 0 (black arrows). For τSSS � τ � τcrit, a very shallow ATSS peak also emerges, to the left of the TSS (lower inset). The
values of τcrit and τSSS both depend on ΔB. Upper inset: the location of the various sweet spots and critical points in detuning space, for ΔB=h ¼ 2:5 GHz.
c, d Energy level diagrams near the charging transition, showing two types of behavior (main panels), and their corresponding qubit energy splittings
(upper insets) and sweet spots (εSS). c For τ >ΔB, we observe εSS <0. Degenerate energy levels (ωq � ω1L) near the TSS can induce unwanted excitations
to the leakage state Lj i (lower inset), with decay rate ΓL ¼ 1=TL. (Here, τ=h ¼ 1:75 GHz and ΔB=h ¼ 1:5 GHz.) d For τ ≲ΔB, we observe εSS >0. In this
case, the excitation energies are no longer degenerate at the TSS, suppressing leakage, but the qubit is more charge-like, and therefore susceptible to
fluctuations of the detuning parameter δε. At the sweet spot, the dominant fluctuations occur at O½δε2�, causing weak dephasing. (Here, τ=h ¼ 1:5 GHz and
ΔB=h ¼ 2:5 GHz.).
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The large-d01 (small-τ=ΔB) operating regime is preferential for
boosting gate speeds; however we now show that the dephasing
rate 1=Tφ also grows in this regime.

We define Tφ as the decay time of the ρ01 component of the
qubit density matrix, which we estimate by simulating its free-
induction decay. As described in Methods section, we introduce
δεðtÞ fluctuations into the simulations, sampling from a gaussian
distribution with 1=f spectral correlations. We then average over
a large number of charge-noise realizations to obtain the results
shown in Fig. 3b. Since the TSS is a sweet spot, it is protected
from small δε fluctuations, to lowest order. The main contribu-
tion to dephasing therefore occurs at order δε2, and its behavior
correlates with the width of the sweet spot. In Supplementary
Note 2 we consider two additional noise mechanisms that could
potentially contribute to Tφ: tunnel-coupling noise and Rabi-
frequency fluctuations. In summary, tunnel-coupling noise is
found to have a stronger effect on two-qubit gates, where it is
comparable to detuning noise. Rabi-frequency fluctuations are a
strong-driving effect, which can become important for fast single-
qubit gates. In the following discussion, we include all such
dephasing mechanisms in our fidelity simulations. However, we
do not include direct magnetic field fluctuations arising from
nuclear spin dynamics, since we assume these can be suppressed
by isotropic purification of the Si/SiGe heterostructure.

In the τ ≲ΔB regime (Fig. 2d), the TSS is well separated from
other features in the energy dispersion; its shape therefore does
not depend on ΔB, which only determines the splitting between
states "#j i and #"j i. Hence, the qubit is charge-like, and the width
of the sweet spot is determined by τ rather than ΔB. This is
consistent with Fig. 2b where the sweet spot is quite narrow
for small τ. It is also consistent with Fig. 3b where Tφ approaches
100 ns in the limit τ � ΔB, and becomes independent of ΔB. On
the other hand, for τ ! τcrit, we observe a wider sweet spot in
Fig. 2b. In this regime, the presence of the leakage state actually
helps to flatten the energy dispersion, yielding Tφ approaching
10 μs.

Using the same simulations, we also compute TL, defined here
as the decay time of ρ00ðtÞ þ ρ11ðtÞ, due to leakage. The results,
which are plotted in Fig. 3c, exhibit a similar range of timescales
as Fig. 3b; however, the trends are very different. This is easy to
understand because leakage is caused by the hybridization of

logical and non-logical states, which occurs near the resonance
condition EL � E1 ¼ E1 � E0, causing a dip in TL when
τ � ΔB.

Finally, we note that phonon-mediated decay processes have not
been considered in the current analysis, although they also
contribute to T1-type relaxation. For GaAs-based devices, such
processes are expected to reduce T1 to a few nanoseconds for the
large magnetic field gradients considered here, due to the presence
of piezoelectric phonons43. In the current proposal, we have
therefore focused on Si-based devices, where piezoelectric phonons
are absent, and the phonon-mediated T1 is generally much longer
than any time scale relevant to our analysis43,44. For this system,
we therefore conclude that T1 is dominated by leakage.

