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Oxidation of difluorocarbene and subsequent
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As a versatile intermediate, difluorocarbene is an electron-deficient transient species,

meaning that its oxidation would be challenging. Herein we show that the oxidation of

difluorocarbene could occur smoothly to generate carbonyl fluoride. The oxidation process is

confirmed by successful trifluoromethoxylation, 18O-trifluoromethoxylation, the observation

of AgOCF3 species, and DFT calculations.
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Due to the unique properties of fluorine element such as
strong electronegativity and small atomic radius, the
incorporation of fluorine atom(s) into organic molecules

could usually lead to profound changes of the latter’s physical,
chemical, and biological properties1. Therefore, significant efforts
have been directed towards the development of efficient methods
for introducing fluorine or fluorinated moieties into organic
compounds2,3. Difluorocarbene (:CF2) has served as a versatile
intermediate and the transformations of difluorocarbene has
proved to be quite efficient for fluorine incorporation4,5. Typical
difluorocarbene conversions, including insertions into X-H bonds
(X=O, N, S, etc.)4,6,7, [2+ 1] cycloadditions with multi-bonds8,9,
and coupling with other carbenes10–12, can conveniently con-
struct various fluorinated functionalities, such as difluoromethyl,
gem-difluorocyclopropyl and gem-difluoroalkenyl groups. How-
ever, these typical reactions are limited to the incorporation of a
-CF2- moiety. We have previously found that difluorocarbene is
so reactive that it can be readily trapped by a suitable sulfur13–15,
selenium16, or nitrogen source17 to generate thiocarbonyl fluoride
(CF2=S), selenocarbonyl fluoride (CF2=Se), and cyanide anion
(CN−), respectively (Fig. 1a–c). On the basis of these findings,
which offers more possibilities for difluorocarbene chemistry, it is
reasonable to conceive that the oxidation of difluorocarbene with
a suitable oxygen source may proceed to afford carbonyl fluoride
(CF2=O) (Fig. 1d). Usually, oxidation reactions could proceed
smoothly to oxidize electron-rich substrates, but not to electron-
deficient substrates18,19. Since difluorocarbene is an electron-
deficient transient intermediate20, its oxidation would be a chal-
lenging task. Furthermore, because CF2=O is a highly reactive gas
and thus hard to detect, it cannot be determined simply by
spectroscopic monitoring of the reaction whether the oxidation
process occurs or not.

Herein we describe the oxidation of difluorocarbene by using
diphenyl sulfoxide (Ph2S=O) as the oxidant to provide carbonyl
fluoride, a process which is confirmed by successful tri-
fluoromethoxylation and 18O-trifluoromethoxylation reactions,
the observation of AgOCF3 species, and DFT calculations. A late-
stage trifluoromethoxylation for the synthesis of a Trioxsalen
derivative is shown to further demonstrate the synthetic utility of
this trifluoromethoxylation protocol.

Results
Optimization of the trifluoromethoxylation conditions. Ph3P+

CF2CO2
−, developed by us recently21, and AgF were used as a

difluorocarbene reagent and the fluoride source, respectively, in
our efforts to ascertain the oxidation process via the tri-
fluoromethoxylation of benzyl bromide 1-1 (Table 1). AgF was
used to convert CF2=O into AgOCF3, which may be experi-
mentally observed22 to support the oxidation process. The
oxidants were initially screened, but no desired tri-
fluoromethoxylation product was detected in most cases (Table 1,
entries 1–5). To our delight, the use of DMSO (dimethyl sulf-
oxide) as the oxidant afforded the expected product in 9% yield
(Table 1, entry 6), suggesting that sulfoxides may be a suitable
class of oxidants. We then examined other sulfoxides (Table 1,
entries 7–8) and diphenyl sulfoxide was found to be a superior
choice (Table 1, entry 8). Other fluoride sources, including
inorganic (Table 1, entries 9–11) and organic (Table 1, entry 12,
TBAF=tetra-n-butylammonium fluoride) fluoride salts, were
examined, but they were all ineffective. This indicates that the Ag
ion may play an important role in the reaction. A brief survey of
reaction solvents (Table 1, entries 13–17) showed that THF
(tetrahydrofuran) or DCM (dichloromethane) was the suitable
solvent for this conversion (Table 1, entries 15 and 16). The use of
2,2′-bipyridine or a crown ether as a ligand (Table 1, entries 18

