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Electrochemical oxidation induced intermolecular
aromatic C-H imidation
Xia Hu1,2, Guoting Zhang1,2, Lei Nie1, Taige Kong1 & Aiwen Lei1*

The dehydrogenative aryl C-H/N-H cross-coupling is a powerful synthetic methodology to

install nitrogen functionalities into aromatic compounds. Herein, we report an electrochemical

oxidation induced intermolecular cross-coupling between aromatics and sulfonimides with high

regioselectivity through N-radical addition pathway under external-oxidant-free and catalyst-

free conditions. A wide variety of arenes, heteroarenes, alkenes and sulfonimides are applicable

scaffolds in this transformation. In addition, aryl sulfonamides or amines (aniline derivatives)

can be obtained through different deprotection process. The cyclic voltammetry mechanistic

study indicates that the N-centered imidyl radicals are generated via proton-coupled electron

transfer event jointly mediated by tetrabutylammonium acetate and anode oxidation process.
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The ubiquity of nitrogen-containing aromatics in natural
products, pharmaceuticals, agrochemicals, and functional
materials makes the exploration of efficient methodologies

to construct aryl C–N bonds of great importance1. Compared
with the well-established Buchwald−Hartwig and Ullmann
amination2–8, the direct amination of aryl C–H bonds, especially
the dehydrogenative aryl C–H/N–H cross-coupling, represents a
more straightforward and atom-economical strategy to access
these essential molecules, which can circumvent the pre-
functionalization of the aromatic substrates9–24.

Although significant progress has been made in nucleophilic
or electrophilic amination reactions of aromatic compounds, the
formation of aryl C–N bonds based on N-centered radicals
remains more challenging25–29. The lack of convenient methods
to produce N-centered radical species is one of the major
challenges in this field. Mostly, the N-centered radical inter-
mediates were generated via the cleavage of reactive N–X (X =
oxygen, nitrogen or halogen atom) bond30–35. Recent advances
in this class have been propelled by the direct oxidative cleavage
of the N–H bond (Fig. 1a)36–45. Itami46, Yu47, and Lee48

reported the dehydrogenative aromatic C–H imidation under
visible-light irradiation conditions, respectively. More recently,
Leonori’s group disclosed a regioselective amination of arenes
using alkyl amino radicals generated by photo-redox catalysis49.
However, the stoichiometric oxidants were required in these
transformations. In this context, developing an efficient method
to generate N-centered radicals from N–H reagent under
external oxidant-free and catalyst-free conditions to realize
dehydrogenative aryl C–H/N–H cross-coupling would be sig-
nificantly appealing.

Electrochemical synthesis offers a powerful alternative to
conventional chemical approaches in oxidative C–H functiona-
lization reactions50–65. Particularly, anode oxidation has been
proved as a convenient approach to generate N-centered radicals

by cleavage of the strong N–H bonds from N–H precursors66.
Although the electrochemical-oxidation-induced amidyl and
sulfamidyl radicals have been successfully applied in the intra-
molecular C–N bond formation (Fig. 1b)42–45, the N-centered
radical-mediated intermolecular aminations of simple arenes and
heteroarenes are still limited. Based on our previous research, we
found that the intermolecular H-bonding between sulfonamide
and acetate would assist the single electron oxidation and
deprotonation of the sulfonamide to generate the sulfamidyl
radicals67. Furthermore, the sulfonimidyl radicals possess higher
electrophilicity than sulfamidyl radicals. We hypothesized that
the electrochemical oxidation concert deprotonation would be an
efficient method to generate an electrophilic N-centered radical
from sulfonimides, which tend to react with electron-rich aro-
matics through radical addition pathway. Followed by the sequent
electrochemically oxidative aromatization process, the direct
electrochemical intermolecular oxidative aryl C(sp2)-H amination
can be achieved, accompanying with the cathodic hydrogen
evolution process (Fig. 1c). Here, we report an electrochemically
oxidative intermolecular cross-coupling of simple arenes and
heteroarenes with sulfonimides under external-oxidant-free and
catalyst-free conditions.

