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New elevation data triple estimates of global
vulnerability to sea-level rise and coastal flooding
Scott A. Kulp1* & Benjamin H. Strauss 1

Most estimates of global mean sea-level rise this century fall below 2m. This quantity is

comparable to the positive vertical bias of the principle digital elevation model (DEM) used to

assess global and national population exposures to extreme coastal water levels, NASA’s

SRTM. CoastalDEM is a new DEM utilizing neural networks to reduce SRTM error. Here we

show – employing CoastalDEM—that 190M people (150–250M, 90% CI) currently occupy

global land below projected high tide lines for 2100 under low carbon emissions, up from 110

M today, for a median increase of 80M. These figures triple SRTM-based values. Under high

emissions, CoastalDEM indicates up to 630M people live on land below projected annual

flood levels for 2100, and up to 340M for mid-century, versus roughly 250M at present. We

estimate one billion people now occupy land less than 10 m above current high tide lines,

including 230M below 1 m.
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Driven by climate change, global mean sea level rose 11–16
cm in the twentieth century1,2. Even with sharp,
immediate cuts to carbon emissions, it could rise another

0.5 m this century3–12. Under higher emissions scenarios, twenty-
first century rise may approach or in the extremes exceed 2 m in
the case of early-onset Antarctic ice sheet instability4,8. Trans-
lating sea-level projections into potential exposure of population
is critical for coastal planning and for assessing the benefits of
climate mitigation, as well as the costs of failure to act.

Land topography and elevation, as represented by DEMs, lie at
the foundation of such translation. High-accuracy DEMs derived
from airborne lidar are freely available for the coastal United
States, much of coastal Australia, and parts of Europe, but are
lacking or unavailable in most of the rest of the world. By con-
trast, SRTM is a near-global satellite-based DEM covering lati-
tudes from 56 south to 60 north and thereby land home to 99.7%
of world population (based on 2010 Landscan data13). It is the
standard choice for extreme coastal water level (ECWL) exposure
analysis covering areas where high-quality elevation data are
unavailable or prohibitively expensive14–21.

SRTM models the elevation of upper surfaces and not bare
earth terrain. It thus suffers from large error with a positive bias
when used to represent terrain elevations. This is especially true
in densely vegetated and in densely populated areas22–25. Mean
error in SRTM’s 1–20 m elevation band is 3.7 m in the US and
2.5 m in Australia when using DEMs from airborne lidar as
ground truth26. Spaceborne lidar from NASA’s ICESat satellite27,
a sparser, noisier and less reliable source of ground truth than
airborne lidar, indicates SRTM has a global mean bias of 1.9 m in
the same band26. This degree of error leads to large under-
estimates of ECWL exposure28, and exceeds projected sea-level
rise this century under almost any scenario3–12.

In this article, we present ECWL exposure assessments that
address this problem by employing CoastalDEM, a new DEM
developed using a neural network to perform nonlinear, non-
parametric regression analysis of SRTM error. This model
incorporates 23 variables, including population and vegetation
indices, and was trained using lidar-derived elevation data in the
US as ground truth. CoastalDEM covers the same near-global
latitudes as SRTM while reducing vertical bias to decimeter scale
(0.01 m and 0.11 m as measured versus airborne lidar in the
coastal US and Australia; −0.29 m as tested versus spaceborne
lidar globally). CoastalDEM also cuts RMSE roughly in half
compared to SRTM26. In low-elevation US coastal areas (where
SRTM elevation is less than or equal to 20 m) in which popula-
tion density exceeds 20,000 per square kilometer, including areas
in 14 coastal cities such as Miami, New York City, and Boston,
CoastalDEM reduces linear vertical bias from 4.71 m to less than
0.06 m. An overview of the methods used to generate Coast-
alDEM can be found in the methods section.

Central estimates in the recent literature broadly agree that
global mean sea level is likely to rise 20–30 cm by 20503–10. End-
of-century projections diverge more, with typical central esti-
mates ranging from 50–70 cm under representative concentration
pathway (RCP) 4.5 and 70–100 cm under RCP 8.53,9,10,12, though
more recent projections incorporating Antarctic ice sheet
dynamics indicate that sea levels may rise 70–100 cm under RCP
4.5 and 100–180 cm under RCP 8.5, and could even exceed 2 m or
more in far-tail scenarios4,7,8,11. Via a structured elicitation of
opinion, experts now estimate there is a 5 percent chance 21st
century sea-level rise will exceed 2 m29. Essentially all estimates
are below the vertical bias of SRTM. Of these, we consider two
representative sea-level projections for this assessment, labeled
here as K143 and K174. K14 is a probabilistic projection that is
closely aligned with IPCC findings10,30, while K17 is not prob-
abilistic and emphasizes the possibility of more rapid sea-level

rise because of unstable ice-sheet dynamics31. Further details of
these models are discussed in the methods section.

