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In situ mapping of activity distribution and oxygen
evolution reaction in vanadium flow batteries
Kaijie Ma 1,2,3, Yunong Zhang1, Le Liu 1*, Jingyu Xi1, Xinping Qiu4, Tian Guan3 & Yonghong He2,3*

Understanding spatial distribution difference and reaction kinetics of the electrode is vital for

enhancing the electrochemical reaction efficiency. Here, we report a total internal reflection

imaging sensor without background current interference to map local current distribution of

the electrode in a vanadium redox flow battery during cyclic voltammetry (CV), enabling

mapping of the activity and reversibility distribution with the spatial resolution of a single

fiber. Three graphite felts with different activity are compared to verify its feasibility. In long-

term cyclic voltammetry, the oxygen evolution reaction is proved to enhance activity dis-

tribution, and homogeneity of the electrode and its bubble kinetics with periodic fluctuation is

consistent with the cyclic voltammetry curve, enabling the onset oxygen evolution/reduction

potential determination. Higher activity and irreversibility distribution of the electrode is

found in favor of the oxygen evolution reaction. This sensor has potential to detect in situ,

among other processes, electrochemical reactions in flow batteries, water splitting, electro-

catalysis and electrochemical corrosion.
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As a large-scale stable energy storage technology to tackle
the intermittent supply of renewable energy, redox flow
batteries are deserving attention for the superiority of

reliable and sustainable power supply1,2. Vanadium redox flow
batteries (VFB, VRB, VRFB) have advantages of unparalleled
cycle life for no cross-contamination issues (the same vanadium
ions with different valence states as active species), easy to scale
for high capacity of a single battery and environmentally friendly
for electrolyte recycling, thus, exhibiting promising prospect of
industrialization3,4. Nowadays, the pursuit of next-generation
VFBs with high electrochemical performance (power density,
energy density, long-term stability, etc.) motivates researchers to
focus on the effective amelioration of electrode5, membrane6,
electrolyte7–9, and cell structure design10. Conventional methods
to evaluate their effects on electrochemical performance can only
provide average information of the whole cell, including cyclic
voltammetry (CV)11, electrochemical impedance spectroscopy12,
charge-discharge test13, polarization curves14, long-term cycling
test15, and so on. However, the spatial distribution difference
of the cell is also the vital point affecting the performance of
energy efficiency, charge-discharge capacity, polarization16–19.
Since electrode is the primary active reaction site for the redox
couples, the activity, conductivity, polarization and reversibility
distribution of the electrode should be considered to fully parti-
cipate in the reaction of active species on the electrode.

As the mainstream electrode material of VFBs, graphite felt
provides multiple active reaction sites for its porous structures
with high area to volume ratio and maintains stability in the
strongly oxidizing and acidic environment20. To further improve
the electrochemical performance of the graphite felt, a series of
modification methods, such as thermal treatment21, electro-
catalyst introduction22, doping23, and electrode compression24

are utilized to enhance the reaction activity and reduce resistance
and polarization. However, spatial distribution of active species
introduced by above methods should be characterized to ensure
fully utilization of active species in the battery25. Otherwise, non-
uniform distribution of active sites may cause different local
reaction rates and therefore aggravate electrochemical polariza-
tion and concentration polarization. Despite that the whole per-
formance effected by the non-uniform distribution can be
detected by the polarization curve26, it cannot in situ determine
the local distribution information (active site distribution, addi-
tive distribution, porosity, etc). Besides, activity difference ren-
dered by poor charge transfer on the electrode would lead to large
overpotentials and thus oxygen evolution reaction (OER)
occurs27. Efforts have been payed either to investigate how the
electrocatalyst affects OER kinetics28,29 or directly image the
growth of oxygen bubbles30,31. As electrode corrosion caused by
the OER might occur, the relationship between the local activity
distribution and the oxygen bubble location on the electrode
should be determined to inhibit the OER for cell performance
optimization.

Local current distribution is an intuitive indicator to char-
acterize activity distribution and reaction kinetics of the porous
electrode. Uniform current distribution demonstrates the con-
sistent reaction rate. Traditional in situ measurement techniques
for current distribution, such as potential probes26, shunt-
resistors32, and printed circuit boards18 are based on the Ohm’s
law, whose detection results may be affected by the cell. As lim-
ited spatial resolution of the above techniques, only the flow rate
and other macroscopic factors can be quantified on the current
distribution33. Optical imaging detection method with high spa-
tial resolution and sensitivity, high throughput and minimal
interference is a promising option to detect the local current
density distribution caused by active reaction site, additive dis-
tribution and other microscopic factors34.