and 19) significantly increased the product yield. A 67% yield was
obtained if both bipyridine and the crown ether were present
(Table 1, entry 20). The concentration affected the reaction
slightly, and the yield increased with increasing concentration
(Table 1, entry 21 vs entry 20). At this concentration, the yield
decreased if either the crown ether or 2,2′-bipyridine was not
used (Table 1, entries 22−23).

CF2=S

Previous work:

This work:

a

CF2=O:CF2    +    [O]d

:CF2    +    S8

CF2=Se:CF2    +    Se

CN–:CF2    +    NH3 (or NaNH2)

b

c

Fig. 1 The transformations of difluorocarbene. a The transformation of
difluorocarbene into thiocarbonyl fluoride. b The transformation of
difluorocarbene into selenocarbonyl fluoride. c The transformation of
difluorocarbene into cyanide anion. d The transformation of difluorocarbene
into carbonyl fluoride.

Table 1 Optimization of trifluoromethoxylation conditions.

Entry [O] [F−] 1–1:2:3:4a Solvent Yield (%)b

1 3a AgF 1:2:2:2 CH3CN ND
2 3b AgF 1:2:2:2 CH3CN ND
3 3c AgF 1:2:2:2 CH3CN ND
4 3d AgF 1:2:2:2 CH3CN ND
5 3e AgF 1:2:2:2 CH3CN ND
6 3f AgF 1:2:2:2 CH3CN 9
7 3g AgF 1:2:2:2 CH3CN 9
8 3h AgF 1:2:2:2 CH3CN 24
9 3h NaF 1:2:2:2 CH3CN ND
10 3h KF 1:2:2:2 CH3CN ND
11 3h CsF 1:2:2:2 CH3CN ND
12 3h TBAF 1:2:2:2 CH3CN ND
13 3h AgF 1:2:2:2 DMF 15
14 3h AgF 1:2:2:2 DMSO ND
15 3h AgF 1:2:2:2 THF 33
16 3h AgF 1:2:2:2 DCM 32
17 3h AgF 1:2:2:2 NMP 14
18c 3h AgF 1:2.5:2:2 THF 55
19d 3h AgF 1:2.5:2:2 THF 52
20e 3h AgF 1:2.5:2.5:2 THF 67
21ef 3h AgF 1:2.5:2.5:2 THF 74
22fg 3h AgF 1:2.5:2.5:2 THF 66
23fh 3h AgF 1:2.5:2.5:2 THF 51

Reaction conditions: 1–1 (0.2 mmol), Ph3P+CF2CO2
−, [O], [F−] in solvent (2 mL) at 60 °C for

0.5 h
ND, not detected
aMolar ratio
bYields were determined by 19F NMR spectroscopy
c2,2′-Bipyridine (1 equiv) was used as a ligand
d2,3,11,12-Dibenzo-18-crown-6 (1 equiv) was used as a ligand
e2,2′-Bipyridine (1.5 equiv) and 2,3,11,12-dibenzo-18-crown-6 (0.5 equiv) were used
fTHF (1.5 mL) was used
g2,2′-Bipyridine (1.5 equiv) was used without the crown ether.
h2,3,11,12-Dibenzo-18-crown-6 (0.5 equiv) was used without 2,2′-bipyridine
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Mechanistic investigations. Further experimental evidence was
collected to support the difluorocarbene oxidation process. The
use of other difluorocarbene reagents such as FSO2CF2CO2TMS23

and TMSCF2Br8 could also give the desired trifluoromethoxyla-
tion product, albeit in a low yield, suggesting that difluorocarbene
is a key intermediate (Fig. 2a). CF2=O could not be detected in
the reaction mixtures, because it is a highly electrophilic species
and would be rapidly attacked by AgF to provide AgOCF3. Even
stirring the mixture of Ph3P+CF2CO2