To summarize the results of this section, the behaviors of Tφ
and TL exhibit opposite trends as a function of τ when ε is tuned
to a TSS; the best working points must therefore be determined
via optimization. We address this problem below, by computing
the fidelities of one-qubit and two-qubit gates.

Single-qubit gate fidelity. In the previous section, we studied free
induction. Here we consider resonantly driven, single-qubit Xπ
gate operations performed at a TSS. We consider single-qubit
interactions mediated by AC-driven gates, which are generally
expected to be faster than single-qubit gates mediated by a
resonator. However, the two-qubit gates in the following section
are mediated by a resonator, with a capacitive coupling that
cannot be turned off, as indicated in Fig. 1; we therefore include
this interaction in the present analysis. In our simulations, we
further assume that the cavity resonant frequency ωr cannot be
tuned. However, we note that the cavity-qubit detuning Δ0 ¼
_ðωr � ωqÞ can be varied, because the qubit frequency depends
on the parameters ΔB and τ.

We model the qubit-resonator system with the Hamiltonian

Hqr ¼ _ωra
yaþ

X
n

Enσnn

þ
X
n;m

ΔεðtÞ dnmσnm þ _g0dnmða þ ayÞσnm
� �

;
ð4Þ

where ayðaÞ is the photon creation (annihilation) operator, g0 ¼
eV0 is the bare capacitive coupling between the qubit and
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Fig. 3 Qubit properties, evaluated at a TSS, for a range of τ and ΔB. The large white triangles in the lower-right portions of the plots correspond to
regions where τ > τcrit, and no TSS solutions exist. a Dimensionless dipole moment d01, which determines the strength of the transverse coupling. When
τ � ΔB, d01 � 0:5 because the TSS occurs near the Sð1; 1Þ–Sð0; 2Þ transition where the qubit is charge-like, while at τ ¼ τcrit, d01 is in the range of
10�3-10�4. b-d Effects of 1=f-type detuning charge noise. b Dephasing times. Here, Tφ is mainly determined by the width of the sweet spot, which is
minimized for TSS near the charging transition (Fig. 2b). c Leakage excitation times. Leakage is maximized when τ � ΔB, because E1L � E01 (Fig. 2c).
d AC-driven, single-qubit Xπ gate fidelity, including all the decoherence mechanisms considered in this work. The dashed line corresponds to the qubit-
cavity resonance condition, ωq ¼ ωr ; fidelity is suppressed near this line due interference between the AC drive and the cavity mode. Here we assume a
constant photon decay rate of κ=2π ¼ 0:028MHz in the cavity (corresponding to a resonator quality factor of Q ¼ 105)47. We also assume physically
realistic driving and resonator parameters given by εAC=h ¼ 0:5 GHz54, g0=2π ¼ 50MHz27, ωr=2π ¼ 2:8 GHz47, and a cavity temperature of 20mK for
the initial photon state25.
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resonator, V0 ¼ ffiffiffiffiffiffiffi
_Zr

p
ωr is the amplitude of the resonator

voltage anti-node, and Zr is the resonator impedance36. The
effective qubit-cavity coupling, g ¼ g0d01, is proportional to the
transverse dipole moment, which is maximized near the charging
transition. As noted above, the coupling can be turned off
(d01 ¼ 0) at the SOP, while d01 � 0:5 for large ΔB.

We perform simulations of Eq. (4) for a range of ΔB and τ. For
each pair of values, ðΔB; τÞ, we tune the intra-qubit detuning
parameter to a TSS [ε ¼ εSSðΔB; τÞ] to improve the gate fidelity,
and apply an AC drive at the qubit resonant frequency:
ΔεðtÞ ¼ εAC cosðωqtÞ. Since we do not limit the simulations to
the weak-driving regime, the Xπ gate times must be determined
numerically; we do this by evolving over many Rabi oscillations,
to more accurately locate the initial peak. The simulations are
computationally expensive, compared to Fig. 3a, b, since they
include photon basis states. Therefore, we do not explicitly
include either charge noise or photon decay at the Hamiltonian
level. Instead, we solve a master equation based on Eq. (4), in
which dephasing effects are included phenomenologically
through the dephasing rate 1=Tφ and leakage effects are included
through the decay rate 1=TL, which were both obtained as
functions of ΔB and τ in the previous section. Resonator photon
decay is included through a constant decay rate, κ. We then
compute the gate fidelity, obtaining the results shown in Fig. 3d.
See Methods section for details of these calculations.

