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Orbitofrontal signals for two-component choice
options comply with indifference curves of
Revealed Preference Theory
Alexandre Pastor-Bernier 1, Arkadiusz Stasiak 1 & Wolfram Schultz 1*

Economic choice options contain multiple components and constitute vectorial bundles. The

question arises how they are represented by single-dimensional, scalar neuronal signals that

are suitable for economic decision-making. Revealed Preference Theory provides formalisms

for establishing preference relations between such bundles, including convenient graphic

indifference curves. During stochastic choice between bundles with the same two juice

components, we identified neuronal signals for vectorial, multi-component bundles in the

orbitofrontal cortex of monkeys. A scalar signal integrated the values from all bundle com-

ponents in the structured manner of the Theory; it followed the behavioral indifference curves

within their confidence limits, was indistinguishable between differently composed but

equally revealed preferred bundles, predicted bundle choice and complied with an optimality

axiom. Further, distinct signals in other neurons coded the option components separately but

followed indifference curves as a population. These data demonstrate how scalar signals

represent vectorial, multi-component choice options.
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Each choice option, irrespective of being a biological reward
or an economic good, is composed of multiple components
(also called attributes, dimensions, or aspects), and thus

constitutes a bundle. Subjective preferences concern all compo-
nents of a bundle and are revealed by observable choice (whereas
unobserved preferences are bound to be capricious and unreli-
able). The bundle components may be integral parts of a reward
or good, like the strawberries and icing of a cake, or consist of
separable items, like the steak and vegetable of a meal, or are
more abstract, such as quantity and probability of goods1 or
quality and price2. The multi-component character allows a
trade-off between the components; when desiring a cake without
spending more money (or eating too much), I may give up some
strawberries to get more icing. Thus, my preference relation
concerns options with multiple components and transcends
objective, physical characteristics. Indeed, recognition of the
multi-component nature of choice options, rather than con-
sidering only single components, helps to explain human choices
in health and disease3–6.

Stated formally, multi-component choice options constitute
vectors. By contrast, neuronal signals are scalar; they can only go
up or down in a single dimension. Then, how can a scalar neu-
ronal signal code vectorial choice options? Revealed Preference
Theory offers a solution7. Preference relations between choice
options vary only along one dimension: even with multi-
dimensional options, I prefer option x to y, or option y to x, or I
am indifferent between the options (completeness axiom8). Sto-
chastic preferences revealed by the probability of repeated choices
are scalar, as are the subjective values (utilities) of the choice
options. As neuronal data analysis requires repeated trials, one can
use the theory to capture the emergence of scalar preference
relations and utility from vectorial bundles: the trade-off at choice
indifference between two bundles with different composition
indicates that a reduction in one bundle component compensates
for an increase in the other component. Thus, bundle vectors with
different composition can be equally revealed preferred, and have
the same utility. The trade-off within choice options becomes part
of a graphic formalism: equally revealed preferred, but differently
composed bundles are positioned on a single indifference curve
(IC); and bundles on higher ICs are revealed preferred to bundles
on lower ICs. This direct and intuitive concept constitutes the
basis for Revealed Preference Theory9–12 and its extension to
stochastic preferences13.

We used the formalisms of Revealed Preference Theory to
investigate how scalar neuronal signals in the orbitofrontal cortex
(OFC), one of the brain’s major reward structures14–16, code
stochastic preferences among vectorial bundles of incommensur-
able bundle components. Previous studies varied single rewards to
estimate common-currency scales at choice indifference (equal
preference) between rewards of different type, probability, delay,
risk, or workload16–24. Neurons in OFC integrate or code these
different reward aspects separately16,21,23–26. However, none of
these studies used different quantities of the same two rewards in
both choice options that allow implementing the formalism of
Revealed Preference Theory. Such a design facilitates the investi-
gation of preference relations between bundles while varying their
composition, including the graded, fractional, and continuous
trade-off between components within equally preferred bundles.
In monkeys, these choices satisfy the two basic axioms for rational
preference relations, completeness (either preference or indiffer-
ence) and transitivity (choice consistency)8,27. We now use the
graphic formalism of Revealed Preference Theory to discover
scalar neuronal signals in OFC for vectorial, multi-component
choice options; these signals follow ICs, satisfy out-of-sample tests,
predict choice, and respect Arrow’s Weak Axiom of Revealed
Preference (WARP) defining optimal choice.

Results
Design. With exhaustive choice sets composed of finite numbers
of mutually exclusive multi-component options, revealed pre-
ferences do not depend on one bundle component alone but their
combination into a bundle. The preferences are revealed by
measurable choice: bundles that are chosen with equal probability
are considered to be equally revealed preferred and to have same
utility; a bundle that is chosen with higher probability than any
other bundle in that option set is considered to be revealed pre-
ferred to that bundle and inferred to have higher utility than that
bundle. These notions can be tested by changing the bundle
composition; increasing the quantity of at least one bundle
component would make that bundle revealed preferred to the
original bundle (assuming a positive monotonic value function;
more is better); by contrast, two bundles are equally revealed
preferred to each other if a higher quantity in one component
compensates for less of the other component. The trial repetition
required for neuronal data analysis introduced the notion of
choice stochasticity, in contrast to single-shot trials typical for
human experimental economics. Our design is compatible with
basic assumptions of discrete choice theory, Revealed Preference
Theory and its stochastic version (for details, see the Methods
section: Implementation of basic concepts)7,13,28,29.