− and Ph2S=O alone could
not lead to the observation of CF2=O, because CF2=O would
easily react with the nucleophile, Ph3P generated from Ph3P
+CF2CO2

−9. Ph2S=O should be the oxygen source to oxidize
difluorocarbene to generate CF2=O, since 18O-labeled diphenyl
sulfoxide afforded the CF318O product (Fig. 2b), and diphenyl
sulfoxide underwent deoxygenation to afford diphenyl sulfide
(Ph2S) in a high yield based on Ph2S=O consumed (39% of
Ph2S=O was recovered) (Fig. 2c) (Supplementary Methods). A
stepwise reaction was performed to confirm the generation of the
AgOCF3 complex (Fig. 2d). Without the presence of a substrate,
heating a mixture of Ph3P+CF2CO2

−/Ph2S=O/AgF with ligands
at 60 °C for 0.5 h led to the formation of a number of unkonwn
species, as detected by 19F NMR spectroscopy (Supplementary
Fig. 2). Two broad signals, appearing at −21.66 and −21.94 ppm
in the 19F NMR spectrum, respectively, may correspond to two
different ligand-coordinated AgOCF3 complexes22. Subsequent
addition of substrate 1–1 afforded the desired tri-
fluoromethoxylation product, further supporting that AgOCF3
was generated from the Ph3P+CF2CO2

−/Ph2S=O/AgF system
(Fig. 2d). In addition to the trifluoromethoxylation product, a
fluorination byproduct was observed (Fig. 2d). However, almost
no fluorination byproduct was observed under the optimal con-
ditions (Table 1, entry 21), which suggests that AgOCF3 was too
reactive and decomposed easily.

DFT calculations at the M062X//6–31++G(d,p)/LANL2DZ
level provided insights into the mechanism of the oxidation of
difluorocarbene and the subsequent trifluoromethoxylation. We
have previously demonstrated that Ph3P+CF2CO2

− is an efficient
difluorocarbene precursor, and has proposed that difluorocarbene
is generated via a decarboxylation process, i.e., Ph3P+CF2CO2

−→
Ph3P+CF2−→ :CF214,15,24. Calculations revealed that the activa-
tion energy for this process is quite low (10.12 kcal mol−1)
(Supplementary Fig. 3 and Supplementary Data 1), supporting the
mechanistic proposal. As an electron-deficient species, difluor-
ocarbene can be attacked by Ph2S=O to form an O–CF2 bond
(Fig. 3, INT-1). The formation of this bond weakens the S–O bond
in Ph2S=O, as shown by the increasing S–O bond length from TS-
1 to INT-1. Back donation of the carbon lone pair strengthens the
O–CF2 bond and further weakens the S–O bond (Fig. 3, TS-2).
Complete cleavage of the S–O bond releases Ph2S and carbonyl
fluoride (CF2=O), a process which is thermodynamically favored.
CF2=O is electrophilic and is therefore trapped by AgF to
generate AgOCF3, which can readily convert the substrates to the
final products. The Ag ion can activate the substrates by
precipitating the AgBr salt. Identification of transition state TS-2
enabled us to calculate the overall activation energy, i.e., 17.60 kcal
mol−1; this value is low and in agreement with the rapid process.

The introduction of CF3O installation. The above results
revealed that difluorocarbene could indeed be oxidized to give
carbonyl fluoride. The oxidation of difluorocarbene and the sub-
sequent trifluoromethoxylation provides an efficient protocol
for CF3O incorporation. CF3O incorporation has received
increasing attention because the CF3O group is a common struc-
tural motif in pharmaceuticals25,26, agrochemicals27,28, and func-
tional materials29,30. A number of effective trifluoromethoxylation
methods have been developed, including nucleophilic31–37,
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Fig. 2 Mechanistic investigation. a The use of other difluorocarbene reagents for trifluoromethoxylation. b The identification of the oxygen source by
18O-labeling. c The identification of the oxygen source by isolating Ph2S. d The confirmation of the AgOCF3 complex. aThe optimal conditions are shown as
Table 1, entry 21: substrate 1 (0.2 mmol), Ph3P+CF2CO2

