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Programmable and robust static topological
solitons in mechanical metamaterials
Yafei Zhang1, Bo Li 1, Q.S. Zheng1, Guy M. Genin2,3 & C.Q. Chen 1*

Solitary, persistent wave packets called solitons hold potential to transfer information and

energy across a wide range of spatial and temporal scales in physical, chemical, and biological

systems. Mechanical solitons characteristically emerge either as a single wave packet or

uncorrelated propagating topological entities through space and/or time, but these are

notoriously difficult to control. Here, we report a theoretical framework for programming

static periodic topological solitons into a metamaterial, and demonstrate its implementation

in real metamaterials computationally and experimentally. The solitons are excited by

deformation localizations under quasi-static compression, and arise from buckling-induced

kink-antikink bands that provide domain separation barriers. The soliton number and

wavelength demonstrate a previously unreported size-dependence, due to intrinsic length

scales. We identify that these unanticipated solitons stem from displacive phase transitions

with periodic topological excitations captured by the well-known φ4 theory. Results reveal

pathways for robust regularizations of stochastic responses of metamaterials.
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The localized deformation underlying kink-excitations
drives numerous nonlinear physical and mechanical phe-
nomena including fault zones in earthquake1, shear bands

in granular materials2, folds of soft systems3–5, as well as geo-
metric phase transitions in metamaterials6–8. Localizations asso-
ciated with solitons explain many fundamental features of
dislocations, ferroelectric domain walls, surface diffusion, con-
ducting polymers, intrinsic localized modes, and nonlinear exci-
tations in biological molecules9–12. Although they have been
observed in solitary excitations of mechanical metamaterials13,14

and domain-wall formations of van der Waals layered
materials15–17, they have previously been stochastic and scale-
independent discrete and/or single-soliton systems. A long-
standing goal has been development of programmable, localized
topological structures to control solitons18. This technology
would hold prospects not only in tunable photonic and phononic
rectification19, but also in designing smart soft robots and high
sensitivity devices20.

Extensive work has been focused not only on engineering
localizations into civil structures (e.g. crash bands, shear bands
and plastic twinning)21,22, but also on designing desired patterns
and interfaces in architected metamaterials6,8,23,24. The central
challenge is the widely-recognized problem that localized defor-
mations are sensitive to inherent or externally induced defects,
rendering the location and dimension of localization zones hard
to predict6,23,25,26. Successful previous efforts include ordered
configurations achieved by introducing long-range interactions27,
geometric frustration28, periodic dopants or macro-defects29.
However, generation of programmable, ordered and robust static
solitons and ensuing localized instabilities in nominally defect-
free mechanical systems still remains largely unexplored.

Inspired by recent numerical work indicating that excitations
of ordered localizations can be achieved via carefully designed
architectures30, here we develop a general framework for ana-
lyzing this entire class of materials through the formalism of static
periodic solitons. Many have previously addressed the bi-stability
of metamaterials through conventional snap-though equilibrium
techniques6,8,23,24,31,32. The general framework presented here is
based on an approach to the underlying physics whereby inter-
actions between double-well on-site potentials of the unit cell and
the strong coupling energies of adjacent unit cells determine how
metamaterial architecture and loading produce buckling-induced
kink and antikink deformation bands that provide domain
separation barriers.

We therefore explored the instability of cellular metamaterials
subjected to quasi-static compression. We found that, beyond a
critical loading, deformation symmetry breaks down, leading to
two distinct macroscopic buckling modes separated by localized
topological interfaces that are static periodic solitons (kink-anti-
kink pairs) governed by the well-known φ4 equation33,34. This
unanticipated behavior originates from a structural phase tran-
sition analogous to mechanical soliton-lattices of magnetic sys-
tems11,35. We theoretically illustrate that the period of the soliton-
lattice in fact introduces an intrinsic length scale perpendicular to
the compression direction, which leads to novel size-dependence
of the soliton number and wavelength in the metamaterial.