A two-component bundle is plotted at the intersection of the
x-coordinate (reward B) and y-coordinate (reward A) (Fig. 1a).
The x–y positions of equally revealed preferred bundles constitute
choice indifference points (IP). The two red dots in Fig. 1a are IPs
relative to the black dot, and relative to each other. Several IPs of
equally revealed preferred bundles align as an indifference curve
(IC), and are inferred to have equal utility. All bundles on higher
ICs (farther from origin) are revealed preferred to, and have
higher utility than, all bundles on lower ICs (Fig. 1b). The
complete set of ICs summarizes the monkey’s preferences.

Scalar neuronal signals can represent vectorial, multi-
component choice options in several ways. An integrated form
would follow the graphic formalisms of Revealed Preference
Theory, and its stochastic version13,28, that capture single-
dimensional preferences of multidimensional bundles: responses
should reflect the trade-off within bundles that characterizes the
emergence of scalar preferences and utility from vectorial
bundles. The neuronal responses should be indistinguishable
between equally revealed preferred but differently composed
bundles, and thus between all bundles on the same IC (Fig. 1b,
along blue and red ICs). By contrast, the signal should change
monotonically across ICs (from blue to red), despite varying
bundle composition and even when one component is lower in
the preferred bundle than its alternative (stars; partial physical
non-dominance). This form requires neurons that are sensitive to
multiple rewards, which has been shown for OFC and other brain
structures16,20,29,30. Even if these revealed preference responses
follow the rank order of choice probabilities (ordinal relation),
they would not necessarily correlate in a numeric (cardinal) way
with choice probability. The second possibility would be distinct
neuronal signals for each component (single-reward coding), and
then aggregation of the distinct signals into a common scalar
signal that represents the vectorial choice option. Our design
allows testing both versions.

Behavior. We presented rhesus monkeys with a symmetric
option set containing a preset Reference Bundle and a simul-
taneously presented Variable Bundle that contained the same
two, independently variable, liquid rewards (Fig. 1c) (the
axiomatic test described below employed three options). There
was no unambiguous distinction between the two bundles;
therefore, we could not assess neuronal coding of object
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value, which reflects the value of a distinct choice object. Each
bundle was presented at equal reaching distance to the animal
and was equally affordable. The task contained four
epochs following a Pretrial control epoch: Bundle stimulus,
Go signal, Choice, and Reward of the chosen bundle (first
reward A, then reward B after 0.5 s) (Supplementary Fig. 1; see
the Methods section: Visual stimuli and reward bundles, and
Behavioral task).

To estimate an IP, we set both rewards of the Reference Bundle,
and one reward of the Variable Bundle, to specific quantities and
varied the other Variable Bundle reward psychophysically
(Fig. 1d). The animal’s choice probability followed the single-
variable reward of the Variable bundle. We considered a bundle as
revealed preferred when chosen with P > 0.5 over the alternative
bundle; as conceptualized and typically found with stochastic
choices13,28,29, the animals chose the alternative bundle on some
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Fig. 1 Design and defining the data. a Equal revealed preference from varying bundle composition (inspired by a textbook scheme12). The original (black)
and new bundles (red) are equally revealed preferred (black curve) when a quantity of reward A is traded in (violet; initially 0.3 ml, then 0.1 ml) for one unit
of reward B (green; 0.1 ml). b Neuronal revealed preference scheme: scalar neuronal signals (triangles) follow revealed preference for vectorial bundles
across curves (blue, red), even with one smaller bundle component (stars); neuronal responses are similar along equal-preference curves despite varying
bundle composition (pink, green). c Bundle stimuli. Each bundle contained the same two rewards (violet, green) with independently set quantity, as
indicated by vertical bar position within each rectangle (higher is more). The Reference Bundle contained two preset reward quantities. The Variable
Bundle contained a specific quantity of one reward and an experimentally varied quantity of the other reward. d Behavioral trade-off among bundle rewards.
Left: choice between Reference Bundle (0.8 ml blackcurrant juice, 0ml grape juice) and Variable Bundle (0.1–0.5 ml varying blackcurrant juice, 0.3 ml grape
juice). Oblique double-arrow line connects two equally revealed preferred bundles (IP, indifference point). Right: psychophysical assessment: choice
probability for Variable Bundle increases inversely with blackcurrant juice being given up (Weibull fit ± 95% confidence interval). At IP, 0.5 ml of
blackcurrant juice were traded in for 0.3 ml of grape juice. Also, the animal preferred bundles with less blackcurrant to the Reference Bundle with more
blackcurrant when grape juice compensated for the reduction (red, orange). e Neuronal bundle stimulus response increases with choice probability of
Variable Bundle over Reference Bundle (from green to red) (P < 0.005; t test in linear regression; Eq. 5). Lower trial numbers at the bottom reflect
infrequent choice of non-preferred bundles. Bundles alternated pseudorandomly; peri-stimulus time histograms (PSTH, top) and impulse rasters were post
hoc ordered. f Similar neuronal responses to equally revealed preferred bundles at trade-off (P= 0.5 each option; double-arrow lines)
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trials. Two bundles were considered as equally revealed preferred
when each was chosen with P= 0.5, as judged from fit by a
Weibull function. At the IP in Fig. 1d, the animal gave up 0.5ml of
blackcurrant juice (pink) to obtain 0.3 ml of grape juice (green).
This trade-off, by which the partial gain in grape juice
compensated for the partial loss of blackcurrant juice, explained
the equal revealed preference documented by the IP, despite
varying composition of the Variable Bundle. Trading-off other
quantities of blackcurrant juice for 0.3 ml of grape juice led to
consistent, monotonically changing choice probabilities (Fig. 1d,
right). With limited loss of blackcurrant juice (red and orange),
the animal revealed preferred the Variable Bundle even when it
contained less blackcurrant juice than the Reference Bundle (pink)
(partial physical non-dominance).