Results
Investigation of reaction conditions. Initially, naphthalene
(1aa) was chosen as a model substrate for the electro-oxidative
C–H imidation with dibenzenesulfonimide (2aa) as the nitrogen
source. To our delight, the cross-coupling product 3aa can be
afforded in acetonitrile with a 43% isolated yield by using a
carbon rod anode and a platinum plate cathode in an undivided
cell under 10 mA constant current for 4 h at ambient tempera-
ture (Table 1, Entry 2). Tetrabutylammonium acetate was used
as the electrolyte, simultaneously as a base. An obviously
increasing yield can be obtained when fluorine-containing
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hexafluoroisopropanol (HFIP) was added as co-solvent (Table 1,
Entry 3). Further investigation of the solvent revealed that a
mix-solvent system, DCM/MeCN/HFIP = 20:4:1, gave the best
result (76% isolated yield, Table 1, Entry 1). A significant decline
of yield was observed when a platinum plate anode and carbon
rod cathode were used, or a nickel plate cathode was used
instead of the platinum plate cathode (Table 1, Entries 4–5).
However, when the electrolyte was changed to nBu4NBF4,
nBu4NPF6, or nBu4NClO4, no reaction can be observed (Table 1,
Entry 6). The imidation product 3aa can be formed with a 46%
yield by using NaOAc instead of nBu4NOAc (Table 1, Entry 7).
These results demonstrated that acetate plays an important role
in this transformation. Decreasing the loading of nBu4NOAc to
0.5 equivalent or 2aa to 1.2 equivalent provided reduced yields
(Table 1, Entries 8–9). The reaction occured smoothly when
decreasing the operating current to 5 mA, while increasing the
current to 15 mA led to a slightly lower yield (Table 1, Entries
10–11). It should be noted that the reaction proceeded even
when it was exposed to the air (Table 1, Entry 12). As expected,
no product 3aa can be observed without electric current
(Table 1, Entry 13).

Substrate scope. With the optimized reaction conditions in hand,
the substrate scope of this electro-oxidative aryl C(sp2)-H imi-
dation was explored (Fig. 2). A range of polycyclic aromatic
hydrocarbons, such as naphthalene (3aa, 76%), phenanthrene
(3ab, 72%), pyrene (3ac, 51%), and fluoranthene (3ad, 75%),
could couple with dibenzenesulfonimide (2aa), giving the corre-
sponding imidation product in moderate to good yields with
excellent regioselectivity by constant current electrolysis. To our
delight, benzene, a simple electron-neutral aromatic compound,
can also be adapted to this electro-oxidative system albeit an
excess amount of benzene was used (3ae). The imidation of

biphenyl proceeded at the para-position to give 3af in 63% yield.
When ester or carbonyl functional group was introduced at the
para-position of anisole, the imidation would occur at the ortho-
position to the methoxy substituent (3ag-3ah). This strategy was
not only applicable to aromatic hydrocarbons but also hetero-
aromatics. Thiophene (3ai), furan (3au), N-methyl pyrrole deri-
vatives (3av), as well as tosyl-protected pyrrole (3aw) underwent
regioselective C–H imidation at the α-position. The thiophene
deriveatives bearing various functional groups such as silyl,
phenyl, halide, ester, cyano groups in the C2 position were also
well tolerated in moderate to good yields (3aj-3ap). Notably, 3al,
3am, and 3an could be obtained without decomposition of the
halide group, which can be applied in the subsequent transfor-
mation. 3-Methylthiophene gave the corresponding product as a
mixture of regioisomers with ratio of 5:1 (3aq, 80%). Besides
mono-substituted thiophenes, di-substituted thiophenes also
provided the desired products with good yields (3ar-3at). Other
5-membered heteroaromatics, including 3-methylbenzothio-
phene, benzofuran, N-acetyl indole, N-methanesulfonyl indole,
and N-butoxycarbonyl indole derivatives readily underwent C
(sp2)-H imidation with 2aa, thus giving the corresponding
adducts (3ax-3az, 3ba-3bd). Methyl 1-phenyl-1H-indole-3-car-
boxylate and methyl 1-phenyl-1H-indole-2-carboxylate would be
selectively imidated at the C2 or C3 position (3be-3bf). Six-
membered heterocycles bearing electron-donating substitution
are competent substrates. 2,6-Diphenylpyridine and 6-
methoxyquinoline gave the imidation products 3bg and 3bh as
the single regioisomer, respectively. Importantly, the modification
of natural products flavone and caffeine could be conducted
smoothly with this strategy, yielding the imidated products 3bi
and 3bj, respectively. Small-molecule drug such as fenofibrate
could also give the corresponding imidation product 3bk. Using
the above conditions, this electrochemical oxidation-induced C
(sp2)-H imidation can be performed in gram-scale. The constant

Table 1 Investigation of the reaction conditions.