Results
Metamaterial and static solitons. We demonstrated these in a
metamaterial consisting of a periodic array of alternate through-
thickness elliptic holes of dual sizes (cf. Fig. 1a for a sample
comprising Nx ´Ny ¼ 20 ´ 3 unit cells) in a coated elastomer
(see Methods and Supplementary Fig. 1 for details). Uniaxial
compression applied to two parallel lubricated plates (Fig. 1c) was
performed at a sufficiently low strain rate (3:1 ´ 10�5 s�1) to

mimic quasi-static loading; although elastomers are in general
viscoelastic, this loading rate was deemed sufficiently slow to
mimic quasi-static loading because no memory effects were evi-
dent in metamaterial samples under three consecutive loadings.
Under small compressive strains ε ¼ 2δ=Y0, where 2δ is the
vertical displacement and Y0 is the sample height, the sample
underwent affine deformation and maintained its initial sym-
metry group D2 ´ SN (the direct product of the reflection sym-
metries of the rectangle, D2, and all permutations of the
N ¼ Nx ´Ny unit cells, SN ). When the compressive strain
exceeded a threshold strain εc, the vertical ligaments within unit
cells buckled and the compressive load deviated from the linear
response and then decreased. Spontaneous symmetry breaking
took place, leading to a striking pattern with lower symmetry (i.e.,
breaking the original permutation symmetries of unit cells) and
two alternate macroscopic buckling states (Fig. 1d, e at
ε ¼ 10:7%). The deformation pattern consisted of ordered elastic
instabilities analogous to displacive phase transitions in ferro-
electric systems36,37. Between these two states, highly localized
topological domain walls emerged to accommodate the incom-
patible deformation (see Supplementary Movie 1). Although
deformation localization observed in other systems can be sto-
chastic7,15,17,23,25,26, the localization reported here are ordered
and robust (as confirmed by 6 tests for each case). To verify the
structural origin of this order, we performed 2D plane strain finite
element (FE) simulations that reproduced experimental obser-
vations (see Fig. 1, Supplementary Fig. 2).

Physical model and periodic-soliton solution. To identify the
physical underpinnings of these phenomena, the unit cell shown
in Fig. 1b was simplified as a structure made of rods and neck
springs (rod-spring model in Fig. 2a). When designing the
mechanical metamaterial, we specially choose a1 ¼ a2 and the
ligament width between two ellipses (i.e., cell neck thickness) t to
be the same. By doing so, all the vertical rods are collinear to
ensure the transition of deformation from stretching to bending-
dominated during buckling. Both experimental and FE numerical
results show that the buckling deformation of the metamaterial is
mainly localized in the narrow regions of slender necks (marked
by dots in Fig. 2 and Supplementary Fig. 3). Therefore, the
connection between the elastic rods can be approximated by
springs located at the necks, with the torsional stiffness denoted
by C1 and C2 for the vertical and horizontal rods. Two symmetric
modes of the simplified model exist and can be characterized by
the rotation angle θ of the vertical rods (Fig. 2b, c). We adopt the
notion of polarization in structural phase transitions to meta-
materials by introducing the inward polarization for θ < 0 and
outward polarization for θ > 0 of the unit cell corresponding to
the states A and B (Figs. 1b and 2c), respectively. Here, θ is the
order parameter in structural phase transitions. When the com-
pressive strain ε approaches the critical value εc (i.e., ε ! εc), the
angle θ bifurcates into two opposite polarizations, breaking the
initial symmetry of the structure.

The elastic strain energy of the simplified bar model is given
by Ucell δð Þ ¼ 2ð2C1 þ C2Þθ2 þ 2KðΔHÞ2, where ΔH ¼ H0�ðH0 � δÞ sec θ is the shortening of the vertical bars and K is the
effective stiffness of the stretching springs that mimic the vertical
bars. As θ � 1, the strain energy can be approximately rewritten

as a polynomial form Ucell δð Þ ¼ Ueðθ2 �ΘcellÞ2 þ D1 with Ue ¼
Kð3H0 � 8δÞðH0 � δÞ=6, Θcell ¼ KδðH0 � δÞ � ð2C1 þ C2Þð Þ=
Ue and D1 ¼ 2Kδ2 � Θ2

cellUe (see Supplementary Note 3). Here,
we consider the unit cell as a ‘quasiparticle’ and introduce an on-site

potential Pcell δ; θð Þ ≜ Ueðθ2 �ΘcellÞ2, in which the unit cell admits
its actual configuration at the well bottoms. The potential energy Pcell
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at a selected compressive strain of 10:7% obtained from FE
simulation is shown in Fig. 2b, in comparison with the corresponding
theoretical prediction given by K = 1.478 Nmm�1, C1 ¼ 1.150N
mm and C2 = 1.069 Nmm (see Supplementary Fig. 3). Our
simulations show that, at small compressive strains (i.e., ε � εcell),
the potential Pcell δ; θð Þ has only one stable state, while at large
strains (i.e., ε> εcell) it switches from mono-stable to bi-stable (see
Supplementary Fig. 7e). This switch is attributed to the deformation

transition of the unit cell from stretching to bending at εcell ¼
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4ð2C1 þ C2Þ=ðKH2

0Þ
p� �

=2 which can be deduced from

losing convex in Pcell. The two stable states in the bi-stable potential
correspond to polarization A (θ < 0) and B (θ > 0), respectively.