To obtain an IC, we set the Reference Bundle to specific
quantities and fitted hyperbolic functions to the IPs of all equally
revealed preferred bundles (Eq. 1; see the Methods section:
Estimation of behavioral ICs). We obtained 30 ICs from 545 IPs
of bundles containing blackcurrant juice and either grape juice,
water, apple squash, or mango juice, some of them with added
monosodium glutamate (MSG) or inositol monophosphate (IMP)
(Supplementary Fig. 2).

Logistic regressions suggested that choice of the Variable
Bundle was based on reward difference rather than spatial choice,
bundle stimulus position, previous bundle or spatial choice, or
consecutive trial number (Supplementary Fig. 3). The animals
fixated their eyes on both bundles before the choice and then on
the chosen bundle until it disappeared with reward delivery
(Supplementary Fig. 4).

To assure stable economic conditions, we abandoned neuronal
recordings when satiety was detected by psychophysical choice
functions that exceeded the confidence intervals of initial tests
and indicated changed currency relations between the two bundle
rewards (Supplementary Fig. 5: blue, orange, and red functions
outside green zone).

Neuronal database. We recorded extracellular electro-
physiological activity in OFC (Supplementary Fig. 5) from
694 single neurons with 3–7 bundles per IC on 3–5 ICs, testing at
least 9 bundles per neuron (average of 15 bundles; total of 618
different bundles). Of the 694 neurons, 441 showed task-related
activity during binary choice over zero bundle (n= 325), between
two nonzero bundles (n= 391, including the 325 neurons), and
between three nonzero bundles (n= 56, including 6 neurons
from the binary tests), as defined by significant activity difference
between one task epoch and pretrial control (P < 0.01; paired
Wilcoxon test and one-factor ANOVA). We excluded trials from
163 of the 694 neurons after satiety had set in toward the end of
daily testing (23.5%), while enough trials remained for data
analysis (>15 trials/bundle).

Neuronal revealed preference responses were defined according
to the ICs of Revealed Preference Theory: insignificant variation
between IP bundles on single ICs, but monotonic change across
bundles on increasing ICs (Fig. 1b) (we use “revealed preference
responses” to refer to Revealed Preference Theory, although
preferences can be revealed in any observable choice). We
subjected the 441 task-related neurons to three tests: (1) double
linear regression assessing change with both bundle rewards
across ICs with minimal assumptions (Eq. (4); P < 0.05; t test),
which captured the scalar neuronal activity representing the
vectorial bundle: y= f (reward A, reward B); (2) Spearman rank-
correlation confirming change monotonicity across ICs (P <
0.05); (3) two-factor ANOVA demonstrating change across ICs
(P < 0.05), but not within ICs (P > 0.05) (significance in first
factor indicates sensitivity that renders insignificance in second

factor indicative of response similarity). A neuronal revealed
preference response had to satisfy all three tests.

Neuronal responses during IP estimation. Bundle stimulus
responses in single OFC neurons increased monotonically with
increasing choice probability (Fig. 1e). The responses were
stronger to the revealed preferred bundle, even with less black-
currant juice in the preferred than in the alternative bundle (red,
orange) (partial physical non-dominance, stars in Fig. 1b).
Responses were similar to two equally revealed preferred bundles
when 0.5 ml of blackcurrant juice was traded-off for 0.3 ml of
grape juice (Fig. 1f, pink vs. Bordeaux). Thus, the scalar neuronal
changes reflected the variations in the composition of the vec-
torial bundles.

Revealed preference coding during choice over zero-reward
bundle. The full revealed preference test followed the scheme of
Fig. 1b and used bundles at specific IPs on established behavioral
ICs. To facilitate data interpretation, we focussed the animal’s
choice on a single bundle by presenting an alternative valueless,
zero-reward Reference Bundle (see the Methods section: Trial
types for neuronal tests). The neuronal responses followed the
scheme of Fig. 1b: they were similar with different bundles located
on the same IC, even though their reward quantities varied in
opposite directions (Fig. 2a, b, gain of 0.15 ml grape–IMP and loss
of 0.3 ml blackcurrant–MSG between blue and green bundles);
thus, they reflected the characteristic trade-off between bundle
components. Furthermore, the neuronal responses were stronger
to the revealed preferred bundle (Fig. 2a, b, orange PSTH and IC)
and involved both rewards; the preferred bundle (orange) con-
tained less blackcurrant–MSG than the blue bundle, and less
grape–IMP than the green bundle (partial physical non-dom-
inance). The increase did not reflect monotonic coding of a single
reward: the orange bundle response should be lower than the blue
bundle response if coding only blackcurrant–MSG quantity, and
lower than the green bundle response if coding only grape–IMP
quantity, but neither was the case. Thus, the scalar neuronal
signal followed the revealed stochastic preference of vectorial
bundles as represented by the ICs despite oppositely varying
bundle composition, suggesting that it captured the well-ordered
empirical preference relations. The neuronal compliance with
equal-preference trade-off and partial physical non-dominance is
compatible with the emergence of unidimensional, scalar neu-
ronal responses from multidimensional changes in the vectorial
bundle.