Optical imaging sensors such as surface plasmon resonance
imaging (SPRi) not only provide spatially resolved microscopic
imaging, but also allow simultaneous detection of real-time
kinetic process. SPRi sensor is a powerful tool for mapping
physical quantities like local electrochemical current34–37

and measuring the reaction variation process38–42. Similar to
SPRi sensors in detecting surface refractive index distribution,
imaging sensors based on total internal reflection (TIRi), which is
an ancient method but has new development in recent years43,44,
have potential in mapping local current distribution of VFBs for
the following reasons. First, due to the lack of gold film, there is
no interference of Faraday current from the gold film to the
electrochemical process of the measured substance, which occurs
in SPRi sensors41. Second, the problem that the gold film of the
SPRi sensor is easy to fall off in the strongly oxidizing and acidic
VFB operating environment is also avoided (Supplementary
Fig. 1). Third, coupling element (prism, etc.) used in the TIRi
sensor is inactive in surface reaction and has the feasibility of
long-term utilization.

Herein, we present an unprecedented method of imaging
surface activity distribution of a VFB electrode by mapping the
local current density distribution with the TIRi sensor, which not
only images the location of graphite felt fibers, but also detects
their local electrochemical reaction kinetics. By CV, a graphite felt
electrode in a three-electrode electrochemical cell is imaged by the
TIRi sensor and simultaneously the time-varying refractive index
of the positive electrolyte is recorded by the sensor to acquire the
local current density. The peak oxidation/reduction current
densities, their ratio and the peak potential separation value are
obtained to map the local activity and reversibility distribution.
The generated bubbles from oxygen evolution reaction on the
electrode surface are imaged in real time to explore the rela-
tionship between the local activity distribution and bubble loca-
tion distribution. This TIRi sensor has potential to in situ detect
the electrochemistry kinetics distribution of the electrode in flow
batteries, water splitting, electrocatalysis and electrochemical
corrosion for performance optimization.

Results
TIR imaging of graphite felt fibers. Graphite felt is the prevalent
electrode material in VFBs. To verify the feasibility of the TIRi
sensor for mapping the activity and reversibility distribution of
electrodes, graphite felt (GF), thermal activated graphite felt (TGF)
and porous graphite felt (PGF) are used as the electrodes in this
work. SEM images reveal that the surfaces of GF and TGF are
smooth while that of PGF has many holes. Their typical diameter
is about 13 μm (Supplementary Fig. 2). The home-built TIRi
system in Fig. 1a, b was utilized to image the electrode and detect
the kinetics of vanadium ions during the electrochemical process
(described in Methods). To verify the TIR image of graphite felt
fibers, two situations (insets in Fig. 1c, d) of the reservoir-coupled
sensor module (RCS) without and with graphite felt contact are
compared in Fig. 1c, d. Due to different reflected light intensity at
the prism interface in contact with the graphite felt and electrolyte
(refractive index: ngraphite ¼ 2:8363; nelectrolyte ¼ 1:3566; nprism ¼
1:75 at the wavelength of 632.8 nm)45, the fibers are visualized in
Fig. 1f with graphite felt contact while the image with homo-
geneous intensity distribution is the situation without graphite
felt contact in Fig. 1e. The enlarged views of two regions marked
as red and blue rectangles in Fig. 1f demonstrate the traces of
fibers with the diameter of ~16 μm in Fig. 1g, h, which is slightly
larger than that (13 μm) in SEM images (Supplementary Fig. 2)
owing to the diffraction effect. Their relevance of the fiber dia-
meters further confirms the traces in TIR images are graphite
fibers. Since the reflected light intensity varies quantitatively with
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the refractive index variation, and the detection depth of the
reflected light is consistent with the penetration depth (~938 nm)
of the evanescent wave, the TIR image reveals the RI of the
contact interface.