− (2.5 equiv), Ph2S=O (2.5 equiv), AgF (2 equiv), 2,2′-bipyridine (1.5 equiv), and 2,3,11,12-dibenzo-
18-crown-6 (0.5 equiv) in THF (1.5 mL) at 60 °C for 0.5 h; bYields were determined by 19F NMR spectroscopy. cThe 18O content was determined by EI-MS.
dIsolated yield calculated based on substrate 1–1. eIsolated yield based on Ph2S=O consumed.
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radical38–40, and transition-metal-promoted41–44 reactions. As the
use of a CF3O-containing reagent is required, these approaches
cannot be directly applied to 18O-labeling trifluoromethoxylation.
Furthermore, the CF3O-containing reagents used are usually
volatile, expensive, or difficult to prepare. In contrast, in the above
protocol, CF3O moiety was formed from a reagent system con-
sisting of Ph3P+CF2CO2

−, which could be easily prepared and
easy-to-handle, an oxygen source and fluoride anion. Apparently,
this reaction provides a strategy for 18O-labeling tri-
fluoromethoxylation, which may be achieved by replacing the
oxygen source with 18O-source. 18O-trifluoromethoxylation may
show great value as 18O-labeling has found widespread application
in various research areas such as proteomics45–47 and synthetic
chemistry48–50.

The substrate scope of trifluoromethoxylation. Since difluor-
ocarbene could be oxidized and the subsequent tri-
fluoromethoxylation proceeded smoothly (Table 1, entry 21), we
then investigated the substrate scope of trifluoromethoxylation.
Figure 4 shows that electron-deficient, -neutral, and -rich benzyl
bromides were all converted to the desired products in moderate
to good yields (5–1 ~ 5–17). Various functional groups were
tolerated, e.g., halide, ketone, ester, alkene, cyano, nitro, ether,
and various heterocycles. Heterocycles usually have interesting
physicochemical properties, and therefore the easy access to
CF3O-containing heterocycles could be useful in the life sciences
(5–15 ~ 5–17). Transformation of secondary benzyl bromides
gave moderate yields (5–18 ~ 5–22). The diphenyl substituted
product (5–22) was unstable, and a heterolytic cleavage of the
C–OCF3 bond readily occurred to form a diphenyl-stabilized
methyl cation, hydrolysis of which led to an alcohol by product
(Ph2CH-OH) in 35% isolated yield. In addition to benzyl bro-
mides, allyl bromides were also converted under these conditions
(5–23 ~ 5–28). The reactivity of alkyl bromide (5–29) was much
lower than that of benzyl bromides. Alkyl iodides (5–30 ~ 5–33)
underwent the desired reaction smoothly to give the expected
products in moderate yields. A method for achieving direct access
to a flavone derivative was developed (5–34) and a moderate yield

was obtained for a large-scale reaction (5–4), demonstrating the
synthetic utility of this trifluoromethoxylation protocol.

Trioxsalen, a furanocoumarin and a psoralen derivative
obtained from plants, can be used for phototherapy treatment
of vitiligo and hand eczema51. A convenient route to the CF3O-
containing Trioxsalen derivative (8) was developed to further
show the synthetic utility of this trifluoromethoxylation strategy.
The trifluoromethoxylation of the precursor (7), prepared from
the commercially available m-benzenediol by a reported proce-
dure (Supplementary Fig. 1)52,53, occurred smoothly to give the
Trioxsalen derivative in a moderate yield (Fig. 5).