We observe the following behavior. First, gate fidelities are
generally found to be high, except very near the resonance
condition Δ0 ¼ 0 (dashed line), where excited photons in the
resonator form leakage levels that naturally suppress the single-
qubit gate fidelity. For larger values of κ, the fidelity is further
suppressed near the resonance condition. On the other hand, Δ0
increases quickly as we move away from this line, suppressing this
effect. Even further away from the resonance condition, the gate
fidelity is slightly suppressed for small τ, due to strong dephasing
(Fig. 3b), or near the line τ ¼ τcrit, due to enhanced leakage
(Fig. 3c) and smaller charge dipoles (Fig. 3a). The best fidelities
are therefore obtained midway between the resonance condition
and τ ¼ τcrit, at larger values of ΔB. For the physically realistic
simulation parameters used in Fig. 3d, the fidelities can be quite
high, approaching 99.85%, and are limited by Rabi-frequency
fluctuations due to strong driving. Finally, we note that closer
inspection of the resonance condition in Fig. 3d reveals weak

oscillations. As discussed in Supplementary Note 3, these can be
understood as a combination of leakage and strong-driving
effects.

Two-qubit gate fidelity. We consider two-qubit gates mediated
by a cavity, with a set-up similar to Fig. 1, and with both qubits
positioned at voltage anti-nodes. Simulations are performed
analogously to the previous section, but with a two-qubit
Hamiltonian given by

Hqqr ¼ _ωra
ya þ

X
i¼ a;b

X
n

En;iσnn;i

þ
X
i¼ a;b

X
n;m

_g0;idnm;iða þ ayÞσnm;i;
ð5Þ

where the subscript i refers to qubits a or b. The native gate forHqqr

is iSWAP, with gate times determined analogously as for single-
qubit gates. The two-qubit gate can be switched off by tuning
either of the qubits to its SOP. To simplify the following analysis,
we set Δ0a ¼ Δ0b � Δ0, dnm;a ¼ dnm;b � dnm, ΔBa ¼ ΔBb � ΔB,
τa ¼ τb � τ, and εa ¼ εb � ε, to reduce the number of indepen-
dent control parameters. The gate fidelities are computed by solving
the master equation associated with Eq. (5), including the deco-
herence rates 1=TL, 1=Tφ, and κ, as before, and comparing the
result to an ideal iSWAP gate. Our results are shown in Fig. 4a,
using the same simulation parameters as Fig. 3d.

Although similar physics determines the fidelities of one and
two-qubit gates, the trends observed in Figs. 3d and 4a are very
different. In particular, the fidelity dip along the resonance line in
Fig. 3d becomes a double peak in Fig. 4a. This is because the
single-qubit gates are driven, with the resonator acting only as a
leakage channel. For two-qubit gates, the cavity mediates the
interaction, and the fidelity is generally enhanced near the
resonance condition, Δ0 ¼ 0, where the effective qubit-qubit
coupling is maximized45. (The same is true for single-qubit gates
mediated by a resonator, although we do not explore that
possibility here.) Very near the resonance, however, spontaneous
excitation of the qubits by the cavity (the Purcell effect)
suppresses the gate fidelity (i.e., increases the infidelity), causing
maxima to form on either side of this line. The same process also
reduces the individual qubit lifetimes. In cases where the Purcell
effect dominates the fidelity, we note that an alternative approach
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Fig. 4 Resonator-mediated two-qubit iSWAP gates, performed at a TSS. a Gate infidelity, assuming the same device parameters as Fig. 3. Optimal
fidelities are obtained very near, but on either side of the qubit-cavity resonance condition, near where d01 is maximized. Here we assume no coupling to
spin-polarized leakage states. b Gate infidelity, including coupling to spin-polarized leakage states. For each value of ΔB, we plot the maximum fidelity with
respect to τ. The leakage coupling is suppressed, and the fidelity is maximized, by applying large global B fields.
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would be to replace the cavity with a direct capacitive coupling11,
although we do not explore that possibility here.