Local current density mapping by the TIRi sensor. As the
image intensity varies along with the RI of electrolyte on the
electrode surface (Supplementary Fig. 3), it is feasible to map
the current density distribution of electrode surface by the
quantitative relationship between RI and current density.
During a CV, electrochemical reaction of the positive electro-
lyte (0.1 M VO2+ and 2 M H2SO4) takes place on the TGF
electrode by a potential sweep between 0 V and 1.7 V at a scan
rate of 10 mV s−1. The CV curve detected by the electro-
chemical workstation (EW) and its peak oxidation current
densities ipa, the peak reduction current densities ipc and the
peak potential separation value ΔE are displayed in Fig. 2a.
When the potential gradually increases, VO2+ ions on the TGF
are oxidized to VO2

+ ions and the oxidation current raises.
Inversely, VO2

+ ions are reduced to VO2+ ions and the
reduction current increases. The first TIR image is displayed in
Fig. 2b, whose regions with visible optical contrast traces are
multiple fibers in contact with the prism. The enlarged views of
three regions in Fig. 2b reveal three target surroundings with no
fiber (A), single fiber (B) and multiple fibers (C) within the
range of 200 μm in diameter. The yellow rectangles in Fig. 2d, e

are the fiber traces. The intensity images and the intensity
variation images at t1–t6 in a cycle demonstrate the large
intensity decrease and recovery (Supplementary Fig. 4). To
quantify the time-varying intensity in a cycle, the averaged
intensity points of A, B and C are shown in Fig. 2f. By
deconvolution calculation (Supplementary Figs. 5–9), the cur-
rent densities of A, B and C in Fig. 2g reflect their activity
(represented by the peak oxidation current densities |ipa| and
the peak reduction current densities |ipc|) and reversibility
(represented by the ratio of two peaks |ipc/ipa| and the peak
potential separation value |ΔE|) differences. For example, ipa
and ipc of target C whose surroundings with multiple fibers are
the largest, illustrating target C has the largest activity com-
pared with A and B. However, since the detection signal is
contributed by the concentration variation of the electrolyte
from the electrochemical reaction of the local graphite fibers
within the local penetration depth of the evanescent field, and
the concentration variation of the diffused electrolyte from
the reaction of the graphite fibers within the diffusion layer, the
reaction rate (standard rate constant) and the density of the
fibers contribute to the local current density, which is verified
by the numerical simulation of the CV process (Supplementary
Figs. 10–14). Therefore, the current density cannot be deter-
mined simply by the fiber density on the interface. The simi-
larity of the CV curves obtained by the EW in Fig. 2a and TIRi
sensor in Fig. 2g reveals the capability of the TIRi sensor to map
current density distribution of the electrode. The mappings of
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Fig. 1 Total internal reflection imaging (TIRi) sensor system for current density detection of electrode. a Schematic of the TIRi sensor system. A: LED; B:
objective lens; C: aperture; D: achromatic lens; E: bandpass filter; F: linear polarizer; G: reservoir-coupled sensor module (RCS); H: imaging lens; I: charge
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views of rectangular regions marked in f.
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|ipa|, |ipc|, |ipc/ipa| and |ΔE| distribution are obtained in
Fig. 2h–k, which demonstrate their differences. The larger |ipa|
and |ipc| regions (labeled by the dashed oval in Fig. 2h, i) has
higher activity, but the reversibility of the corresponding
regions in Fig. 2j, k are worse in view of the |ipc/ipa| away from
one and larger |ΔE|. The TIRi sensor enables the above four
parameters to characterize activity and reversibility distribution
of the electrode. Since the total reflection at the areas where the
graphite fiber in direct contact with the prism is not satisfied,
the method cannot give an accurate current density by the
electrolyte concentration variations at these areas. The current
density of the associated void areas immersed in the electrolyte
is mainly from the surrounding graphite fibers, which can
reflect the activity distribution of the surrounding graphite
fibers (Supplementary Fig. 15). The TIRi sensor is also utilized
to detect electrochemical reaction of the positive electrolyte
with different concentrations of VO2+ and 2 M H2SO4 on the
TGF whose consistent results verify its feasibility (Supple-
mentary Fig. 16).