Both experiments and simulations show that the macroscopic
buckling and localized deformation in the metamaterial seem to
be insensitive to the number of unit cells in the vertical direction
(see Supplementary Figs. 2 and 4). Therefore, we can apply a one-
dimensional (1D) model constructed by a chain of simplified unit
cells (Fig. 3a) to uncover the deformation mechanism of the
metamaterial shown in Fig. 1d. The Lagrangian L of the discrete
1D metamaterial chain consists of the sum of the on-site potential
and the coupling energy between the adjacent unit cells (Fig. 3b).
Denoting the characteristic angle of the n-th unit cell by θn (see
Supplementary Fig. 2 and Note 3), one has

L ¼
X
n

Css
2
n�1;n þ 2C2θ

2
n þ Ucell θnð Þ ð1Þ

where sn�1;n ≜ dðsin θn�1 � sin θnÞ and Cs are the shear defor-
mation and stiffness between the ðn� 1Þ-th and n-th cell,
respectively. Adjacent unit cells are thus coupled by shear and

bending deformations represented by the first two terms in
Eq. (1), and the former also denotes the interaction energy
between nearest-neighbor cells. Under the condition θ � 1, a set
of equilibrium equations can be obtained from the Lagrangian as

�2Csd
2ðθn�1 þ θnþ1 � 2θnÞ þ ∂θnPeff θnð Þ ¼ 0 ð2Þ

where Peff θnð Þ ¼ Ueðθ2n � Θeff Þ2 is the effective on-site potential,
with Θeff ¼ ðKδðH0 � δÞ � 2ðC1 þ C2ÞÞ=Ue. It is clear that when
Θeff > 0, Peff θnð Þ is a double-well potential with two minima at
θn ¼ ±

ffiffiffiffiffiffiffiffi
Θeff

p
; when Θeff < 0, on the contrary, Peff θnð Þ only has

one stable state and the system undergoes uniform deformations
under compression. We next examine the former case where two
limiting physical regimes such as the order-disorder and
displacive phase transitions can be expected (Supplementary
Note 3). Essentially, these transitions depend on the relative
strength of the interaction energy 4Csd

2Θeff and the effective on-
site potential barrier UeΘ

2
eff

11,36. We further focus on the strong
coupling 4Csd

2 � UeΘeff (i.e., Cs � ðKH2
0 � 8ðC1 þ C2ÞÞ=16)

and consider the displacive case of Eq. (2) with a double-well on-
site potential. To get the continuum limit (model), we define a
slowly varying rotation field θ xð Þ by letting θn ! θ x ¼ n‘ð Þ and
θn± 1 ! θ n‘ð Þ ± ‘∂xθ n‘ð Þ þ ‘2∂xxθ n‘ð Þ=2 in the discrete
system (2), where ‘ ¼ 2ða1 þ a2 þ tÞ is the lattice constant of
the 1D metamaterial shown in Fig. 3. Accordingly, one obtains

∂2θ

∂x2
� ∂V θð Þ

∂θ
¼ 0 ð3Þ

where V θð Þ ¼ λðθ2 � Θeff Þ2=4 and λ ¼ 2Ue=ðCsd
2‘2Þ.

Equation (3) is the well-known λφ4
field equation in structural
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Fig. 1 Structural phase transitions in a mechanical metamaterial lead to static soliton formation. a A rubber metamaterial patterned with a regular array
of elliptic holes. b The geometric parameters of the unit cell, here characterized by elliptical-axes a1 ¼ a2 ¼ 3mm and b1 ¼ 4b2 ¼ 6mm, and by neck
thickness t ¼ 1.5 mm. c Static solitons were activated by compression between two lubricated, parallel plates. d, e Uniform compression induces symmetry
breaking, with two distinct buckling states A and B emerging in the experimental (d) and numerical (e) models. Colors in e illustrate the simulated von
Mises stress field in the deformed configuration. Static periodic solitons (alternating kinks and antikinks) are localized at the domain walls between two
uniform polarization states.
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phase transition10,37. For a finite-size superlattice with periodic
boundary conditions, Eq. (3) permits the following nonlinear
periodic solution with modulus m37:

θ ¼ a � sn b
ffiffiffiffiffiffiffiffi
λ=2

p
x;m

h i
ð4Þ

where sn x;m½ � is the Jacobi elliptic function, a ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m=ð1þmÞΘeff

p
, b ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2=ð1þmÞΘeff

p
, and m is determined

by boundary conditions. Note that solution (4) represents a static
topological periodic-soliton in the form of kink and antikink
alternatively distributed in the system. The normalized period is
T ¼ 4K m½ �=ðb‘ ffiffiffiffiffiffiffiffi

λ=2
p Þ, where K m½ � is the complete elliptic

integral of the first kind. For a finite system, the resulted
configuration is usually termed as a soliton-lattice with kink
width w ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þmÞ=ðλΘeff Þ

p
36. It is also noted that all the

involved spring stiffness and thus the soliton period can be
substantively programmed by the geometry of the unit cells30.
Moreover, the topological soliton solution (4) breaks the θ; xð Þ !
θ;�xð Þ symmetry of the ordinary φ4 equation and periodically
separates two kinds of polarization domains which are degenerate
ground states of the system.

We measure the characteristic angle θ of the samples in
experiments and simulations by calculating the averaged relative
rotations of the point pairs, marked on the vertical necks of each
cell in the middle row (see Supplementary Fig. 2). The results of a
sample with 20 ´ 3 unit cells at ε ¼ 10:7% are plotted in Fig. 3c.
As expected, both experimental and simulation results show that,
characterized by the rotation angle θ, the metamaterial is
transformed into domains of uniform polarization, separated by
narrow domain walls across which the polarization varies from
one kind of orientation to another. The ordered configuration of
domain walls features static periodic solitons which are pinned by
the Perierls-Nabarro barrier38. The slight difference between the
widths of states A and B is attributed to the actual asymmetric on-
site potential energy of the unit cell (Figs. 2b and 3b), resulting
from the finite thickness and irregular cross-sections of the neck
regions. For comparison, our theoretical, experimental, and
numerical results are shown in Fig. 3c, with a kink at x0 ¼
ðT=4þ 21=2Þ‘ by setting θ ¼ a � sn½b ffiffiffiffiffiffiffiffi

λ=2
p ðx � x0Þ;m� and

T ¼ 5. It can be seen that the theoretical soliton solution (4)
agrees well with the experimental and numerical results,
demonstrating that the stable topological defects located at the
phase interfaces can be described by solitons, in terms of the
kink-antikink pairs governed by the φ4 model. The topological
excitations in our theoretical model stem from the existent
degeneracy of the two opposite ground states, inward and

a b

c

�

State A

H �

State B

Neck springs

H0

–0.5 0.0 0.5
0

1

2

3 Simulation

Theory

A B

Rotation, �

P
ot

en
tia

l, 
   

ce
ll 

(J
)

Fig. 2 Bi-stability of the unit cell under compression. a Schematic of the
unit cell and the corresponding theoretical model. The simplified theoretical
model consisting of elastic rods and neck springs (yellow and magenta
dots) is illustratively superimposed on the unit cell of the sample. b The on-
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outward polarizations, of the unit cell. For the finite size soliton-
lattice, we can define the topological charge Q ¼ ð1=2aÞR L

�L∂xθdx
as the difference in the number of kinks and antikinks34. In our
case, Q ¼ 0, which indicates each kink is followed by an antikink.
Similar phenomena also emerge in various nonlinear physical
contexts such as mechanical transmission lines, conducting
polymers, ferroelectric phase transitions and so on10,11.