Both sets of projections are conditional on global carbon
emissions; RCPs 2.6 (low emissions), 4.5 (moderate emissions),
and 8.5 (high emissions) are considered for this analysis32. These
models use 2000 as the baseline year (zero sea-level rise), which
we treat as present-day with respect to sea level for relevant
vulnerability estimates. The results we present here are based on
median sea-level projections, along with 90% credible intervals
when derived from K14, and 90% intervals from simulation fre-
quency distributions when derived from K17 (we abbreviate both
interval types as CI).

Because higher and more frequent coastal flooding is a direct
impact of sea-level rise33,34, we also assess potential exposure to
ECWLs resulting from annual floods added on top of rising seas.
We use local one-year return level heights (RL1) from the Global
Tides and Surge Reanalysis35. These return levels vary spatially
from a 5th percentile of 0.2 m to a 95th percentile of 2.8 m above
local mean higher-high water (MHHW)—roughly speaking, the
high tide line—across the near-global set of coastal cells assessed
in this study (median value, 0.7 m).

We find that assessments using CoastalDEM instead of SRTM
multiply median global ECWL exposure by roughly three or more
for all scenarios and models considered. The majority of people
living on implicated land are in developing countries across Asia,
and chronic coastal flooding or permanent inundation threatens
areas occupied by more than 10% of the current populations of
nations including Bangladesh, Vietnam, and many Small Island
Developing States (SIDS) by 2100.

Results
Global. Given each sea level scenario analyzed (Supplementary
Table 1), and alternately using SRTM and CoastalDEM, we
estimate the number of people on land that may be exposed to
coastal inundation—either by permanently falling below MHHW,
or temporarily falling below the local annual flood height
(Table 1, Supplementary Data 1). Coastal defenses are not con-
sidered, but hydrologic connectivity to the ocean is otherwise
enforced using connected components analysis. Figure 1 presents
permanent inundation surfaces at select locations for median
K17/RCP 8.5/2100. Future population growth and migration are
also not considered; rather, we use 2010 (essentially current)
population density data from Landscan13 to indicate threats
relative to present development patterns.

Population exposure to projected sea level or coastal flooding is
most commonly expressed as the total estimated exposure below
a particular water level (total exposure)14,16,17,19,21,36, but is
increasingly also presented as the difference in exposure above a
contemporary baseline (marginal exposure)16,21,37. Each
approach has complementary strengths and limitations, discussed
later. Here, we include marginal exposure values for key findings,
while focusing more on total exposure. The latter is simpler and
supports a wider and more easily interpretable set of comparisons
between CoastalDEM-derived and SRTM-derived results.

For the present day, CoastalDEM estimates a global total of
110M people on land below the current high tide line and 250M
on land below annual flood levels, in contrast with corresponding
SRTM-based estimates of 28M and 65M. These values form the
basis of the difference between total and marginal exposure
estimates.

For one moderate future scenario, sea levels projected by
2050 are high enough to threaten land currently home to a total
of 150 (140–170) million people to a future permanently below
the high tide line, or a marginal increase of 40 (30–60) million.
Total and marginal exposure each rise by another 50 (20–90)
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million people by end of century. A total of 360 (310–420)
million people are on land threatened by annual flood events in
2100, or an extra 110 (60–170) million beyond the con-
temporary baseline. This case reflects greenhouse gas emissions
cuts roughly consistent with warming of 2 °C (emissions
scenario RCP 4.5) and assumes a mostly stable Antarctic
(sea-level model K14).

In the case of Antarctic instability, a total of 300 (270–340)
million people today live on land indicated as vulnerable to an
annual flood event by mid-century, rising to as many as 480
(380–630) million by 2100. These values represent marginal
increases of 50 (20–90) and 230 (130–380) million from the
present, respectively. All 90% CIs given originate from uncer-
tainty in sea-level projections.

More broadly, the effect on estimated ECWL exposure from
changing the elevation data used exceeds the combined effects of
emissions level, Antarctic behavior, and incorporation of annual
flooding, as assessed using SRTM. For example, based on
CoastalDEM, the total median current population on land falling
below the projected mean higher high water line in 2100 under
low emissions and a fairly stable Antarctica (RCP 2.6 and K14) is
190 million. This figure doubles the median SRTM-based
estimate of 94 million under high emissions and Antarctic
instability (RCP 8.5 and K17), and even exceeds SRTM-based
figures under the same scenario after the addition of areas below
the annual flood level (170 million).