Activity and reversibility distribution comparison. To further
verify the feasibility of the TIRi sensor to determine activity and
reversibility distribution, the CV curves of GF, TGF, and PGF are
compared. A cyclic sweep potential is performed to induce redox
reaction of vanadium ions on the GF, TGF and PGF respectively
at a scan rate of 1 mV s−1. Their CV curves recorded by EW in
Fig. 3a indicate that the activity and reversibility of the PGF is the
best for its highest |ipa| and smallest |ΔE| while that of the GF is
the worst for its lowest |ipa| and largest |ΔE|. The performance of
the TGF locates between GF and PGF. This attributes to func-
tional groups on the TGF and high area to volume ratio for the
porous structure of the PGF compared with the GF (Supple-
mentary Fig. 2). The intensity variations of the single point D1
(211, 347) in the GF, TGF and PGF are recorded by the TIRi
sensor in Fig. 3b, which firstly decrease sharply for the oxidation
current peak, and then remain stable for about 550 s away from
reaction potential, further recover to the almost initial intensity
for the reduction current peak. By deconvolution of the data in
Fig. 3b, the obtained CV curves in Fig. 3c are consistent with that
recorded by EW in Fig. 3a. Besides, the intensity variations and
CV curves from full-image and the segment (point D1) are
compared with good consistency (Supplementary Fig. 17, 18).
The |ipa| mappings of the GF, TGF, and PGF in Fig. 3d
demonstrate distribution difference of local peak oxidation cur-
rents. To quantify the distribution difference, the counts of the |
ipa| distribution are compared in the bottom right of Fig. 3d for
the GF, TGF, and PGF. The peak position of Gaussian fitting
curve for |ipa| distribution of the PGF is the largest while the full
width at half maximum (FWHM) of the TGF is the smallest,
which imply that the PGF has the highest activity and the dis-
tribution difference of the TGF is the smallest. The |ipc| mappings
and the distribution are similar to |ipa| distribution. The only
difference is that the |ipa| of the corresponding region is larger
than the |ipc|, which illustrates this reaction is not completely
reversible. The region with higher |ipa| could provide larger |ipc|
compared with other regions in Fig. 3d, e. The |ipc/ipa| and |ΔE|
mappings and distributions in Fig. 3f, g manifest that the PGF has
the best reversibility for its |ipc/ipa| closest to one and smallest
|ΔE|. In detail, the quantitative peak position and FWHM of |ipa|,
|ipc|, |ipc/ipa| and |ΔE| are compared for the GF, TGF, and PGF in
Fig. 3h. It indicates that the TIRi sensor can not only quantify
the activity and reversibility of the electrode, but also measure
their distribution differences. However, it can only reflect the
electrochemical activity distribution of the thin surface layer of
graphite fibers (Supplementary Fig. 19). Furthermore, parallel

measurements under different view of fields and parallel mea-
surements from the same batches of graphite felts are executed,
whose relatively consistent results verify that the method is cap-
able of distinguishing the activity and reversibility differences
(Supplementary Figs. 20–26).

Bubble kinetics of oxygen evolution reaction. To demonstrate
the unique imaging advantage of the TIRi sensor, the process of
OER from electrolysis of water in long-term CV is evaluated. A
long-term CV is conducted on the TGF with positive electrolyte
(0.1M VO2+ and 2M H2SO4) between 0 V and 1.7 V at a scan rate
of 10mV s−1. By calculating the counts of points (5 × 5 pixels as
one point) covered by bubbles in contact with the surface, the
counts of bubbles label the effective oxygen output from electrolysis
of water. The bubble generation in the narrow potential window is
more moderate, which is convenient for statistical calculation of
bubbles (Supplementary Figs. 27, 28, Supplementary Video 1). As
the recorded bubbles are from bubbles generated on the outer
surface of the graphite felt and also from bubbles inside the gra-
phite felt that diffuse to the prism, Fig. 4a shows the time-varying
counts of bubbles in the 1st–16th cycles, which gradually increase
accompanied by periodic fluctuations and finally reach a stable
equilibrium state. The averaged counts of bubbles in each cycle are
plotted in the inset, and the fitting function is y ¼
�18207:58 exp � x