Far from the resonance condition, two-qubit gate fidelities are
typically low, because off-resonant gates tend to be slow, and
therefore susceptible to charge noise. (This is not a problem for
single-qubit gates, which can be strongly driven.) However,
fidelities are found to increase for larger ΔB, due to stronger
qubit-cavity couplings and reduced leakage (Fig. 3). To exploit
this trend, we note that nanomagnets in recent double-dot
experiments have already achieved ΔB values as large as 80 mT46

(¼ 2:2 GHz), corresponding to a maximum fidelity of 98:5% in
Fig. 4a. Finally, we note that small fidelity oscillations are
observed near the resonance condition, which are reminiscent of
those in Fig. 3d, and can also be attributed to leakage and strong
driving (see Supplementary Note 4).

Leakage induced by polarized triplets. Up to this point, we have
not considered the polarized spin triplet states, ""j i and ##j i,
which present new leakage channels. In this case, hybridization
with the qubit states is caused by a transverse magnetic field
gradient. It is reduced, however, when the levels are split off by a
large global field; further details of these calculations are pre-
sented in Supplementary Note 5. To estimate the effect of such
leakage on two-qubit gate fidelities, we first extend Eq. (5) to
include a global B field and a transverse field gradient ΔB?. Since
ΔB? and ΔB are expected to be similar in size46, we simply set
ΔB? ¼ ΔB. We then compute the iSWAP gate fidelity for a fixed
ΔB, and determine its maximum as a function of τ. Repeating this
procedure as a function of ΔB, for several values of B, yields the
results shown in Fig. 4b. As expected, we find that fidelities
improve uniformly as a function of B. However, the dependence
on ΔB ¼ ΔB? is non-monotonic: the fidelity initially increases
(infidelity decreases) by the same mechanism as Fig. 4a; for larger
ΔB?, this behavior saturates, and leakage eventually dominates
the fidelity. For the range of ΔB plotted here, we find that B � 2
T is sufficient for avoiding most leakage. More generally,
B � 0:8 T yields fidelities >99%, when ΔB> 100 mT.

Discussion
We have shown that qubit coherence and one-qubit and two-
qubit gate fidelities are strongly affected by the operating points in
a control space spanned by the parameters B, ΔB, ΔB?, τ, ε, εAC,
g0, and ωr , as well as the noise characteristics of the qubits and
the resonator. The transverse sweet spots (TSS) studied in this
work make good working points, because they provide protection
against environmental noise while offering a strong coupling to
external driving fields or a microwave resonator.

To achieve high-fidelity gates at a TSS, it is important to
provide a large gradient-induced Zeeman splitting, ΔB, and a
nearly resonant coupling between the qubit and cavity. Since
_ωq � 2ΔB for a TSS, we therefore require that 2ΔB≳ _ωr , while
noting that neither ΔB nor ωr is easy to change after a device is
fabricated. Fortunately, recent work shows that it is possible to
form high-kinetic-inductance resonators with low resonant fre-
quencies, ωr=2π � 2:8 GHz47, while maintaining a high cavity
Q> 105 in the presence of a large in-plane field B ¼ 6 T. More-
over, as noted above, large gradients, ΔB=h � 2:2 GHz (¼ 80
mT), have already been achieved in the lab46, indicating that the
requirements for a TSS have already been met.

Adopting the values for ΔB and ωr from the previous para-
graph, and choosing ΔB? ¼ ΔB, B ¼ 2 T, a resonator coupling
of g0=2π ¼ 0:05 GHz, and a realistic driving field of εAC=h ¼
0:5 GHz, we obtain the following results at a TSS. Single-qubit
gates are found to be fairly fast, with a gate time of t1Q � 7 ns,
yielding a gate fidelity of 99.3% for an optimal tunnel coupling

of τ=h ¼ 2.1 GHz. Two-qubit gates are slightly slower, with
t2Q � 50 ns, yielding a gate fidelity of 98.2% for the optimal
tunnel coupling τ=h ¼ 1.5 GHz. Our simulations also show that
when 2ΔB ’ _ωr , leakage tends to dominate the infidelity,
while for smaller values of ΔB, dephasing is the dominant pro-
blem. We find that, as a rule of thumb, 1:5ΔB ’ _ωr provides a
good balance for obtaining higher fidelities, which explains our
choice of ΔB and ωr values in the simulations. However, better
fidelities can be achieved by increasing both of these parameters
simultaneously. Theoretical calculations suggest that larger
ΔB � 150 mT= 17 μeV values should be possible for near-term
experiments48,49. Repeating our simulations with this ΔB and
ωr=2π ¼ 5:2 GHz gives optimal fidelities of 99.85% and 99.2%
for one and two-qubit gates, respectively.