More straightforwardly, Supplementary Data 2 and 3
tabulate people currently occupying land from 0–10 m MHHW
at 1 m intervals, according to CoastalDEM and SRTM,
respectively. In previous work using SRTM18, about 640 M
people have been estimated to live in the low elevation coastal
zone (LECZ), defined as areas below 10 m. Defining the LECZ
to reference MHHW instead of EGM96, we find SRTM predicts
780 M people below this threshold, and with CoastalDEM, the
estimate rises to just over one billion people. Remarkably, this
latter prediction includes 770 M below 5 m, versus 230 M from
5–10 m, illustrating a strong concentration in the lowest areas.
The densest 1-m vertical band among the first ten is from 1-to-
2 m, with 170 M inhabitants (or 1.7 M per vertical centimeter),
pointing to a risky global pattern of development in light of sea-
level rise.

National. With both SRTM and CoastalDEM, and regardless of
emissions scenario or sea-level model, we find that more than
70% of the total number of people worldwide currently living on
implicated land are in eight Asian countries: China, Bangladesh,
India, Vietnam, Indonesia, Thailand, the Philippines, and Japan
(Fig. 2, Supplementary Data 1). China alone accounts for 18–32%
of global ECWL exposure across DEMs, depending upon the
scenario, but CoastalDEM increases absolute estimates for China
by a factor of roughly three compared to SRTM. Under K14/RCP
4.5, China could see land now home to a total of 43 (29–64)
million people below MHHW by end of century, or 57 (30–100)
million in the case of Antarctic instability (K17/RCP 4.5). The
marginal increases in exposure from baseline are 20 (6–41) mil-
lion and 34 (7–77 million), respectively. Under the same emis-
sions scenario and either sea-level model, annual flood events at
least double the corresponding estimates, threatening land
occupied by over 60 million additional people.

In several developing countries south of China, ECWL
exposure may be an order of magnitude more serious than
previously expected as based on SRTM. As indicated by
CoastalDEM, Bangladesh, India, and Vietnam come to rival
China in the median number of people living on land implicated
by 2100, totaling 21–30 million even under the low emissionsT
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scenario (K14/RCP 2.6), compared to 9–19M today, and with
another 7–20 million on land threatened by annual storm surge.
Bangladesh, India, Indonesia, and the Philippines see a 5-fold to
10-fold change in estimated current populations below the
projected high tide line after applying CoastalDEM. Globally,
application of CoastalDEM leads to increased exposure estimates
for the great majority of nations (Fig. 3).

Percentage rather than absolute exposure serves as a normal-
ized metric of threat (Supplementary Data 4). In Asia,

CoastalDEM indicates that even with deep cuts to carbon
emissions (K14/RCP 2.6), Bangladesh, Vietnam, and Thailand
may, by end-of-century, face high tide lines higher than land now
home to 19 (15–25)%, 26 (23–31)%, and 17 (15–18)% of their
people, respectively, before accounting for episodic flooding
events. These figures correspond to marginal exposure increases
of 13 (9–19)%, 5 (2–10)%, and 15 (13–16)% of national
populations. Continued high emissions with Antarctic instability
(K17/RCP 8.5) could entail land currently home to roughly one-

23.4
112.4 114.2

21.9

Pearl River Delta, China Bangladesh

88.2 91.2

Jakarta, Indonesia

–5.7

–6.4

Areas below water level according to:

CoastalDEM only

SRTM only

Both

Current water bodies

Bangkok, Thailand

23.9

21.4

14.5

12.4

106.5 107.2 99.4 101.9

c

a b

d

Fig. 1 Permanent inundation surfaces predicted by CoastalDEM and SRTM given the median K17/RCP 8.5/2100 sea-level projection. Locations include (a)
the Pearl River Delta, China; (b) Bangladesh; (c) Jakarta, Indonesia; and (d) Bangkok, Thailand. Low-lying areas isolated from the ocean are removed from
the inundation surface using connected components analysis. Current water bodies are derived from the SRTM Water Body Dataset. Gray areas represent
dry land. Axis labels denote latitude and longitude
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third of Bangladesh’s and Vietnam’s populations permanently
falling below the high tide line. It follows that some coastal
municipalities within these nations will see even larger propor-
tions of their populations threatened with displacement.

Outside of Asia and excluding the Netherlands, where an
extensive flood control network is not captured by any of the
elevation models studied, CoastalDEM indicates that 19 other
countries are expected to see land currently home to 10% or more
of their total populations fall below end-of-century high tide lines
(based on median estimates), even under the deep emissions cuts
of RCP 2.6. This count is up from two using SRTM. Except for

Djibouti and Guyana, all of these are island nations, and thirteen
are classified by the United Nations as Small Island Developing
States (SIDS).

Supplementary Data 1 and 4 provide results for the present,
mid-century, and 2100.