26:66

� �þ 18756:95 with R2= 0.9943, where y is
counts of bubbles, x is cycle number. Besides, three types of the
local bubble dynamics are compared to confirm the bubble dis-
tribution (Supplementary Fig. 29). To study the periodic fluctua-
tions of the bubbles, oxygen evolution/reduction reaction of 2M
H2SO4 electrolyte on the TGF is drove at the same condition. In
Fig. 4b, the CV curve (black curve) demonstrates the onset oxi-
dation (1.37 V) and reduction (0.99 V) potentials exist (black
dashed arrows: potential sweep direction) in a cycle. The counts of
bubbles (blue curve) in the 29th cycle decrease very slowly, then
start to increase rapidly at the onset oxygen generation potential
(labeled as a green star) 2H2O ! 4Hþ þ O2 þ 4e�ð Þ46 and
maintain stable from 1.7 V to the onset oxygen consumption
potential (labeled as a yellow star), finally decrease sharply to the
initial state O2 þ 2Hþ þ 2e� ! H2O2ð Þ47 and slightly increase
(blue dashed arrows: bubble variation direction). Coincidentally,
the onset oxygen generation/consumption potential is consistent
with the onset oxidation/reduction potential, which indicates that
the TIRi sensor has potential to determine the onset potential of
the OER by mapping the bubble kinetics directly rather than CV/
polarization curves. Furthermore, the kinetic curves of the counts
of bubbles and the obtained onset potentials are relatively con-
sistent at different cycles to further verify the feasibility of visually
determining the onset potential of the oxygen evolution/reduction
reaction by the counts of bubbles (Supplementary Fig. 30).
Meanwhile, this method provides another unique advantage of
mapping the onset oxidation potential distribution by measuring
the local bubble kinetics of different regions, while CV/polarization
curve can only present the whole onset oxidation potential. By
combining the |ipa| mapping of the first cycle and the bubble
covered regions of the average intensity image in the 29th cycle
(blue areas in Fig. 4c), the combined images of bubble variation at
0, 1.68, 0.78, and 0.06 V (red points in Fig. 4b) are displayed in
Fig. 4c. The insets (the enlarged view of the marked rectangle)
clearly demonstrate distinct bubble size variation in one cycle. The
video of the entire electrochemical reaction and OER process is
attached in Supplementary Information as Supplementary Video 2,
which shows that the oxygen evolution reaction begins at the 1st
cycle and the region R with high activity is more likely to generate
bubbles (Supplementary Fig. 31).
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Activity distribution of TGF in long-term CV. For further
studying the vanadium ion redox reaction and oxygen evolution
reaction on the electrode, the potential window between 0 and
2.0 V is applied to enable a long-term CV on the TGF with the
positive electrolyte (0.1 M VO2+ and 2M H2SO4) at a scan rate of
10 mV s−1. The CV curves of the 5th, 15th, 25th, and 35th cycles
by EW in Fig. 5a reveal relative consistency, but their |ipa|, |ipc|
and |ΔE| gradually increase, which imply the increasing activity
and deteriorating reversibility. However, bubble generation would
block the local electrochemical reactions and reduce the reaction
area, so the peak oxidation/reduction currents of the CV curves
decrease in the first few cycles, and then increase along with the
increasing electrochemical activation effect (Supplementary
Fig. 32). The oxygen evolution reaction in a large potential
window is required to generate a large number of oxygen bubbles,
resulting in a higher degree of electrode activation (Supplemen-
tary Figs. 27, 28, Supplementary Video 3). The corresponding CV
curves of a single point E (30, 243) by the TIRi sensor are pre-
sented in Fig. 5b, in which the redox curves of vanadium ions are
similar with that recorded by EW in Fig. 5a. Since the selected
point E is not covered by bubbles, its CV curve does not display
the OER (blue dash rectangle) in Fig. 5b. The |ipa| mappings are
successively displayed in Fig. 5c in which dark brown areas are
the regions covered by bubbles. The bubbles grow rapidly in the
first five cycles (Supplementary Fig. 33), followed by an equili-
brium state and then maintain stable. Meanwhile, although |ipa| is
diverse at different regions in the same cycle, a gradual increase of
the |ipa| at the same region emerges, which indicates the
increasing activity owing to the generated oxygen-containing
functional groups on the electrode31,48. The |ipc|, |ipc/ipa| and |ΔE|
mappings of the TGF at different cycles are also compared
(Supplementary Fig. 34). The quantitative result in Fig. 5d shows
the |ipa| gradually increases. The peak positions and FWHMs of

the Gaussian fitting curves in Fig. 5d demonstrate the increasing
peak position and decreasing FWHM in Fig. 5e which indicate
that the activity of the TGF is rising and its distribution becomes
more homogeneous attributing to the growing oxygen-containing
functional group on the electrode.