Intrinsic length scale of soliton-lattice. Investigating periodic
soliton excitations within a definite-size system is, in fact,
appealing for evident reasons: not only the finite-length situation
is consistent well with the physical realities, but also by their
intrinsic periodic features, finite-length soliton-lattices tend to
reveal novel size-dependent properties strikingly distinct from
those of the usual discrete or single solitons13,14,39. Consequently,
we further explore the variation of the characteristics of the
soliton-lattice with the number of unit cells Nx in the metama-
terial. Two intrinsic length scales are discovered (Fig. 4). When
Nx is less than a critical value Nc � 7, uniform deformation takes
place and no stable kink-antikink pairs emerge due to the
boundary effects (see Supplementary Fig. 5 and Movie 2). With
increasing system size Nx, the boundary effects diminish and the
static soliton topology becomes admissible. Moreover, the num-
ber of kink-antikink pairs N varies with Nx : an increase in the
length by 5 leads to one more kink-antikink pair formation
(Fig. 4a). Therefore, N is related to Nx by the ceiling function
N ¼ dðNx � NcÞ=Λe, with step length Λ ¼ 5. Interestingly, the
step length is the same as the theoretical period T , another
intrinsic length scale in the metamaterial. In addition, the kink-
antikink pairs are stably separated from each other with a proper
spacing denoted by the wavelength λNx

(see Supplementary
Fig. 5), due to the interactions among the solitons themselves as
well as those between the solitons and the free boundaries10. The
wavelength likewise varies with the system size, following a
twisted saw-tooth-wave function where λNx

locally ramps upward
with Nx and then sharply drops (Fig. 4b). For small systems, i.e.,
Nx < 4T , the wavelength λNx

shows a larger scatter, suggesting the
ranges that system size matters. However, the scatter gets smaller
and λNx

gradually approaches the theoretical period T of the
continuous model as Nx increases. This discontinuous size-
dependence in λNx

essentially originates from the existent
intrinsic length scale T . Fitting the experimental and simulated
results by an empirical formula λNx

¼ ðNx � NbÞ=N , we get
Nb ¼ 4, which represents the size of the boundary regimes in
present conditions. Remarkably, the observed size-dependent

properties purport two intrinsic length scales: the critical system
size Nc and the soliton-lattice period T , which are naturally
associated with the architectural details. Nc, related to Nb,
represents the smallest system size to robustly generate a kink-
antikink pair, which quantitatively reflects the boundary effects
and even the Saint-Venant principle40. T is actually an char-
acteristic length scale perpendicular to the compressive loadings
and is distinct from the bulk solids3,41 and previously reported
metamaterials23,42.

General framework for programming solitons. The framework
for excitation of static topological soliton-lattice is general, and
not limited to the specific configuration shown in Fig. 1. The key
lies in the quantifying competitions between the interaction
energies and the effective on-site potentials of the unit cell, which
further determines the phase transition type (Supplementary
Note 3). The underlying physical mechanism revealed by the
system provides a general framework for designing and pro-
gramming ordered localizations in 2D metamaterials. Firstly, one
need tailor a unit cell with multi-stability perpendicular to the
loading direction, e.g., the stiffnesses satisfying KH2

0 > 8ðC1 þ C2Þ
in the system given in Fig. 1 (also see Supplementary Fig. 9).
Beyond a critical compressive loading strain εc, its on-site
potential reduces to degenerated states to trigger the bifurcation
modes of the unit cell (Fig. 5a). Secondly, to excite the periodic
localizations, strong interaction conditions with respect to the
effective on-site potential barrier (illustrated in Fig. 5b) are
required to ensure displacive phase transition, e.g., 4Csd

2 �
KH2

0ð1� εÞε� 2ðC1 þ C2Þ for the case considered. To illustrate
the generality of this framework, we fabricated and tested three
more 2D metamaterials with different microstructures (i.e., the
Block-Spring, Rod-Spring and Elliptic-Circular metamaterials
shown in Fig. 5 and Supplementary Note 3). Their architecture
and material details can be found in the Methods and Supple-
mentary Note 3. As expected, static alternating kink/antikinks
and thus periodic localizations are excited in these materials, and
excellent agreement among the experimental, simulated and
theoretical results was achieved (see Fig. 5c, d and Supplementary
Figs. 10–12). The corresponding intrinsic length scales T and Nc
in the metamaterials (Fig. 5 and Supplementary Figs. 10–12)
could also be programmed by the unit cell geometries.

Discussion
Taken together, these theoretical, experimental, and numerical
results show that the localized deformation of a perfect bi-stable
cellular mechanical metamaterial under quasi-static compression
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can be highly ordered, in contrast to widely known homogeneous
configurations or non-deterministic deformation-localization in
solids. Our theoretical model reveals that, upon compression, the
competition between the effective on-site potentials and the
strong interaction energies of the constituent cells in the cellular
metamaterial results in a displacive phase transition and a sym-
metry order reduction beyond a critical load. Accompanied by
spontaneous symmetry breaking, static periodic kink-antikink
pairs (i.e., topological solitons) are excited in the metamaterial,
inducing an orderly localized configuration. A discrete size-
dependence of the wavelength of the periodic solitons caused by
an intrinsic length scale is also unveiled. We emphasize that the
double-well potential and the strong coupling energy are pivotal
factors that ensure the displacive phase transition and, evidently,
can be programmed into the unit cell geometries to prescribe
soliton-lattice configurations.