Validation. The aspirational outcome of applying CoastalDEM to
ECWL exposure analysis is to, as closely as possible, estimate the
same amount of coastal vulnerability that a DEM derived from
airborne lidar data would. We validate our results by first per-
forming three representative ECWL exposure analyses using

b

9x+

8x–9x

7x–8x

6x–7x

5x–6x

4x–5x

3x–4x

2x–3x

1x–2x

0x–1x

Relative increase in estimated exposure between CoastalDEM and SRTM

a
Number of people on land exposed by 2050

1E8

1E7

1E6

1E5

1E4

1E3

100

10

1

Fig. 2 Total populations on vulnerable land. a Current population on land below projected mean higher high water level in 2100 assuming intermediate
carbon emissions (RCP 4.5) and relatively stable Antarctic ice sheets (sea level model K14). Estimates based on CoastalDEM. b Factor by which
CoastalDEM increases estimates of people on vulnerable land over SRTM in each country under K14/RCP 4.5. Countries wholly north of 60 degrees N are
excluded because CoastalDEM is undefined at those latitudes. Source data are provided as a Source Data file. National boundaries based on public domain
vector map data by Natural Earth (naturalearthdata.com)
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lidar-derived data in the US and Australia. In Fig. 4, we plot the
relative differences of predicted current population exposure
between lidar and each global DEM at different water heights.
Values of nearly zero imply a close match between exposure
computed using both lidar and the target DEM, while larger
absolute values suggest under-estimation or over-estimation of
vulnerability. In addition to CoastalDEM and SRTM, we also
include the alternative elevation models AW3D30 and MER-
ITDEM, discussed more below.

We find that CoastalDEM strongly and consistently outper-
forms SRTM (as well as the other global DEMs) with this metric.
At 1 m above MHHW, CoastalDEM improves linear relative
difference in every state except for New York. Error is reduced
from −69% (SRTM) to −43% (CoastalDEM) across the US, and
from −77% (SRTM) to −23% (CoastalDEM) in Australia. Even
larger improvements are seen at higher water levels, and at 3 m,
relative errors in the US and Australia are smaller than −29 and
7%, respectively. We note that while the neural network that
generated CoastalDEM was trained on lidar-derived data in the
US, Australian lidar data is used only to validate the results,
meaning strong results seen here mitigate fears that the model has
been overfitted.

Error in the US is dominated by Florida, where an
exceptionally large population occupies the coastal plain, and
where SRTM vertical error in the southern half of the state is
unusually high (exceeding 4 to 10 m). The neural network that
generated CoastalDEM did not fully correct this large error.
Discounting Florida, US relative error at 1 m drops from −62%
(SRTM) to −30% (CoastalDEM)—a comparable improvement to
that seen in Australia.

Sensitivity analysis. Spatial autocorrelation commonly char-
acterizes DEM error, including error within SRTM38. SRTM error
is strongly correlated with factors such as land slope39, dense

vegetation24, and high population density40, which themselves
exhibit natural spatial autocorrelation. These features could
manifest at any number of spatial scales (some towns may be only
a few kilometers wide, while some urban agglomerations and
forests are far larger). Furthermore, there exist well-known
striping artifacts present in SRTM caused by satellite micro-
adjustments41, resulting, in cases, in multi-meter upward or
downward bias across regions that may reach on the order of 100
km wide.

While CoastalDEM makes substantial improvements to SRTM,
and includes, in its construction, inputs designed to reduce or
eliminate striping, we anticipate that CoastalDEM also suffers
from autocorrelated error. We therefore conduct a sensitivity
analysis to explore the potential effects of error in CoastalDEM
on our population exposure estimates, including the effects of
autocorrelated error.

Monte Carlo simulations are regularly used to model DEM
error and generate distributions of flood exposure estimates, from
which uncertainty may be evaluated38,42,43. Such approaches
typically either assume zero spatial autocorrelation, using the
DEM’s documented RMSE to generate random error
surfaces42,44; or use low-pass filters across the error fields to
simulate small-scale autocorrelation45; or employ sequential
Gaussian simulations, which require widely dispersed ground-
control-point data to accurately measure error statistics across the
DEM43,46. The wide range of autocorrelation scale present here
makes the second option unsuitable, and with no ground-control-
point data available globally, the third is not possible.

Because of our expectations around the importance of spatial
autocorrelation, we apply a modified, multi-scale approach to the
first of these three methods. Assuming a normal distribution of
error centered on zero and using a fixed global standard
deviation, we generate 100 error fields using each of 6 different
block sizes within which uniform error applies, ranging from 1
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pixel (3 arcseconds) to 1 degree. We add the blocked errors to the
original CoastalDEM to produce new simulated 3 arcsecond
DEMs for computing exposure; the resulting exposure distribu-
tions are then evaluated separately for each block resolution. We
use CoastalDEM’s RMSE in Australia (2.46 m), as determined
using lidar, to serve as the global standard deviation for our error
distributions. We choose RMSE from Australia versus the US
(RMSE 2.39 m) because the CoastalDEM model was trained in
the US (albeit on just a 1% coastal sample). While vertical error
will inevitably vary some from place to place, the similarity in
error between the US and Australia increases our confidence in
the value we employ.