A convex IC indicates a change in trade-off between bundle
components; the animal trades in more quantity for a gain in the
other bundle reward in the IC center compared with the IC
periphery. The location on a higher IC suggested that the animal
revealed preferred the center bundle to the peripheral bundles,
despite all bundles being located on the same straight line
(Fig. 2b, orange and pink bundles). Accordingly, neuronal
responses were stronger to the center bundle compared with
the two peripheral bundles on the lower IC (Fig. 2c, orange vs.
pink; complete test in Supplementary Fig. 7). The stronger
response in the center than the periphery of the straight line
reflected well the nonlinear behavioral trade-off.

A linear IC indicates constant trade-off. As with convex ICs,
neuronal bundle responses increased across ICs and were similar
for bundles on the same linear IC (Supplementary Fig. 8). Finally,
a concave IC indicates trading-in less quantity for a gain in the
other bundle reward in the IC center compared with IC
periphery. As with linear and convex ICs, neuronal bundle
responses were similar along concave ICs and increased across
ICs (Supplementary Fig. 9). Other OFC neurons showed inverse
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coding; their responses decreased with increasing preference
across ICs while being similar along ICs (Supplementary Fig. 10).
As with convex ICs, the increases or decreases across linear and
concave ICs occurred, despite one liquid being lower in the
revealed preferred compared with the alternative bundle
(Supplementary Fig 8a, b, orange vs. green; 9a, b, red vs. green;
10a, b, green vs. orange). Thus, OFC responses followed closely
the convex, linear, and concave ICs that characterized the well-
ordered revealed preferences.

In total, during choice over zero-reward bundles, our basic
three-test procedure involving Eq. (4) identified revealed
preference coding in 263 responses in 139 of 325 task-related
neurons (43%) with all five bundle types and in any of the four
task epochs (Table 1; Supplementary Table 1; see Methods:
Statistical analysis of neuronal revealed preference coding).
Besides this conservative analysis, regressions with interaction

respecting the nonlinearity of ICs (Eqs (7–9)) yielded higher
adjusted R2s in these 139 neurons (P < 0.05; Fisher’s test;
Supplementary Tables 2, 3), with the gain being strongest with
the simplest model (Eq. (7)). Spearman rank-correlation across
ICs yielded mean rho= 0.5921 for 98 positive coding neurons
and rho=−0.6100 for 41 inverse coding neurons (P < 0.05).
Polar plots illustrate the responses increases (or decreases with
inverse coding) with increasing reward quantity (Supplementary
Figs. 11, 12). The extended regression (Eq. (10)) confirmed
coding of rewards and choice of the Variable Bundle, but not of
previous choice (Supplementary Fig. 13a). By contrast, additional
68 of the 325 task-related neurons (21%) showed significant
response changes both across and along ICs (i.e., significance with
both factors of the two-factor ANOVA; excluding single-reward
responses); in failing to follow the characteristic IC scheme, these
neurons did not code revealed preference.
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Fig. 2 Revealed preference coding in single orbitofrontal neurons: scalar neuronal signals representing vectorial reward bundles. a Similar stimulus response
to equally preferred bundles on same indifference curve (IC) (blue, green), and stronger response to revealed preferred bundle on higher IC (orange). The
response to the revealed preferred orange bundle was stronger, despite one of its rewards being smaller than in the alternative blue and green bundles.
Choice over zero-reward bundle. b Bundle positions (colored dots) on hyperbolically fitted behavioral ICs (pink, blue, orange) tested in a and c. Bundles on
orange IC were revealed preferred to bundles on black IC. Traverse dotted lines connect bundle positions to neuronal rasters in a and c. Colored bands
show neuronal stimulus responses for bundles whose components are specified by their x–y coordinates (blue to green to red) (modeled from Eq. (7b);
imp/s: impulses/s). MSG monosodium glutamate, IMP inositol monophosphate. c Response in same neuron follows IC convexity rather than simple liquid
quantity exchange: responses were lower for bundles positioned at ends of dotted pink line in b, compared with center bundle on higher IC (orange dot).
The full test with this neuron is shown in Supplementary Fig. 7. d, e Chosen value response during choice between two nonzero bundles. The stimulus
response was stronger with choice of the revealed preferred bundle (choice probability P= 0.7; solid orange), compared with choosing the alternative
bundle (P= 0.3; solid blue); the respective responses were similar when each bundle was chosen separately with P= 1.0 over a zero-reward bundle
(dotted orange and blue), demonstrating independence from alternative bundle and suggesting absolute chosen value coding. e shows behavioral ICs
(lines) and modeled neuronal responses (bands). More responses of this neuron during choice over zero bundle are shown in Supplementary Fig. 8.
f Trade-off in chosen value response: similar response to equally revealed preferred bundles on same behavioral IC, despite different bundle composition
(P= 0.5 choice each, solid vs. dotted lines). Dots between d–f: filled: chosen nonzero bundle, open: non-chosen nonzero bundle, dot absence: non-chosen
zero-reward bundle
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Trial-by-trial oculomotor analysis demonstrated significant,
albeit weak, gaze relationships in 11 of the 441 task-related OFC
neurons (2.4%; Supplementary Fig. 14; rho= 0.2 ± 0.2, mean ±
standard error of the mean, SEM, P < 0.001; Spearman rank-
correlation), which was less than during free gaze observed
previously (8.8%)35.

Revealed preference coding during choice between two non-
zero bundles. As preference is revealed by choice, we investigated
all OFC neurons during choice between two nonzero bundles.
The revealed preference neuron in Fig. 2d, e showed stronger
responses to the more frequently chosen bundle (choice prob-
ability P= 0.7), and weaker responses to its alternative (P= 0.3;
brown vs. blue); responses were similar with equally preferred
bundles on the same IC (P= 0.5 choice of each bundle; Fig. 2f).
The responses conformed to the decision variable of chosen value,
which reflects the value of the chosen option16,33,34 (Eq. (13)).
The response coded absolute chosen value by failing to differ
when the unchosen options varied and, accordingly, the choice
probabilities differed (P= 0.7/P= 0.3; choice between two non-
zero bundles, and P= 1.0/P= 0.0; choice over zero bundle)
(Fig. 2d, solid vs. dotted lines). These neurons coded the chosen
value of both bundle components combined rather than of single
rewards reported before16,31,32.