The striking size-dependent property of kink-antikink pairs,
denoted by a ceiling function in our metamaterial systems, applies
across multistable systems including molecular transport in
restricted spaces43, atomic-scale frictions16, and domain switch-
ing44. This holds potential to be leveraged for a range of new
metamaterials with programmable localized deformations for
fields such as smart molecular robotics. Besides, the alternative
kinks and antikinks count the reversals of the topological
mechanical polarizations along the quasi-1D metamaterial chain.
By encoding the inward and outward domain-states as mechan-
ical bits which can be identified by probing the local order
parameters, we envisage such robust reversal features are pro-
mising for enabling information storage and retrieval on static
soliton-lattices45. More broadly, the results enable design of unit
cell topologies with multistable states that can pave novel path-
ways to prescribing ordered localization excitations and

controllable geometric phase transitions across a range of physical
contexts.

Methods
Sample preparation. We fabricated our samples via a double-molding process.
Firstly, we cast polyurethane solution into a 3D printed mold (mold I, analogous to
the experimental model shown in Fig. 1a) to generate a structure consisting of
arrays of elliptical cylinders (used as mold II). Secondly, we poured Hei-Cast 8000
polyurethane solution into the mold II and cured it at room temperature for 12 h.
Release agent was sprayed onto the mold surfaces in advance to facilitate separation
during the replication processes. After carefully removing the elliptical cylinders, a
soft cellular metamaterial was produced. The out-of-plane thickness of the sample
was D = 70 mm, and the initial in-plane size was Nx ´Ny ¼ 20 ´ 3 (see Fig. 1),
with Nx and Nx referring to the numbers of unit cells in the x and y directions,
respectively. The semi-axes of the orthogonally oriented elliptical holes within the
unit cell considered in Fig. 1 were chosen as b1 ¼ 2a1= 6 mm and a2 ¼ 2b2 ¼
3 mm. The cell neck thickness of t ¼ 1.5 mm was adopted to ensure easy proces-
sing. The dimensions of the unit cell can be written as Lx ¼ 2ða1 þ a2 þ tÞ and
Ly ¼ 2ðb1 þ b2 þ tÞ.

Experimental tests. Six samples were loaded under uniaxial compression using a
Zwick/Roell testing machine (Zwick-Roell, Ulm, Germany). Before testing, sample
surfaces and loading platens were covered with white Vaseline to reduce friction.
Tests were conducted at a constant nominal strain rate of 3:1 ´ 10�5 s�1 to mimic
quasi-static conditions. We verified that these loading rates represented quasistatic
conditions by repeating tests on each sample at a rate of 1:0 ´ 10�4 s�1 and
obtaining nominally identical results. The height Y0 ¼ NyLy and cross-section area
DNxLx of the structure were used for calculating the engineering strain and
nominal stress, respectively. To study the size-dependent properties of the
kink-antikink pairs, we fabricated samples with system size Nx ¼ 20 and per-
formed initial uniaxial tests. After these initial tests, several columns of the samples
were removed to obtain a smaller sample that was tested under conditions identical
to the initial uniaxial test. This was repeated with increasingly smaller specimens to
obtain results for size dependence (Fig. 4, Supplementary Fig. 5). Note that the
because samples were made of an elastomeric material, loading history is not
expected to have major effects on the stress-strain curves and deformation patterns,
as confirmed by the tests. We have also marked necks of unit cells in the middle
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Fig. 5 Programming periodic localizations in 2D metamaterials based on the general framework. a, b Illustrations of the evolution of the effective on-site
potential with compressive strain, and the structural phase transition mechanism of the multistable systems. This general framework identifies the
mechanism and provides the guideline for exciting static periodic solitons in metamaterials. c, d Unit cells and periodic localizations underlying the static
kink/antikink excitations in Block-Spring and Rod-Spring metamaterials, respectively. The deformed configurations are shown at a compressive strain
ε ¼ 9:5%. The architectures of the unit cells, and comparisons among the experimental, numerical and theoretical results of these metamaterials are
shown in detail in the Supplementary Figs. 10–12.
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row of the sample (see Supplementary Fig. 2). A high resolution digital camera
(SONY FDR-AX40, Tokyo, Japan) was used to record the positions of markers and
the deformed configurations of the specimens as loading progressed (Supple-
mentary Movies 1 and 2). This allowed us to measure the characteristic rotations θ
of the unit cell and identify the deformed configurations as a function of the
displacement uy (see Supplementary Fig. 2).