We elect to use a water height of 2 m above MHHW (roughly
and generally corresponding to a bad flood in the nearer term or
an extreme sea-level scenario for 2100) as a case study. As in the
main study, connected components analysis is used to remove
isolated areas under the inundation surface before computing
exposure. Unmodified CoastalDEM estimates 400M people
worldwide live below this threshold. Table 2 and Supplementary
Data 5, respectively, provide global and country-level results for
this sensitivity analysis.

Smaller error-block sizes (1-pixel through 1/10-degree resolu-
tion, roughly the size of a small city) produce highly consistent
exposure estimates at the global scale, though biased low relative
to the 400M predicted without simulated error. This bias may be
caused by higher spatial frequency DEM alterations cutting off
some low-lying inland areas connected to the ocean through
narrow pathways in the original CoastalDEM. Consistent with
this mechanism, bias dissipates at larger error-block sizes. Also as
autocorrelation scale grows, we see that 90% confidence intervals
widen. At the extreme 1 degree resolution, roughly the scale of
SRTM striping, the global 90% CI reaches plus or minus 10%
about the 400M median.

Countries also experience widening CI’s across error resolutions,
though considerably more rapidly than seen at the global scale. In
countries with at least 1M people below the 2m threshold, the 90%
CI’s are, on average, plus or minus 2% about the median at 1 pixel,
5% at 1 km, 23% at 1/10 degree, 32% at 1/4 degree, 41% at 1/2
degree, and 49% at 1 degree. For example, at the 1-degree-error
resolution, Bangladesh, India, and Vietnam have CI’s of (−43 to
54%), (−40 to 27%), and (−29 to 23%) about their respective
medians, while China is predictably less sensitive at (−21 to 21%).
In general, larger areas of analysis and smaller error blocks lead to
less sensitivity in ECWL exposure estimates, because each of these
factors leads to larger random samples, making errors more likely to
cancel out. Conversely, smaller areas and larger blocks each lead to
smaller samples and more sensitivity.

These results suggest that CoastalDEM error exerts little
influence on our global estimates, but reasonable caution should
be applied when interpreting national scale assessments, particu-
larly for smaller countries such as the SIDS. That said, we note
that the 1-degree simulations represent worst-case scenarios,
because they assume that CoastalDEM’s RMSE derives exclu-
sively from the largest considered spatial scale. Given the known
factors at many spatial scales that contribute to DEM error, this
assumption is unrealistic. Assessing characteristic error auto-
correlation scales is beyond the scope of this study, but realistic
CIs will be considerably narrower than implied by the 1-
degree scale.

Discussion
Despite improvements, elevation dataset error remains an
important limitation in this study. We see that CoastalDEM still
underestimates population exposure in both the US and Australia
when compared to lidar-derived DEMs, suggesting the current
assessment does not fully eliminate the bias in exposure estimates
based on SRTM. CoastalDEM may still experience difficulty in
dense cities, where exceptionally tall buildings in even the lowest-
lying areas can cause SRTM elevations erroneously above 20 m.
Since CoastalDEM is defined only where SRTM elevation is lower
than or equal to 20 m, such areas are disregarded in this analysis,
leading to some underestimation of exposure.

Older global scale DEMs, such as GLOBE47 and GTOP03048,
have been used in previous work, and generally predict higher
coastal flood exposure than SRTM19,20. However, their extremely
high vertical errors (up to 100 m RMSE in both cases), low
horizontal resolution (1 km), and spatial inconsistency in quality
make them unreliable for ECWL vulnerability assessments. Their
use for research has faded in comparison with SRTM, given its
higher horizontal resolution and order-of-magnitude lower error.
More recently, other DEM’s have been released, such as
AW3D3049 and MERITDEM50. AW3D30 is a digital surface
model primarily derived from stereo optical satellite imagery, and
does not specifically attempt to improve vertical bias in either
urban or forested areas. MERITDEM, like CoastalDEM, is based
off of SRTM. It uses regression analysis to remove vertical error
correlated with a number of vegetation metrics. However,
MERITDEM does not seek to correct errors due to urban
development. For sake of comparison, the analyses described in
this article were repeated for these DEMs, and included in Sup-
plementary Data 1 and 4. Results from both AW3D30 and
MERITDEM, including US/Australia ECWL exposure error
(Fig. 4), are generally consistent with those derived from SRTM,
and so we maintain that these DEMs are equally inadequate for
assessing coastal vulnerability.