In total, during choice between two nonzero bundles, 322
responses in 152 of 391 task-related OFC neurons (39%) coded
revealed preference, including all 139 neurons responding during
choice over zero bundles (Table 2) (13 neurons failed to code
revealed preference during choice over zero bundle, of which 7
neurons coded only single reward A and 6 neurons coded only
single reward B). Regressions with interaction (Eqs (7–9)) yielded
higher adjusted R2s in these 152 neurons (P < 0.05; Fisher’s test;
Supplementary Tables 4, 5). Spearman rank-correlations across
ICs yielded mean rho= 0.6917 for 107 positive and rho=
−0.6234 for 45 inverse coding neurons (P < 0.05). By contrast,
additional 57 of the 391 task-related neurons (15%) showed
significant response changes both across and along ICs, and thus
failed to code revealed preference.

Chosen value coding, as shown in Fig. 2d–f, occurred
irrespective of alternative options (absolute chosen value; 110
responses in 51 of the 152 revealed preference neurons, 34%) or
relative to the unchosen option (43 responses in 18 of the 152
neurons, 12%) (Table 3), based on our conservative analysis with
linearly combined reward quantities (Eq. (13) with Eqs (11) and
(12); see Methods: Neuronal chosen value coding). These
numbers were slightly higher when taking the nonlinear nature
of ICs into account (Eq. (13) with Eqs (11a) and (12a); Table 3).
Other OFC neurons coded the value of the unchosen option and
the total value of both options (Table 3). The extended regression
(Eq. (14)) confirmed coding of chosen value, but not of previous
choice or bundle stimulus position (Supplementary Fig. 13b).
Polar plots characterize chosen value coding types and indicate
prevailing chosen value responses to the bundle stimuli and at
choice, extending to reward, but less often with the Go signal
(Supplementary Figs. 15, 16).

Population properties of revealed preference neurons. The
responses to several hundred bundles with different juice com-
binations conformed to maps of neuronal ICs (Fig. 3a, b; Sup-
plementary Table 6; see Methods: Neuronal population plots 5a):
every response was similar to every other response to bundles on
same-colored neuronal ICs; responses increased monotonically
(or decreased with inverse coding) across neuronal ICs (from blue
to orange to red), even when higher IC bundles contained one
smaller reward than lower-IC bundles. The neuronal ICs failed to
overlap with other neuronal ICs and followed closely the beha-
vioral ICs within their 95% confidence intervals (Fig. 3c, d). This
was seen for positive and for inverse coding responses, with
bundles showing left-leaning or right-leaning slopes and convex,
linear, or concave curvatures, during choice over zero-reward
bundle and during choice between two nonzero bundles
(Fig. 3a–d; Supplementary Fig. 17) and in specific task epochs
(Supplementary Fig. 18). Thus, neuronal ICs matched well the
behavioral ICs.

To validate the neuronal ICs, we used out-of-sample tests with
585 neuronal responses to new 396 bundles not used for
establishing neuronal ICs. We computed the vertical (y-axis)
distance between the new bundle and the neuronal IC with the
most similar neuronal response strength (indicated by matching
colors; Fig. 3a–d; see Methods: Population plots 5b). More than
90% of the 585 responses were within the 95% confidence interval
of same color neuronal ICs in both animals (Fig. 3e, f). These
results confirmed robust bundle representation by neuronal ICs.

To scrutinize numerically the match between neuronal ICs and
behavioral ICs, we compared the defining parameters slope
(currency) and curvature (separately, avoiding false matches from
mutually canceling differences). We estimated behavioral IC slope
and curvature from hyperbolic coefficients b and a, respectively
(Eq. (1)). We estimated neuronal IC slope from regression

Table 1 Revealed preference coding during choice over
zero bundle

Bundle type Tested
neurons

Neurons
responding

Responses

Blackcurrant, grape 81 22+ 6= 28 37+ 8= 45
Blackcurrant, water* 138 39+ 20= 59 72+ 41= 113
Blackcurrant, apple 29 12+ 5= 17 20+ 10= 30
Blackcurrant, mango* 53 20+ 4= 24 42+ 8= 50
Bc–MSG, grape–IMP 24 5+ 6= 11 16+ 9= 25
SUM 325 139 (43%) 263

Tested neurons refers to task-related neurons in both animals, as assessed by significance in the
Wilcoxon and one-factor ANOVA tests (P < 0.01) against pretrial control activity. In table cells
with multiple entries, the first two numbers refer, respectively, to positive and negative (inverse)
relationships to increasing reward quantity, as inferred from the regression slope of neuronal
coding (β in Eq. (4)). Revealed preference coding was defined by a combination of three
statistical tests (see Methods: Statistical analysis of neuronal revealed preference coding): (1)
multiple linear regression, Eq. (4), across indifference curves (IC): P < 0.05 (t test), (2)
Spearman rank-correlation across ICs: P < 0.05, (3) two-factor ANOVA: P < 0.05 across-IC, P >
0.05 within-IC and P > 0.05 interaction. During choice over zero-reward bundle, one additional
neuron showed significant changes between bundles across-IC (P < 0.05; two-factor ANOVA)
but not within-IC (P > 0.05), but failed to show significant changes with Eq. (4) and/or
Spearman correlation; during choice between two nonzero bundles, ten additional neurons
showed equivalent changes. Each response derived from multiple trials in one neuron in one of
the four epochs, and regressed significantly on all bundles tested on that neuron. Thus, a given
neuron could have distinct responses in more than one task epoch (the four task epochs were
Bundle stimulus, Go signal, Choice, and Reward); therefore, the number of significant responses
typically exceeded the number of significant neurons. A neuron was designated as revealed
preference neuron if it had a significant response in our three-test statistics in at least one of the
four task epochs. *The data collapsed from Monkeys A and B