The results described above exploit optimized TSS working
points for singlet-triplet qubits, but reveal that these points differ
for single and two-qubit gate operations. In addition, resonator-
mediated gates require an idling point, where the effective cou-
pling to the resonator is turned off. We have identified two good
candidates for idling points: the ATSS, where d01 is very small, or
the SOP where d01 ¼ 0, particularly when τ ¼ τSSS. Interest-
ingly, for a fixed value of ΔB, we can navigate between gating and
idling points while maintaining a TSS, by simultaneously tuning τ
and ε such that ε ¼ εSSðτÞ. In Supplementary Note 7, we estimate
the time scales for adiabatically transitioning between these
working points.

Longitudinal and transverse couplings can be viewed as distinct,
physical resources, with unique advantages and disadvantages for
quantum computing. It is therefore important to compare their
attributes50; the singlet-triplet qubit provides a testbed for doing so
in a single experimental setting. In this work, we have focused on
the TSS, which has a purely transverse coupling and can be formed
over a continuous range of parameters. In fact, the TSS and ATSS
are the only tunings with purely transverse couplings for singlet-
triplet qubits. The SOP is the only tuning with a purely longitudinal,
curvature-type coupling (see below), which can be formed over a
continuous range of τ when ε ¼ �U . All other operating points
have both transverse and longitudinal components. Such mixing
reduces the response to AC driving for single-qubit gates, and yields
complicated behavior for two-qubit gates, which may be undesir-
able from a control perspective. These mixed operating points also
do not correspond to sweet spots, and should therefore experience
faster decoherence. The TSS coupling is particularly strong because
the qubit’s charge character is maximized. In contrast, at the SOP,
the charge dipole vanishes, resulting in a weaker, second-order
curvature coupling35, which is consistent with slower gates that are
well protected by a high-order sweet spot. Alternatively, gate speeds
at the SOP may be enhanced by employing AC driving techni-
ques36. Using this method, we can simulate gates performed at the
SOP, under noise conditions similar to those considered above, at
the TSS. As described in Supplementary Note 6, we adopt realistic
experimental parameters for the SOP33 and apply an AC drive to
the tunnel coupling with a driving amplitude equal to 1/10 of its
average value, obtaining a single-qubit Xπ gate fidelity of 99.6% and
a CZ gate fidelity of 93.6%. These results are limited by tunnel-
coupling noise, which dominates at the SOP because the effects of
detuning noise are suppressed.

Finally, we note that readout of ST qubits can be challenging in
the presence of a large magnetic field gradient51. Two methods to
overcome this problem are (1) mapping the qubit onto different
spins states, as described in ref. 51, or (2) tuning the tunnel barrier
to the more conventional regime for readout, where τ 	 ΔB.

Methods
Overview. In this work, we perform two types of numerical simulations: (i) free
induction of single qubits, and (ii) one and two-qubit gate operations. The
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simulations employ different theoretical methods, and are repeated for cases with
and without charge noise. All numerical calculations use the QuTiP software
package52.

Free-induction simulations. These are performed after adding time-dependent
charge noise to the detuning parameter in Eq. (3), with Δε ¼ δεðtÞ. A similar
procedure is used to model noise in the tunnel-coupling parameter, as discussed in
Supplementary Note 2. Noise sequences are generated following the method
described in refs. 4,53: we first generate random white noise δεðtÞ over a discrete
time sequence. This sequence is then Fourier transformed and scaled in frequency
space by the noise power spectrum

ffiffiffiffiffiffiffiffiffi
SðωÞp

, where

SðωÞ ¼ c2ε

2π
jωj for ωl � jωj � ωh

0 otherwise;

(
ð6Þ

and ωl=2π ¼100 kHz and ωh=2π ¼20 GHz are lower and upper frequency cutoffs.
We choose a noise strength of cε ¼ 0:56 µeV, corresponding to a standard devia-

tion of σε ¼ cε 2lnð ffiffiffiffiffi
2π

p
cε=_ωlÞ

� �1=2 � 2 µeV (see ref. 53) for noise integrated over
the entire frequency spectrum, as consistent with several recent experiments54–56.
We note that, for a given value of cε, lowering ωl increases the noise in the system.
The resulting frequency sequence is Fourier transformed back to the time domain,
yielding the desired noise sequence. For each point in the ΔB-τ plots shown in
Fig. 3b, c, we average the density matrix ρðtÞ over 10,000 different noise realiza-
tions, with initial states ρð0Þ ¼ ij i ih j, where ij i ¼ ð 0j i þ 1j iÞ= ffiffiffi