Future modeling efforts may improve estimation of terrain
elevations in tall-building districts and areas affected by SRTM
striping. Ultimately, the most accurate assessments of vulner-
ability to rising seas, especially for smaller areas, will require
development and public release of improved coastal area eleva-
tion datasets building directly off of new high resolution obser-
vations increasingly collected by satellites today.

Another limitation of this assessment comes from the popu-
lation dataset Landscan, which is a 1 km2 resolution model of
ambient population density. While Landscan is widely used in the
research literature, it cannot capture any bias toward or away
from development within the lowest-lying coastal areas at sub-
kilometer spatial scales. GRUMP is another population dataset
with the same horizontal resolution, though it involves less
sophisticated spatial modeling and is available only through 2000.
It models nighttime (rather than ambient) population density51,
and has been shown to produce notably higher predictions of

Table 2 Global simulated error assessment results

Error resolution Percentile

5th 50th 95th

Pixel (3 arcseconds) 370 (−0%) 370 370 (+0%)
1 km 370 (−0%) 370 380 (+3%)
0.1 deg 380 (−3%) 390 400 (+3%)
0.25 deg 380 (−3%) 390 420 (+8%)
0.5 deg 370 (−8%) 400 420 (+5%)
1 deg 360 (−10%) 400 440 (+10%)

100 simulated error surfaces are generated at each listed spatial resolution to represent
different spatial scales of error autocorrelation, and added to CoastalDEM. 1-pixel simulations
have no autocorrelation. Population exposure below 2m local MHHW is computed for each
simulated elevation dataset (each retaining CoastalDEM’s original 3 arcsecond resolution), and
the 5th/50th/95th percentiles of these results are presented. Percent differences from the
median are provided for the 5th and 95th percentiles in parentheses. Units are in millions of
people. Population exposure based on the unmodified CoastalDEM dataset is 400M.
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exposure to ECWL20. Gridded Population of the World52 is
another alternative, based directly on census data without further
modeling. While nominally at 1 km horizontal resolution, the
data is piecewise constant between administrative boundaries,
meaning its effective resolution is actually much coarser than
Landscan. Newer datasets, such as Worldpop53 and the High
Resolution Settlement Layer54, are anticipated to model popula-
tion densities with higher accuracy at finer resolution, but are not
yet available globally.

We emphasize that this analysis combines future water level
projections with contemporary population densities. Results
should therefore not be taken as projected impacts. Rather, they
reflect the portion of presently developed land at risk in the
future, which we interpret as a threat indicator. Efforts to inte-
grate projected population growth, migration, economic devel-
opment and coastal defenses into ECWL exposure projections
have begun19,36,55. However, the spatial scales of socioeconomic
projections remain very coarse compared to the scales at which
elevation and current development data are available, posing a
stiff challenge to their meaningful integration into analyses where
fine-scale detail is critical. In addition, behavioral and economic
responses to rising seas are likely to be unpredictable, due to the
largely unprecedented nature and scale of the problem.

The vulnerability model employed in this analysis, a bathtub
model where we classify all land below a given water height and
hydrologically connected to the ocean as exposed to extreme
coastal water levels, presents another partial limitation of the
study. While this approach is reasonable in indicating land
threatened with permanent inundation due to higher sea levels, it
tends to overestimate exposure from episodic flooding, especially
at small spatial scales56,57. It is likely that hydrodynamic models
would predict less vulnerability to one-year floods than we esti-
mate here. Areas accordingly misclassified as exposed to annual
flooding would nonetheless likely face relatively frequent
inundation risks.

Furthermore, this analysis assumes a static coastal topography,
with the exception of a linear model of vertical land motion
implicit in the sea-level projections used. Erosion, wetland
migration/accretion, and other morphological processes are not
considered. It is difficult to predict how these factors affect the
uncertainty of our results, especially since sea-level change may
trigger complex process responses. However, we note that
armored, developed, and maintained shorelines in urban areas,
where vulnerable populations are concentrated, may generally be
less susceptible to such factors than undeveloped land.

This study focuses on estimating populations occupying land
below future high tide lines or annual flood levels, but results also
indicate that some 110M people live below MHHW today (with
many more below annual flood lines). Several explanations are
possible. First, elevation error may drive the finding. However, in
the US and Australia, CoastalDEM identifies fewer people living
below MHHW (0.9M and 69,000, respectively) than lidar-based
analysis does (1.7 M and 75,000), consistent with our more
general finding that CoastalDEM tends to underestimate coastal
exposure relative to lidar.