Table 2 Revealed preference coding during choice between
two nonzero bundles

Bundle type Tested
neurons

Neurons
responding

Responses

Blackcurrant, grape 89 32+ 6= 38 53+ 12= 65
Blackcurrant, water* 159 32+ 18= 50 67+ 36= 103
Blackcurrant, apple 35 16+ 7= 23 30+ 11= 41
Blackcurrant, mango* 70 20+ 8= 28 63+ 20= 83
Bc–MSG, grape–IMP 29 7+ 6= 13 16+ 14= 30
SUM 391 152 (39%) 322

For conventions, see Table 1
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coefficient ratio β2/β1, and neuronal IC curvature from interac-
tion coefficient β3 of Eq. (7). Means of neuronal IC slopes and
curvatures fell within the 95% confidence intervals of the
respective behavioral IC parameters, and vice versa, for positive
and for inverse coding responses, separately for all five bundle
types, and in both animals (Fig. 3g, h; Supplementary Fig. 19);
differences between neuronal and behavioral parameters were
insignificant (slope: P= 0.1747 to P= 0.6952; curvature: P=
0.1723 to P= 0.88, t test). Using a separate method for
robustness, we also assessed behavioral IC slopes from anchor
bundles at x- and y-axes psychophysically, and estimated
neuronal IC slopes from coefficient ratio β2/β1 of Eq. (4). The
neuronal IC slopes correlated well with behavioral IC slopes
(rho= 0.369; P= 8 × 10−6, Pearson; rho= 0.390, P= 2 × 10−5,
Spearman; Supplementary Fig. 20). These numeric measures
substantiated quantitatively the graphic correspondence between
neuronal ICs and behavioral ICs shown in Fig. 3a–d.

Bundle and choice decoding. We used classifiers to further test
whether the neuronal responses followed the graphic formalism
of Revealed Preference Theory, namely bundle distinction and
prediction across ICs, but not on same ICs. We applied a linear
support vector machine (SVM) to our identified revealed pre-
ference responses (see Methods: Neuronal decoders). Decoding
accuracy for bundle distinction (during choice over zero-reward
bundle) and choice prediction (during choice between two non-
zero bundles) exceeded 80% across ICs when higher IC bundles
had two larger rewards, or one smaller reward, than lower-IC
bundles (Fig. 4a, b), and in all four task epochs (Supplementary
Figs. 21, 22) (P < 10−20 against shuffled data; Wilcoxon rank-sum
test). Accuracy increased meaningfully with neuron number and
increasing IC distance. By contrast, accuracy was at chance level
along same ICs (P > 0.2; pairwise bundle comparisons; Supple-
mentary Tables 7–10), suggesting lack of distinction between
equally revealed preferred but differently composed bundles.
Accuracy was lower, yet still significant, with unmodulated neu-
ronal responses coding neither bundles nor single-rewards
(Fig. 4c, d; Supplementary Fig. 23a, b). With all responses irre-
spective of modulation, accuracy of choice prediction between ICs
was intermediate (for same neuron numbers) (Supplementary
Fig. 23c) between that for modulated and unmodulated activity
(Fig. 4b vs. d), but remained at chance along same ICs (e.g., along
lowest IC: P= 0.0924 ± 0.0172, mean ± SEM; highest IC: P=
0.188 ± 0.031).

To visualize bundle distinction and choice prediction, we
performed linear discriminant analysis (LDA). Using the
neuronal responses, LDA discriminated bundles numerically
and graphically across ICs (P < 0.0001, Wilcoxon rank-sum test
against the shuffled data; Fig. 4e, f; dots vs. triangles), but not
along ICs (P > 0.08; colors; pairwise bundle comparisons;

Supplementary Tables 11–14). This differential discrimination
pattern was also seen with entirely unselected neuronal responses
(Supplementary Fig. 23d). Thus, LDA confirmed the SVM results,
including bundle indiscriminability within ICs.

Thus, the decoders using scalar neuronal signals accurately
distinguished vectorial bundles and predicted choice across ICs
from neuronal responses, thus confirming the validity of the
neuronal revealed preference code. Given this discriminatory
accuracy, the decoders found no distinctions between bundles
located on same ICs during choice over zero bundle and choice
between two nonzero bundles.

Arrow’s Weak Axiom of Revealed Preference (WARP). Arrow’s
WARP defines a necessary condition for optimal choice and
utility maximization36. An option that is revealed preferred to all
other options in a given option set should remain revealed pre-
ferred when the option set is reduced to a smaller subset by
removing one or more of the alternative options. In general
compliance with Luce’s stochastic choice theory29, we asked
whether the same bundle that is revealed preferred to all other
options within a set of three nonzero bundles {x, y, z} (choice P >
0.33) would remain revealed preferred within a subset of two
nonzero bundles {x, y} (choice P > 0.5). This requirement was
satisfied with convex ICs (Fig. 5a, b) and concave ICs (Supple-
mentary Fig. 24a, b)27.