C(+) | Pt(–), 10 mA, r.t., 4 h
1.0 equiv. nBu4NOAc

DCM/CH3CN/HFIP=20:4:1

Ph
S

N
H

O

O
S

PhO

O

SO2Ph
N

PhO2S

2aa, 1.5 equiv.1aa, 0.4 mmol 3aa

+ + H2

Entry Variation from standard condition Yield (%)b

1 None 79(76)c

2 CH3CN as solvent 45(43)c

3 CH3CN/HFIP= 12 mL/0.5 mL as solvent 68(65)c

4 Pt(+) | C(−) instead of C(+) | Pt(−) 59
5 C(+) | Ni(−) instead of C(+) | Pt(−) 58
6 nBu4NBF4 or nBu4NPF6 or nBu4NClO4 instead of nBu4NOAc N.D.
7a NaOAc instead of nBu4NOAc 46
8 0.5 equiv. nBu4NOAc 67
9 1.2 equiv. 2aa instead of 1.5 equiv. 2aa 63
10 5mA, 8 h instead of 10mA, 4h 76
11 15 mA, 2.67h instead of 10 mA, 4h 59
12 Reaction in the air 70
13 Without current N.D.

Reaction conditions: carbon rod anode(Φ 6mm), platinum plate cathode (15mm × 15mm × 0.3 mm), constant current = 10 mA, 1aa (0.40mmol), 2aa (0.60 mmol), nBu4NOAc (0.40mmol), solvent
(DCM/CH3CN/HFIP = 10 mL/2mL/0.5 mL), undivided cell, N2, 4 h.
HFIP hexafluoroisopropanol, N. D. not determined.
a1.0 equiv. nBu4NBF4 was used as an electrolyte.
bYield of 3aa was determined by HPLC analysis with 1,3,5-trimethoxybenzene as the internal standard.
cIsolated yields are shown in parentheses.
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current electrolysis of 5 mmol of 1aa and 1ai can be conducted to
produce the desired imidation product (3aa, 3ai) in 69% and 65%
isolated yield, respectively.

Next, the scope of the reaction with respect to sulfonimides was
also investigated by using naphthalene as the coupling-partner
(Fig. 3). Various functional groups on the phenyl rings of
symmetrical diaryl sulfonimides were tolerated well (3bl-3bm).
The sulfonimide with two thienyl substituents could be used as a
viable imination reagent to generate the desired product 3bn in
an acceptable yield (43%). Furthermore, N-(methylsulfonyl)
benzenesulfonamide derivatives could react with naphthalene in
good yields, and several substituents in the para-position of the
phenyl rings were compatible in the reaction system (3bo-3bq).
Besides, N-(methylsulfonyl)thiophene-2-sulfonamide and N-
(methylsulfonyl)naphthalene-1-sulfonamide produced the aryi-
mines 3br in 74% yield and 3bs in 66% yield, respectively. It is
worth noting that the coupling of saccharin and naphthalene can
be achieved successfully by using this method (3bt). To our delight,
When 3-phenylbenzofuran was used as a coupling-partner, N-((4-
methoxyphenyl)sulfonyl)acetamide and N-(thiophen-2-ylsulfonyl)

acetamide were found to be available imidation reagents through
the optimization of the reaction conditions (3bu-3bv). In addition,
we have tried to expand the types of amine source. We found that
N-(4-methoxyphenyl)sulfonamide derivatives could couple with
N-acetyl indoles (Fig. 4), thus giving the corresponding amination
products in moderate to good yields (Fig. 4, 5aa-5ah).

The dehydrogenative C–H/N–H cross-coupling between
alkenes with amines to construct enamines, especially under
the external oxidant-free conditions, is of great significance. And
the further studies revealed that this electrochemical oxidation-
induced system is also applicable for the imidation of alkenes
(Fig. 5). And the desired product 7aa was produced in 70% yield
under 5 mA constant current for 6 h at ambient temperature
when 1,1-diphenylethylene was employed as the radical
acceptor. The 1,1-diphenylethylene derivatives bearing
electron-donating and electron-withdrawing substituents both
underwent the reaction smoothly with dibenzenesulfonimide
(7ab-7af). In addition, the procedure was also compatible with
trisubstituted aryl alkenes to form corresponding imidation
product (7ag-7ah). The allylimine could be obtained as the only
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Fig. 2 Substrate scope of aromatic compounds. Reaction conditions: carbon rod anode, platinum plate cathode, constant current = 10 mA, 1 (0.40mmol),
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isomer when methylenecyclohexane was used as the coupling-
partner (7ai).