Numerical simulations. The commercial finite element software Abaqus/Standard
(Dassault Systmes, Vlizy-Villacoublay, France) was employed in our static finite
element simulations. Based on the uniaxial testing results, the Mooney-Rivlin
hyperelastic constitutive model was adopted to characterize the metamaterial.
Material constants were taken as C10 ¼ 0.284 MPa and C01= 0.432 MPa (Young’s
modulus E ¼ 4.30 MPa and Poisson’s ratio ν ¼ 0:499, see Supplementary Fig. 1)
according to our experimental measurement. Plane strain, 4-node elements with a
hybrid formulation and reduced integration were used. Mesh sensitivity analyses
showed that about 1 ´ 104 elements per unit cell were adequate to ensure con-
vergent numerical results.

Simulation of full samples: we conducted nonlinear FE simulations on the full
metamaterial, sandwiched between two rigid plates, with frictionless contact
between the sample and the plates (Supplementary Fig. 2). Quasistatic compressive
displacement was applied to the rigid plates and an artificial inter-dissipation factor
of 1 ´ 10�4 was specified to stabilize the simulations. Self-contact of the holes was
ignored in the modeling, because only moderate compression prior to full
densification was considered. The reaction force F and the relative displacement uy
between the two rigid plates were used to calculate the macroscopic nominal stress
and engineering strain via σ ¼ F=ðDNxLxÞ and ε ¼ uy=ðNyLyÞ. In addition, the
characteristic angle of the unit cell in the deformed metamaterial was defined as the
relative rotations of the midpoint pairs on the vertical necks (see Supplementary
Fig. 2).

On-site potential of the unit cell: two static steps were employed to obtain the
on-site potential of the unit cell. First, a static compressive displacement, i.e.
uy ¼ 2δ, was applied to the unit cell, and the resulting characteristic angle and
strain energy of the unit cell, denoted by θ0 and Ucellðθ0Þ were obtained. Second,
relative rotation loads on the four irregular rods were imposed with the vertical
compression fixed. In this way, the strain energy UcellðθÞ versus rotation θ curve
could be extracted. The on-site potential of the unit cell was then defined
as PcellðθÞ ≜ UcellðθÞ � Ucellðθ0Þ, which is dependent on the compressive load and
structural stiffness (see Supplementary Note 3 for details).

Hinge stiffness: the hinge stiffness of the simplified model is dependent on the
geometry of the elliptical holes and neck thickness30,46. In the ideal case such as
necks of constant cross-section, or circular holes with the slender limit t=a1 � 1,
analytical expressions for hinge stiffness versus the geometry and bulk material
constants can be obtained. However, the necks for the samples considered in this
study are of finite size and have variable cross-sections (see Supplementary Fig. 3).
Therefore, analytical expressions for the hinge stiffness are hard to attain and FE
simulations were conducted to extract them. The hinges are represented by linear
springs with stiffnesses obtained by calculating the linear responses to three
different loadings (i.e., tension, shear, and bending as shown in the inset of
Supplementary Fig. 3). To apply tension, shear and bending, we coupled the
motions of the nodes on the cross-sectional plane of each dissected part with that
of a virtual node, which is displaced by the corresponding displacement or rotation.
We used the reaction loads associated with these virtual node displacements and
rotations to calculate the tension, shear and bending stiffnesses by K ¼ F=δ, Cs ¼
F=u and Ci ¼ M=θiði ¼ 1; 2Þ, respectively.

Verification of the general framework. The general framework for predicting
solitons in metamaterials was verified by considering a range of classes of meta-
materials. For all of these (see Fig. 5 and Supplementary Figs. 10–12), sample
preparation, experiments and simulations proceeded according to the above pro-
cedures (cf. Fig. 1). Material constants, geometrical parameters and other experi-
mental/numerical details can be found in the Supplementary Note 3.

Data availability
The data that support the plots within this paper and other findings of this study are
available from the corresponding author upon request.
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