Second, other sources of error may be important, including
from the population data used and from the sea level data and
tidal models used to determine local MHHW. A more detailed
lidar-based analysis employing high resolution (block-level) US
Census data58 and NOAA’s nearly continuous model for local
MHHW59 within the US cuts the original lidar-based estimate of
1.7 M nearly in half, to 0.9 M residents on land below MHHW. If
these US results are indicative, and global population and
MHHW estimates inflate exposure values derived from lidar
elevation data, they likely also inflate values derived from
CoastalDEM. Higher accuracy and higher resolution population,

sea level and tidal inputs are likely important for improving
coastal exposure assessments in the future.

Third, many people today do in fact live on land below (or just
above) MHHW, behind the protection of levees or other defenses.
In the US, these account for 0.8 M out of the 0.9 M residents that
our more detailed lidar analysis identifies as today occupying land
below MHHW. Globally at present, levees and seawalls protect
low-lying populations in many major deltas, such as around
Shanghai, the Netherlands and New Orleans, and in areas
experiencing rapid subsidence, such as parts of Jakarta and
Tokyo. However, levee location data are not globally available, to
our knowledge, and so are not incorporated into this analysis.

Fourth and finally, many people today do live in unprotected
areas subject to frequent coastal flooding (if not below the high
tide line), such as in Bangladesh, or in boats or structures on or
above the water (such as homes on stilts). These possibilities are
likely to be most common in developing countries, and to be
poorly documented.

The levees, seawalls and other defenses and accommodations
currently protecting tens or hundreds of millions of coastal-area
residents globally point to the potential for protecting ever-larger
areas as seas rise. At the same time, current coastal defenses
should not be assumed adequate to protect against future sea
levels and storms without continued maintenance and, likely,
enhancement. These countervailing possibilities point to the
merits of reporting results based both on total ECWL exposure
and on marginal increases in exposure from the contemporary
baseline. Total exposure recognizes the potential vulnerability of
all populations on low-lying coastal lands as sea levels rise.
Marginal exposure highlights new populations of concern, while
leaving out populations in areas that may be defended at present,
and thus may be more likely to be defended in the future.

Even in light of the limitations identified, this research, using a
significantly improved model of coastal elevations, provides new
best estimates of the vulnerability of populated low-lying areas to
rising oceans at global and national scales. Reliability increases
with the size of the area evaluated, and with the water level
considered; thus, global assessments for end-of-century sea levels
and floods, under high sea-level scenarios, should be considered
most robust. Analysis reveals a developed global coastline three
times more exposed to extreme coastal water levels than pre-
viously thought. Even with low carbon emissions and stable
Antarctic ice sheets, leading to optimistically low future sea levels,
we find that the global impacts of sea-level rise and coastal
flooding this century will likely be far greater than indicated by
the most pessimistic past analyses relying on SRTM. These results
point to great need for the development and public release of
improved terrain elevation datasets for coastal areas, for example
via the high-resolution imagery and lidar point clouds increas-
ingly collected by satellite today. There is also great need for
improved population data; data on the location, height and
condition of coastal-area levees and seawalls; and improved global
sea-level and tidal models.

If our findings stand, coastal communities worldwide must
prepare themselves for much more difficult futures than may be
currently anticipated. Recent work has suggested that, even in the
US, sea-level rise this century may induce large-scale migration
away from unprotected coastlines, redistributing population density
across the country and putting great pressure on inland areas60. It is
difficult to extrapolate such projections and their impacts to more
resource-constrained developing nations, though historically, large-
scale migration events have posed serious challenges to political
stability, driving conflict61. Further research on global-scale mod-
eling of the timing, locations, and intensity of migratory responses
to increased coastal flooding is urgently needed to minimize the
potential human harm caused by such threats.
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Methods
Sea-level projections. We use two sea-level models for this assessment. K143

employs a probabilistic approach and includes very little contribution from Ant-
arctica in its central projections. K174 links physical models of ice sheet loss to the
projection framework established in K14, thus emphasizing the possibility of early-
onset Antarctic instability31. However, the ice sheet model parameters used were
not derived from probability distributions. Unlike K14, the resulting projection
distributions produced by K17 are therefore considered simulation frequency
distributions, rather than probabilistic ones. While more recent work62 suggests
that these Antarctic projections may be biased high, the resulting overall sea-level
projections align roughly with the high end of what the sea level research com-
munity broadly expects29. Both models incorporate spatially explicit submodels for
all climatic components of sea-level rise considered. They each also incorporate
nonclimatic background contributions, such as glacial isostatic adjustment and
sediment compaction. Leveraging sea-level records collected at 1022 PSMSL tide
gauges worldwide, both K14 (updated in 20174) and K17 employ a Gaussian
process model to estimate nonclimatic contributions at points on a 2° × 2° grid
along the entire global coastline. Results for both models at the tide gauge and grid
point locations are included in Supplementary Datasets 3 and 4 of Kopp et al.4.