Deprotection of arylimines. Since sulfonyl groups are useful and
removable protecting groups for amino groups, above C(sp2)-H
imidation reaction can be further utilized in the synthesis of
substituted sulfonamide and aryl amines (Fig. 6). Treating 3aa
with magnesium in methanol at refluxed temperature, N-
(naphthalen-1-yl)benzenesulfonamide (8aa) can be prepared in
quantitative yield with high selectivity through the mono-
desulfonation process (Fig. 6a). In addition, the double depro-
tection of sulonimides 3 can be achieved by adding 10 equivalent
of magnesium, 2 equivalent of titanium isopropoxide, and 3

equivalent of trimethylsilyl chloride (Fig. 6b). Several aromatic
primary amines (9aa, 9ab, 9ad, 9af) can be obtained.

Discussion
To gain a deeper insight into the mechanism of this transfor-
mation, some mechanistic experiments were performed. By
adding 2,6-di-tert-butyl-4-methylphenol (BHT, 2.0 equivalent) as
the radical scavenger, the reaction was completely suppressed,
and the benzylic imidation product 10aa was obtained in 35%
isolated yield (Fig. 7a). Furthermore, in the presence of stoi-
chiometric amount of 2,2,6,6-tetramethyl-1-piperidinyloxy
(TEMPO), the reaction with radical clock substrate 11aa gave rise
to ring-opening and radical trapping product 13aa in 13% yield
(Fig. 7b), which should be resulted from a radical cross-coupling

C(+) | Pt(–), 10 mA, r.t., 4 h
1.0 equiv. nBu4NOAc

DCM/CH3CN/HFIP=10 mL/2 mL/0.5 mL
+

2

N
S O

O
O

N
H

R2R1

R1

N
R2

3bt, 85%

S
N

O

O

S

O

O

3bl, R= CH3, 88%
3bm, R= OCH3, 77%

R R

S
N

O

O

S

O

O

3bn, 43%

SS S
N

O

O

S

O

O

3bo, 82%

S
N

O

O

S

O

O

3br, 74%

S S
N

O

O

S

O

O

3bs, 66%

3

O

Ph

S
O

O
N

O

OMe

O

Ph

S
O

O
N

O

S

3bv, 37%b3bu, 28%b

or

O

Ph

Ar

1aa or 1az

+ H2

S
N

O

O

S

O

O

3bp,81%

MeO

S
N

O

O

S

O

O

3bq, 82%

Cl

Fig. 3 Substrate scope of sulfonimides. Reaction conditions: carbon rod anode, platinum plate cathode, constant current = 10 mA, 1aa (0.40mmol), 2
(0.60mmol), nBu4NOAc (0.40mmol), solvent ((DCM/CH3CN/HFIP = 10 mL/2mL/0.5 mL), undivided cell, N2, 4 h. Isolated yields. b Reaction conditions:
carbon cloth anode, platinum plate cathode, constant current = 3mA, 1az (0.40mmol), 2 (0.60mmol), nBu4NBF4 (0.40mmol), NaOAc (0.8 mmol),
solvent ((DCM/CH3CN/HFIP = 10 mL/2mL/1 mL), undivided cell, N2, 8h.

C(+) | Pt(–), 10 mA, r.t., 4 h

1.0 equiv. nBu4NBF4

1.0 equiv. HOAc

DCM/CH3CN/HFIP=10 mL/2 mL/2 mL
+

4

N
H

S

5

5aa,R= H, 83%
5ab, R= CH3, 89%
5ac, R= OCH3, 95%
5ad, R= Cl, 60%
5ae, R=NO2, 52%

N
Ac

Ph

1bc

O

O
R

MeO

N
Ac

Ph

N

S
O

O
R

OMe

N
Ac

Ph

N

S
O

O

OMe

N
Ac

Ph

N

S
O

O

OMe

N
Ac

Ph

N

S
O

O

OMe

S

N
Ac

Ph

N

S
O

O

OMe

5af, 96% 5ag, 90% 5ah, 83%

+ H2

R

Fig. 4 Substrate scope of sulfonamides. Reaction conditions: carbon rod anode, platinum plate cathode, constant current = 10 mA, 1aa (0.40mmol), 4
(0.60mmol), nBu4NBF4 (0.40mmol), HOAc (0.4 mmol), solvent (DCM/ CH3CN/ HFIP = 10mL/2mL/2mL), undivided cell, N2, 4 h. Isolated yields.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-13524-4 ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:5467 | https://doi.org/10.1038/s41467-019-13524-4 | www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


of intermediate 12aa-B with TEMPO. These results revealed that
radical process was involved in this transformation. Furthermore,
parallel reaction and intermolecular competitive reaction kinetic
isotope effect (KIE) experiments were also performed (Figs. 7c
and d), thus giving KIE values of 1.06 and 0.82, respectively. This
interesting secondary inverse KIE provided important informa-
tion for the understanding of the mechanism. Although the
inverse secondary KIE is rarely reported, it can be observed in
electrophilic nitration of benzene and carbonyl addition reac-
tions, in which sp2 → sp3 rehybridization of C–H (C–D) bond is
considered to be the rate-determining step68. Moreover, the Ritter
group69 and Itami group70 have reported quite distinct KIE
values in the aromatic C–H imidation. These results implicated
that the addition of the imidyl radical to the arenes might be
involved in the rate-determining step of the transformation.