18O-Trifluoromethoxylation. 18O-Labeling trifluoromethoxyla-
tion is challenging, because all reported trifluoromethoxylation
methods have to use a CF3O-containing reagent and the corre-
sponding CF318O-reagents are difficult to prepare. Recently, Tang
used an 18O-labeled reagent, ArSO2–18OCF3, to explore and elu-
cidate the mechanism of the trifluoromethoxylation reaction; only
a 33% 18O content was obtained in the desired product37. They
proposed that the low 18O-content was because of the 16O-18O
exchange in the SO2–18OCF3 moiety from the reagent. We
employed 18O-labeled diphenyl sulfoxide (Ph2S=18O, 18O con-
tent: 89%) as the oxygen source in this difluorocarbene-oxidation-
based trifluoromethoxylation reaction. Since the reagent,
Ph2S=18O, did not contain any 16O atom, no 16O-18O exchange
would occur and therefore the expected products were obtained
with high 18O contents (Fig. 6).

Discussion
In summary, we have shown that difluorocarbene could be oxi-
dized to afford carbonyl fluoride. This process was confirmed by
the successful trifluoromethoxylation, 18O-trifluoromethoxyla-
tion, the observation of AgOCF3 species, and DFT calculations. It
is worth noting that the 18O-products were obtained with high
18O-contents. A CF3O-containing Trioxsalen derivative was
synthesized by this trifluoromethoxylation protocol. The oxida-
tion of difluorocarbene may provide more possibilities for
difluorocarbene chemistry.
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Fig. 3 Relative free energies for difluorocarbene-oxidation-based trifluoromethoxylation. All calculations were performed in Gaussian 09 D01 package.
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Methods
Typical procedure for trifluoromethoxylation. Into a 20 mL sealed tube were
added benzyl bromide 1–1 (0.8 mmol, 197.7 mg, 1.0 equiv), Ph3P+CF2CO2

−

(2.0 mmol, 712.0 mg, 2.5 equiv), Ph2S=O (2.0 mmol, 404.6 mg, 2.5 equiv), AgF
(1.6 mmol, 203.2 mg, 2.0 equiv), 2,2′-bipyridine (1.2 mmol, 187.4 mg, 1.5 equiv),
2,3,11,12-dibenzo-18-crown-6 (0.4 mmol, 144.2 mg, 0.5 equiv), and THF (6 mL)
under a N2 atmosphere. The tube was sealed and the reaction mixture was stirred
at 60 °C for 30 min. After the mixture was cooled to room temperature, the pure
product was isolated by flash column chromatography.

Typical procedure for 18O-trifluoromethoxylation. Into a 10-mL sealed tube
were added benzyl bromide 1–1 (0.2 mmol, 49.4 mg, 1.0 equiv.), Ph3P+CF2CO2

−

(0.5 mmol, 178.0 mg, 2.5 equiv), Ph2S=18O (0.5 mmol, 102.1 mg, 2.5 equiv), AgF
(0.4 mmol, 51.0 mg, 2.0 equiv), 2,2′-bipyridine (0.3 mmol, 47.0 mg, 1.5 equiv),
2,3,11,12-dibenzo-18-crown-6 (0.1 mmol, 36.0 mg, 0.5 equiv), and THF (1.5 mL)
under a N2 atmosphere. The tube was sealed and the reaction mixture was stirred
at 60 oC for 30 min, and the mixture was cooled to room temperature. The pure
product was isolated by flash column chromatography, and the 18O contents were
determined by GC-MS (EI) spectroscopy.

For the preparation of starting materials and the characterization data of the
products, see Supplementary Methods. For the NMR spectra of the compounds, see
Supplementary Figs. 5–184. For EI spectra of the 18O-products, see Supplementary
Figs. 185–214. For DFT calculations, see Supplementary Figs. 3 and 4 and
Supplementary Data 1 and 2.
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Fig. 6 Difluorocarbene-oxidation-based 18O-trifluoromethoxylation. Isolated yields. Reaction conditions: substrate 1 (0.2 mmol), Ph3P+CF2CO2
−

(2.5 equiv), Ph2S=18O (2.5 equiv), AgF (2 equiv), 2,2′-bipyridine (1.5 equiv), and 2,3,11,12-dibenzo-18-crown-6 (0.5 equiv) in THF (1.5 mL) at 60 °C for 0.5
h. The 18O contents were determined by EI-MS.
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