CoastalDEM. A multilayer perceptron (MLP) artificial neural network, a computa-
tional model often used for highly nonlinear non-parametric regression, was
employed to predict the vertical error present at any SRTM pixel sample. MLP’s are
made up of layers of nodes in a weighted, directed graph, starting with an input layer
(in our case, a 23-dimensional vector of known attributes at the target location) and
ending with an output layer (1-dimensional error prediction at the target location).
The neural network is trained by using lidar-derived elevation data in the US63 as
ground truth, iteratively adjusting weights in the graph to most accurately reproduce
desired targets given the training set of samples. Our training set was made of over 51
million samples, and the 23 variables included neighborhood elevation values, land
slope, population density, vegetation density, canopy height, and local SRTM devia-
tions from ICESat altitude observations64. After training, the MLP predicted and
removed SRTM errors at every pixel in the DEM with elevation between 1 and 20m
(inclusive). Details on the implementation and vertical error assessment of Coast-
alDEM were published earlier26. For this report, we used median resampling to
convert CoastalDEM to a 3-arcsecond horizontal resolution.

Vertical datum conversion. We convert all elevation data to a common vertical
reference frame (datum) for valid intercomparisons, electing the tidal datum mean
higher high water (MHHW). MHHW is roughly equivalent to local high tide line
and captures spatial variation in both mean sea level (MSL) and tidal amplitude.
We use the globally extensive MSL model MSS_CNES_CLS_1565, based on a
1993–2012 record of satellite sea surface height measurements from TOPEX/
Poseidon, and referenced to the GLAS ellipsoid at 1-arcminute horizontal reso-
lution. We also employ MHHW deviations from MSL provided by Mark Merri-
field, University of Hawaii, developed using the model TPX0866 at 2-arcminute
horizontal resolution. Using NOAA’s VDatum tool59 version 3.7, we convert
CoastalDEM, SRTM, AW3D30 and MERITDEM, plus the GLAS-referenced
MHHW elevations, to a common ellipsoidal datum (WGS84). This allows us to
subtract the elevation map of MHHW from each DEM to produce our final ele-
vation maps above local MHHW.

A similar approach is taken in converting 1-year return levels to MHHW. The
Global Tides and Surge Reanalysis, as distributed, is referenced to local MSL, so we
use the MHHW-MSL deviation surfaces to change its vertical datum to MHHW.

Exposure analysis. Employing a modified bathtub model, we threshold each pixel in
the DEMs to produce inundation surfaces at 0–10m above MHHW. These inun-
dation surfaces are computed at 1m intervals with SRTM and AW3D30 (equivalent
to their vertical resolutions), and at 0.25 m intervals with CoastalDEM and MER-
ITDEM (which have continuous vertical resolutions). The surfaces are then refined
using connected components analysis to remove all low-lying sub-threshold areas that
the analysis indicates to be isolated by topography from the ocean.

To assess population exposure, we employ the LandScan 2010 High Resolution
global Population Data Set, which estimates total populations living in 1 km2

cells13. We refine this data using the SRTM Water Body Data Set, which defines
land cells at up to 1-arcsecond resolution (30 m). We resample Landscan to align
our DEM grids, assuming zero population in water cells, while proportionally
increasing the population density in land cells to ensure total population in each
original 1 km square remains unchanged.

The population density grids are integrated under each 0.25 m-interval
inundation surface, and tabulated according to the smallest administrative
boundaries defined by the Global Administrative Areas (GADM) 2.0 Data Set67. In
general, these administrative units are roughly the size of US counties, or smaller.
The local sea-level rise projections and 1-year return level heights, now referenced
to local MHHW, are then computed and added at the centroid of each boundary by
linearly interpolating from nearby sample points from the corresponding models.
At the scale of these administrative units, the sea-level rise and RL1 gradients are
relatively small, so any local factors affecting water heights are captured.
Populations on land under each of these water heights are then estimated using

linear interpolation between the 0.25 m interval analyses. Results are aggregated to
larger administrative areas, such as states and nations, as needed.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Code availability
The methods described in this article were implemented using custom Matlab (R2017b),
Python, and C++ code. Due to licensing restrictions by Climate Central, this code is not
publicly available.

Data availability
All exposure analyses (national populations on vulnerable land) that support the findings
of our study are available within this article and its supplementary information files. The
datasets SRTM, AW3D30, MERITDEM, Landscan 2010, and GADM are publicly
available from their respective owners. The 3-arcsecond (90-m) version of CoastalDEM
used in this analysis is available at no cost from Climate Central for non-commercial
research use.
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