Relationship between activity and bubble distribution. In situ
monitoring of the local current density distribution and the
bubble generation of OER by the TIRi sensor enables to deter-
mine the relationship between the activity distribution of the
electrode and OER distribution. In detail, as the refractive index
of the bubble is far from that of the electrolyte, the reflected light
from the region occupied by the bubble is very strong (Supple-
mentary Fig. 9) and out of the almost linear range (RL in Sup-
plementary Fig. 3). So the local current density cannot be
calculated correctly by deconvolution of this reflected light
intensity. To avoid it, the |ipa|, |ipc|, |ipc/ipa| and |ΔE| of the 1st
cycle without bubble are utilized to assess the activity and
reversibility of the electrode. After excluding fiber contact regions
with low reflected intensity for its absence from the high sensi-
tivity range (Supplementary Fig. 35), the ranges of |ipa| and |ΔE|
are divided into 17 intervals, respectively. The |ipa| and |ΔE|
mappings locating in each interval are shown in Fig. 6a, d
respectively (Supplementary Figs. 36, 39). For example, there are
3878 points locating in the |ipa| interval of 1.54–1.65 mA cm−2 in
Fig. 6a. The distinguishing location distributions of |ipa| and |ΔE|
in different intervals attribute to the diverse activity and rever-
sibility distributions in different locations. After recording the
counts of points covered by bubbles and electrolyte in each |ipa|
and |ΔE| interval of the 35th cycle respectively, the distribution of
|ipa| is plotted in Fig. 6b while that of |ΔE| is in Fig. 6e. The peak
position of |ipa| is about 2.31 mA cm−2 and that of |ΔE| is 0.72 V.

c

ba

0 V

Bubble variation 
0.06 V1.68 V 0.78 V High

Low

500 μm

12

×103

×103

12

8

4

0
4 8

Cycle

Average count

y = –18207.58 exp (–x/26.66)

R2 = 0.9943

+18756.95

12 16
8

C
ou

nt
s 

of
 b

ub
bl

es

C
ou

nt
s 

of
 b

ub
bl

es

C
ur

re
nt

 (
m

A
)

C
ou

nt
s 

of
 b

ub
bl

es
4

0
–4

8

9

10

11

12

0

4

8

12

0 0.0 0.4 0.8
Potential (V) vs. SCE

1.2 1.61000 2000 3000

Time (s)

4000 5000

TGF

TGF

0.06 V

0.78 V

1.68 V

×103

0.99 V

1.37 V

Cyclic voltammetry

Reduction oxidation

Bubble variation

0 V
1st - 16th cycles

29th cycles

0.1 M VO2+ +2 M H2SO4

@ 10 mV s–1

@ 10 mV s–1

Fig. 4 Bubble kinetics of oxygen evolution reaction in long-term cyclic voltammetry (CV). a The counts of bubbles in the 1st to 16th cycles during long-term
CV of the TGF in the positive electrolyte of 0.1 M VO2+ and 2M H2SO4 at a scan rate of 10 mV s−1 recorded by the TIRi sensor. Inset, the average counts
of bubbles in each cycle and the fitting curve. b CV curve of the TGF in the positive electrolyte of 2M H2SO4 and the counts of bubbles via the sweep
potential in the 29th cycle. Black and blue dashed arrows indicate the potential sweep direction. Dashed lines point out the onset oxygen generation (green
star) potential and consumption (yellow star) potential. c Bubble variation in combination with the mapping of the peak oxidation current densities |ipa| at
the potential of 0, 1.68, 0.78, and 0.06 V during the 29th cycle.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-13147-9 ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:5286 | https://doi.org/10.1038/s41467-019-13147-9 | www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


By calculation, the probability of bubbles (Pbubble ¼ Cbubble
CbubbleþCElectrolyte

,

Cbubble is counts of regions covered by bubbles, CElectrolyte is
counts of regions covered by electrolyte) generated in each |ipa|
interval is displayed in Fig. 6c and that of |ΔE| in Fig. 6f, which
indicate that bubbles are more likely to generate on the region
with higher |ipa| (correlation coefficient: 0.9385) and larger |ΔE|
(correlation coefficient: 0.9605). The probability of bubbles versus
|ipc| and |ipc/|ipa| are also studied but the correlation is not sig-
nificant (Supplementary Figs. 37, 38, 40). It means that the OER
has larger probability to take place on the electrode with high
activity and irreversibility (Supplementary Fig. 41). The high
irreversibility renders the overpotential and then side reaction
(OER, etc.) occurs27. By adjusting the scan rate to investigate the
redox reaction of vanadium ions and the OER kinetics, the peak

oxidation/reduction current of vanadium ions raises dramatically
along with the increasing scan rate, however the onset potential of
the OER is less affected by the scan rate. Besides, it is faster to
generate bubbles and reach the equilibrium state at lower scan
rate (Supplementary Figs. 42, 43). This attributes to the enough
current density of the OER and its longer duration time at lower
scan rate. Hence, the TIRi sensor provides an opportunity to
detect the activity distribution and bubble distribution at the
same time, and further to determine their relationship.