For neuronal compliance with Arrow’s WARP, the revealed
preferred bundle x eliciting the strongest neuronal response in the
three-bundle set {x, y, z} should elicit also the strongest response
in the restricted two-bundle set {x, y}. Indeed, 30 of 56 tested
neurons (54%) showed significantly stronger chosen value
responses to bundle x compared with bundle y in both {x, y, z}
and {x, y} nonzero bundle sets (90 responses) (P < 0.002 for
bundle factor x vs. y and z in two-factor ANOVA; P < 0.0001 in
Spearman rank-correlation), with convex ICs and concave ICs,
even when one reward in the alternative bundle y (or z) was
larger than in the revealed preferred bundle x (Fig. 5b, c;
Supplementary Fig. 24b, c). The responses to the revealed
preferred bundle x varied insignificantly between three- and two-
bundle sets in 16 of the 30 neurons (P > 0.05; factor {x, y, z} vs. {x,
y} bundle set in two-factor ANOVA), suggesting absolute chosen
value coding. An SVM decoder using responses of 10 of the 16
neurons showed high bundle distinction (choice over zero-reward
bundle) and choice prediction (choice between two nonzero
bundles) with both three- and two-bundle sets (Fig. 5d, e).
Responses differed significantly in the remaining 14 neurons
between three- and two-bundle sets (P < 0.01) but, importantly,
remained strongest to the commonly revealed preferred bundle x.
Together, most OFC revealed preference signals complied with
behavioral WARP as necessary condition for optimal choice.

Table 3 Chosen value coding of bundles

Neurons (linear) Responses (linear) Neurons (interaction) Responses (interaction)

Absolute chosen value 42+ 9= 51 (34%) 94+ 16= 110 (34%) 49+ 13= 62 (41%) 112+ 17= 129 (40%)
Relative chosen value 11+ 7= 18 (12%) 27+ 16= 43 (13%) 11+ 3= 14 (9%) 35+ 3= 38 (12%)
Unchosen value 17+ 22= 39 (26%) 30+ 48= 78 (24%) 26+ 30= 56 (37%) 56+ 65= 121 (38%)
Total value 15+ 2= 17 (11%) 35+ 3= 38 (12%) 13+ 3= 16 (11%) 20+ 10= 30 (9%)
Tested 152 322 152 322

The data are from both animals, all bundle types and choice between two nonzero bundles. Absolute chosen value refers only to the option the animal is choosing, relative chosen value refers to the
difference chosen value minus unchosen value; unchosen value refers only to the option the animal is not choosing; total value is chosen value plus unchosen value. The type of chosen value coding was
inferred from the significance of the neuronal coding slope coefficients (β) in regression Eq. (13) (P < 0.05; t test) during binary choice between two nonzero bundles. Chosen and unchosen value were
estimated from Eqs (11) and (12) with conservative, linear combination of reward quantities (left two columns), and from Eqs (11a) and (12a) with quantity interaction (right two columns). There were
5–15% more chosen value neurons when revealed preference coding was tested with Eq. (7) alone instead of our three-test statistics including Eq. (4). In table cells with multiple entries, the first two
numbers refer, respectively, to positive and negative relationships to increasing chosen value, as inferred from the sign of neuronal coding slope coefficients β (Eq. (13)). For conventions, see Table 1
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Single-reward coding. A distinct set of OFC neurons coded the
quantity of only one of the two bundle rewards (n= 144 neu-
rons with 246 responses during choice over zero-reward bundle,
and 223 neurons with 432 responses during choice between two
nonzero bundles, identified by regression Eqs (4–6); see Meth-
ods: Population plots 5c; Supplementary Tables 15,16). Single-
reward coding occurred with all five tested bundle types and in
all four task epochs (Supplementary Figs. 11, 12). It came in two

versions: response to both rewards, but response increase (or
decrease with inverse coding) with quantity of only one reward
(Fig. 6a, b), or exclusive response and variation with only one
reward (Fig. 6c, d). During choice between two nonzero bundles,
up to 38% of single-reward responses reflected some form of
chosen value (Supplementary Table 17). Comparable, so-called
lexicographic behavioral choices following only a single reward
were not observed, indicating that these single-reward responses
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were not explained by sporadic behavioral changes (Supple-
mentary Fig. 2).

When analyzing all single-reward responses together (while
excluding revealed preference neurons coding both bundle
components), we found that their aggregated population signal
followed well the revealed preference scheme; their neuronal ICs
showed the same left-leaning or right-leaning slopes and similar
curvatures as the behavioral ICs; they followed the behavioral ICs
close to, and often within, their confidence intervals (Fig. 6e, f),
although slightly less closely than populations of single, fully
revealed preference coding neurons (Fig. 3a–d). Thus, single-

reward coding, scalar OFC responses can aggregate into
population signals for vectorial bundles.