2
p

. We use the same
simulations to obtain the density matrix ρleakðtÞ, using
ρleakð0Þ ¼ ð 0j i 0h j þ 1j i 1h jÞ=2, to obtain purely leakage errors. Tφ and TL are
obtained by fitting the averaged results to57

jρ01ðtÞj ¼ jρ01ð0Þj exp �ðt=T

2Þβ

h i
ð7Þ

and

ρ00ðtÞ þ ρ11ðtÞ ¼ 1
3
expð�t=TLÞ þ 2

3
; ð8Þ

where ρ ¼ 1=3 represents the fully mixed state in the f 0j i; 1j i; Lj ig basis. Here, we
only assume coupling to the dominant leakage state associated with Sð0; 2Þj i. β is
left as a fitting parameter in Eq. (7) to account for the fact that non-dephasing,
leakage processes can dominate the decoherence in some cases. As discussed in the
main text, T1 is dominated by TL in Si. We may therefore extract the pure
dephasing time, Tε

φ , through the relation 1=T

2 ¼ 1=Tε

φ þ 1=2TL, where the
superscript ε indicates that this quantity arises from noise in the detuning
parameter.

Fidelity estimations. For one and two-qubit gates, we incorporate the free-
induction results into our simulations of the qubit-cavity master equation, defined
as45

_ρ ¼� i
_
½H; ρ� þ κ

2
ð2aρay � ayaρ� ρayaÞ þ

X
j

1
2Tφ

ðσz;jρσz;j � ρÞ
"

þ 1
2TL

ð2σL;jρσyL;j � σyL;jσL;jρ� ρσyL;jσL;jÞ
�
;

ð9Þ

where H represents the appropriate one-qubit (j ¼ a) or two-qubit (j ¼ a; b)
Hamiltonian in the lab frame, as presented in Eqs. (4) or (5) of the main text, κ is
the cavity decay rate, Tφ and TL are computed as functions of ΔB and τ, as
described above, σz;i � σ11;i � σ00;i is the dephasing operator for qubit i, and
σL;i �

P
n¼ 0;1ðσnL;i þ σLn;iÞ is the operator associated with leakage between the

logical subspace of qubit i and its leakage state L. In Eq. (9), we include noise from
both the detuning and tunnel coupling parameters through the relation
1=Tφ ¼ 1=Tε

φ þ 1=Tτ
φ . In addition, for single-qubit Rabi simulations, we include

the term ð1=2TR
φÞ
P

jðσþ;jρσ�;j þ σ�;jρσþ;j � ρÞ on the right-hand side of Eq. (9)
to account for Rabi frequency fluctuations as described in Supplementary Note 2,
where σþ;j � σ10;j and σ�;j � σ01;j . Although including Tφ as we have done in Eq.
(9) is common practice45, it may be argued that the Markovian nature of the
master equation is inconsistent with the non-Markovian origins of Tφ . We have
addressed this question in Supplementary Note 8 by performing corresponding
master equation and quasistatic simulations of free-induction decay, obtaining
nearly identical results for Tφ in either case.

The initial states for the master equation simulations in Eq. (9) are taken to be
ρð0Þ ¼ ij i ih j, where ij i ¼ 0j icð 0j i þ 1j iÞ= ffiffiffi

2
p

for single-qubit gates (here, 0j ic
represents the zero-photon state of the cavity), or ij i ¼ 0j ic ej ia gj ib for two-qubit
gates, where ej ia and gj ib represent the ground and excited qubit eigenstates for
qubits a and b, respectively (e.g., see ref. 45). The corresponding gate fidelities are
then computed from

F ¼ Tr½ρðtgÞρidealðtgÞ�; ð10Þ
where tg is the appropriate gate time, and the ideal density matrix is computed in
the absence of noise or leakage-state couplings.

Data availability
Data sharing is not applicable to this article as no data sets were generated or analyzed
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Code availability
The simulation results reported may be obtained by following the computational scheme
described in Methods section. All numerical calculations use the QuTiP software
package51. The Mathematica code for the characterization of the SOP (Supplementary
Note 1) is provided as Supplementary Software 1.
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