To investigate the interaction between acetate anion and sul-
fonimide, thus understanding the elementary steps for the gen-
eration of N-centered imidyl radical, the cyclic voltammetry
studies were performed (Fig. 8). We found that the oxidation
potential of dibenzenesulfonimide alone is relatively high (E1/2 =
+3.28 V vs Ag/AgCl in acetonitrile). The oxidation potential of
nBu4NOAc (tetrabutylammonium acetate) could be observed at
1.78 V (vs Ag/AgCl in acetonitrile). Specifically, we also carried
out cyclic voltammetry studies on dibenzenesulfonimide in
acetonitrile containing 0.1 M nBu4NBF4 in the presence of 1
equivalent of nBu4NOAc. The oxidation peaks of the dibenze-
nesulfonimide and nBu4NOAc disappeared with the generation of
a new oxidation peak. Compared with dibenzenesulfonimide, the
oxidation potential and onset potential of the new peak were
shifted to less positive potentials. Importantly, we found that the
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Fig. 6 Deprotection of arylimines. a Mono-desulfonation of the product. b Double-desulfonation of the product.
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current response increased with increasing concentrations of
nBu4NOAc. These outcomes were consistent with a proton-
coupled electron transfer process in this transformation.

A plausible mechanism for the electrochemical oxidation-
induced dehydrogenative imidation of arenes is outlined in Fig. 9.
The tetrabutylammonium acetate would first form a hydrogen
bonded complex I with the dibenzenesulfonimide N–H bond.
The resulting adduct I would undergo a concerted proton-
coupled electron transfer event with the single electron oxidation
on the anode, leading the homolysis of the N–H bond and gen-
eration of the key sulfonimidyl radical intermediate II. The
subsequent radical addition to naphthalene furnished a new C–N
bond and a vicinal carbon-centered radical III. Then the radical
species underwent further oxidation to furnish a carbon cation
intermediate IV, which finally was aromatized to provide the aryl
C(sp2)–H imidation product through proton elimination. Con-
comitant cathodic reduction of generated protons would generate
H2 during the reaction process, which can avoid the requirement
of external oxidant in the transformation.

In summary, we have developed a method for the electro-
chemical oxidation-induced dehydrogenative C(sp2)-H/N-H
cross-coupling between arenes/alkenes and sulfonimides. Neither
transition metal catalyst nor stoichiometric additional oxidant
was required in this transformation. The electro-synthetic
method exhibited a broad substrate scope and provided access
to various aryl sulfonimides and alkenyl sulfonimides. The reac-
tion can be easily scaled up, demonstrating the synthetic potential
of this method. The cyclic voltammetry confirmed that the N-
centered imidyl radical intermediate was generated through a
concerted proton-coupled electron transfer process, demonstrat-
ing the potential benefits of concerted proton-coupled electron
transfer activation in electrochemical synthesis.

Methods
General procedure. The synthesis of 3aa is representative: naphthalene (0.4 mmol,
1 equiv.), diphenylsulfonimide (0.6 mmol, 1.5 equiv.), nBu4NOAc (0.40 mmol, 1
equiv.) were placed in an oven-dried undivided three-necked bottle (25 mL). The
bottle was equipped with a stir bar, a carbon rod (Φ 6 mm) anode and a platinum
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plate (15 mm × 15 mm × 0.3 mm) cathode. The bottle was flushed with nitrogen.
Degased dry dichloromethane (DCM, 10 mL), degased dry acetonitrile (MeCN,
2 mL) and commercially available hexafluoroisopropanol (HFIP, 0.5 mL) were
added. The reaction mixture was stirred and electrolyzed at a constant current of
10 mA at room temperature for 4 h. After completion of the reaction, the product
was identified by TLC. The solvent was removed under reduced pressure by an
aspirator, then the pure product was obtained by flash column chromatography on
silica gel (eluent: petroleum ether/ethyl acetate = 10:1). Full experimental details
can be found in the Supplementary Methods.

Data availability
The authors declare that the data supporting the findings of this study are available
within the article and its supplementary information files and from the authors upon
reasonable request.
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