Discussion
We have proposed a total internal reflection imaging (TIRi)
sensor for mapping the local electrochemical reactions on gra-
phite felt of the VFB during CV by detecting the local current
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density distribution, enabling imaging the activity and reversi-
bility distributions with the spatial resolution of a single fiber.
Without background current interference compared with SPRi
sensors41 (Supplementary Fig. 44), the TIRi sensor is capable of
imaging the redox reaction of vanadium ions and the OER by
measuring the CV curves and recording the bubble location. The
local CV curves recorded by the TIRi sensor are consistent with
the whole CV curve recorded by EM, but the TIRi sensor can
record the CV curves at different positions of the electrode
simultaneously. By extracting the four parameters of the different
CV curves, the mappings of |ipa|, |ipc|, |ipc/ipa| and |ΔE| are
compared to determine the activity and reversibility distributions
for three graphite felts with different activity, which verify the
feasibility of the sensor. In long-term CV, the activity distribution
and homogeneity of the electrode are enhanced by introducing
the oxygen-containing functional group from the OER, whose
generated bubbles periodically fluctuate and gradually increase to
a stable equilibrium state. It provides a tool to measure the onset
oxygen evolution potential, which is verified by the CV curve. It is
revealed that higher activity and irreversibility play essential roles
on bubble generation of the OER. Compared with existing
techniques for directly imaging the bubble location31 and mea-
suring the whole activity of the electrode in separation22, the
present work combines the activity distribution detection with
the bubble distribution imaging to determine the factors affecting
the OER. This simple TIRi sensor has potential to in situ detect
electrochemical reaction in flow batteries, water splitting, elec-
trocatalysis, electrochemical corrosion and so on.

Methods
Materials. Equilateral prisms (Chinese ZF6 glass, length: 27mm, thickness: 20 mm)
were ordered from Fuzhou Alpha Optics Co., Ltd. (Fuzhou, China). Glucose was
ordered from Aladdin Industrial Corporation (Shanghai, China). Vanadyl sulfate
(VOSO4·3.5H2O, 99% purity) was ordered from Shenyang Haizhongtian Fine
Chemical Co., Ltd. (Shenyang, China). Sulfuric acid (H2SO4) was purchased from
Dongguan Dongjiang Chemical Reagent Co., Ltd. (Dongguan, China). Ferric
trichloride (FeCl3, 99% purity) and sodium nitrate (NaNO3, 99% purity) were
ordered from Tianjin Damao Chemical Reagent Factory (Tianjin, China). Graphite
felts (10 mm× 10mm× 5.4 mm) were purchased from Gansu Haoshi Cabon Fiber

Co., Ltd. (Gansu, China). All other chemical reagents were purchased from Shenzhen
Tianxiang Huabo Co., Ltd. (Shenzhen, China).

Preparation and characterizations of electrode materials. The preparation
method of TGF and PGF was detailedly described in the reported work49. In brief,
after copiously rinsed with deionized water (Milli-Q water, 18.2 MΩ cm), graphite
felt (GF) was thermally treated in the muffle furnace at 420 °C for 10 h to become
the TGF. The PGF was prepared as follows. Firstly, the TGF immersed in 0.15M
FeCl3 and 1M NaNO3 solution conducted hydrothermal reaction at 95 °C for 6 h
to grow FeOOH nanorods. Secondly, after washed with deionized water and dried
at 60 °C, the TGF with Fe3O4 was acquired by annealing in N2 gas at 900 °C for 3 h.
Thirdly, the obtained TGF with Fe3O4 was immersed in concentrated hydrochloric
acid for 12 h and washed with deionized water until the solution was neutral.
Finally, the PGF was obtained by further drying at 60 °C to remove water. Scanning
electron microscopy (SEM, field emission scanning electron microscope at 5 kV,
ZEISS SUPRA®55) was utilized to characterize the size and the morphology of the
GF, TGF and PGF in order to distinguish the electrochemical activity of three
electrodes combined with the TIRi sensor.

TIRi system for in situ detection of electrodes. The home-built TIRi system was
utilized to image the electrode and detect the kinetics of vanadium ions during the
electrochemical process. It consists of three parts: optical system, three-electrode
system and display system (Supplementary Fig. 45). Similar to our previous work50,
in Fig. 1a, the incident light from a red light emitting diode (A, LED, LR W5AP,
Osram, Germany, central wavelength of 632.8 nm, electric power of 5W) equipped
with a 25× objective lens (B, GCO-2104, Daheng Optics, China) was collimated by
an achromatic lens (D, GCL-010652, Daheng Optics, China, focal length 50 mm)
into parallel light after passing through a homemade 0.3 mm aperture (C), and
then reformed by a bandpass filter (E, FL632.8-10, Thorlabs, USA, central wave-
length 632.8 nm, bandwidth 10 nm) and a linear polarizer (F, GCL-050003, Daheng
Optics, China, extinction ratio of 500:1) to the p polarized light for its higher
sensitivity than s polarized light (Supplementary Fig. 46). It radiated the total
reflection interface of the reservoir-coupled sensor module (G, RCS) at the most
sensitive angle near the total reflection angle (θTIR). By adjusting the imaging lens
(H, GuangZhou ZhiSai Electronic Technology Co., LTD, China), the parallel
reflected light was focused on a charge coupled device (I, CCD, Retiga R3,
Qimaging, Canada, 1920 × 1460 pixels, 4.54 × 4.54 μm2 pixel size, thermoelectric
cooled to −20 °C) to record a series of images of the graphite felt with the imaging
area of 2.92 × 3.84 mm2. The expanded view of the three-electrode system in Fig. 1b
shows that a prism (G2) was combined with a fluid reservoir (G5) by a prism
holder (G1) and a reservoir holder (G6), in which a strut (G4) pushed the graphite
felt (G3) (10 × 10 × 5.4 mm3, compression ratio: 8%) in close contact with the
prism. The platinum electrode (G7, Pt017, Tianjin Aida Hengsheng Technology
Development Co., LTD, China, ϕ 1 mm × 37 mm, purity: 99.95%) was inserted
from the middle of the side and through the graphite felt with the preferable
conductivity and corrosion resistance as the working electrode51 (Supplementary
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Fig. 47). A graphite rod (G8) and a saturated calomel electrode (G9, SCE) partially
immersed in the electrolyte were the counter electrode and reference electrode.
Drove by an electrochemical workstation (K, EW, PARSTST 2273), two computers
(J, L, the display system) received images from the TIRi sensor and CV curves from
the EW respectively.

Cyclic voltammetry measurement of electrodes. CV measurement was per-
formed and recorded by the EW and TIRi sensor. Prior to experiment, 9 mL elec-
trolyte of 0.1M VO2+ and 2M H2SO4 was injected into the RCS and the graphite
felt was infiltrated by vacuum pumping. Subsequently, the RCS was installed on the
TIRi sensor before the incident light was adjusted and the imaging lens was
modulated to achieve high resolution imaging. Finally, after setting the potential
window (0.5 V–1.2 V, 0 V–1.7 V, 0 V–2.0 V), scan rate (1mV s−1, 10mV s−1),
cycles, exposure time (10ms) and collection interval (2 s), optical and electro-
chemical measurements were conducted. The optical devices (CCD) and electrode
potential are synchronized by manually pressing the “Start” button of the EW and
image acquisition button of the TIRi sensor almost simultaneously.

Data processing. A series of TIRi images captured by the CCD camera were
converted to a three-dimensional matrix by a Matlab program. Each intensity
point of the averaged image was acquired by smoothening over adjacent 5 × 5
pixels of the raw image as region of interest (ROI) (Supplementary Fig. 17).
Considering spatial scale difference of the captured image and the incident angle
of 51.5°, one pixel of the image in the vertical direction represents 2 μm of the
object while that in the horizontal direction represents 3.21 μm of the object. So
the actual size of the object is determined by counting the number of pixels or
points. During a CV, the initial averaged image was subtracted from all the
subsequent averaged images to become the intensity variation images. Each
point of the intensity variation image was converted into a CV curve by
deconvolution calculation (Supplementary Figs. 5–9). By extracting the peak
oxidation/reduction current density and their corresponding potentials, the
mapping of the peak oxidation current densities (|ipa|), the peak reduction
current densities (|ipc|), the ratio of two peaks (|ipc/ipa|) and the peak potential
separation value (|ΔE|) were obtained.

Data availability
Data supporting this manuscript are available from the corresponding authors upon
reasonable request. The source data underlying Fig. 1e, f, Fig. 2a, b, f–h, Fig. 3, Fig. 4,
Fig. 5 and Fig. 6 are provided as a Source Data file.

Code availability
Code supporting this manuscript are available from the corresponding authors upon
reasonable request.
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