We constructed neuronal ICs from the total of all positive and
inverse preference responses and single-reward responses, which
together comprised >85% of all task-related OFC neurons
(Tables 1, 3). The neuronal ICs overlapped with the behavioral
ICs within their 95% confidence intervals for the two most tested
bundle types (Supplementary Fig. 25). Thus, although inverse
coding responses conceivably reduced the averaged population
signal, a substantial revealed preference population signal
emerged from the large majority of task-related OFC neurons.
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Discussion
To investigate how scalar neuronal responses emerge from vec-
torial bundles, our experimental design employed concepts of
Revealed Preference Theory and used different quantities of the
same two reward types in both choice options. We found two
forms of neuronal signals. The integrated form followed the
characteristic two-dimensional ICs: differently composed but
equally revealed preferred bundles located on same ICs elicited
indistinguishable neuronal responses, reflecting the graded, frac-
tional, and continuous component trade-off within bundles;
revealed preferred bundles on higher ICs elicited stronger neu-
ronal responses than bundles on lower ICs, even when one
bundle component was smaller in the preferred bundle than in its
alternative (partial physical non-dominance). These neuronal
responses formed well-ordered ICs that matched visually and

numerically the behavioral ICs (Fig. 7). The neuronal signal was
robust; it occurred with all tested rewards, bundle types and task
epochs during asymmetric choice over zero-reward bundle and
during choice between two nonzero bundles, satisfied out-of-
sample prediction, decoded bundles and predicted their choice,
and complied with Arrow’s WARP as necessary condition for
utility maximization. In the second form, individual OFC neurons
coded only single rewards, but their aggregated population signal
formed well-ordered neuronal ICs. These signals implemented
basic concepts of Revealed Preference Theory in neuronal hard-
ware, which makes the concepts biologically plausible and allows
future neuronal investigations of economic choice and its
violations.

The individual revealed preference responses, and the popu-
lations responses of single-reward neurons, demonstrate the
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emergence of scalar neuronal responses from vectorial bundles.
At trade-off and with partial physical non-dominance, the same
and a larger neuronal signal, respectively, result from oppositely
varying bundle components, thus showing the integration of both
components of the vectorial bundle into a scalar signal.

The OFC signals followed in four ways the characteristic ICs
for multi-component choice options, as graphically formalized by
Revealed Preference Theory. First, neuronal responses were
similar, and varied only insignificantly, for bundles located on
same ICs. As our ANOVA was sensitive enough to detect
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bundles (plotted using Eq. (7b) from all single-reward coding neurons initially identified by Eqs (5) and (6). Behavioral ICs (dotted lines) were plotted from
hyperbolic fits (Eq. (1)). ICs in e, f were estimated from respective 34 and 40 responses in any of the four task epochs from 24 and 25 single-reward
positive coding neurons in Monkey A (z-imp/s: response strength)
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neuronal changes across ICs, its insignificant along-IC factor
suggests response similarity despite varying bundle composition
(trade-off). Second, neuronal responses changed monotonically
across ICs even when one component in a bundle on a higher IC
was lower than in a bundle on a lower IC, reflecting over-
compensation by the other bundle component (partial physical
non-dominance). Third, the curvature of neuronal ICs paralleled
that of behavioral ICs, thus following the fine, local variations in
graded trade-off. Thus, with a convex IC, a bundle located on a
higher IC in the center of a straight line elicited stronger
responses than bundles on a lower IC at line end (Fig. 2a, b).
Fourth, while SVM and LDA decoded the presented bundles and
predicted the animal’s choice, both classifiers found no distinc-
tion between equal-preference bundles on same ICs. These four
results capture the emergence of scalar measures from vectorial
choice options

In contrast to our design with different quantities of the same
two reward types in both choice options, previous psychophysical
assessments of choice indifference used a different reward type in
each choice option16,20. One reward with specific quantity was
compared with another reward with a specific quantity in the
other option. In our graphs, at choice indifference, such two
equally preferred rewards of 0.4 ml of blackcurrant juice and
0.2 ml of grape juice would be located at distinct positions of the
two-dimensional plot (Supplementary Fig. 26a), but without
forming a connecting IC that represents the graded trade-off
typical for revealed preference concepts. When plotted in our
graphic convention (Fig. 1a, b), the two psychophysical IPs are
positioned along the x- and y-axes of the two-dimensional graph,
but not in its interior (Supplementary Fig. 26b). This scenario has
an equivalent in our experiment when only one component in
each bundle varied during IP estimation and the other compo-
nent had zero quantity (Fig. 1d). Supplementary Fig. 26c, d shows
corresponding bundle stimuli in the format of our displays
(Fig. 1c). These previous studies16,20 tested the subjective
equivalence between two different choice options. However, their
approach does not allow to assess the graded, fractional and

continuous trade-off within each choice option that underlies the
integration of components of vectorial, multi-component bundles
into a scalar variable as conceptualized and graphed by Revealed
Preference Theory. Such a vector-to-scalar transformation is
precisely the reason for varying multiple components in each
choice option.

Further, previous multi-reward sensitive OFC and dopamine
responses integrated the common-currency value from different
rewards and changed monotonically with reward quantity (U-
shaped profile16,20,21. Maybe their responses would have reflected
the graded trade-off in being indistinguishable between the
bundles that lined up as IPs of ICs, as found presently, had they
been tested accordingly. However, almost one-third of our multi-
reward sensitive OFC neurons showed an incompatible pattern;
they changed responses both across ICs and between bundles on
same ICs, and hence failed to follow the equal preference that
defines an IC. Thus, multi-reward sensitivity is not necessarily
associated with the graphic IC formalism.

Further, previously reported multi-reward sensitive OFC
responses reflected the value of the imposed or chosen
reward15,16,24. Chosen value refers both to the option the animal
is choosing and to the value of that option. The present study
reports chosen value responses in two ways: First, in revealed
preference neurons, which were sensitive to both bundle com-
ponents, chosen value refers to the integrated, scalar value of the
whole bundle. Second, in single-reward neurons, chosen value
refers only to the value of the specific reward the neuron is
coding. Thus, chosen value coding may occur with any form of
choice option irrespective of how many components it contains.

Further, the use of multi-component bundles allowed us to
distinguish chosen value coding from multi-reward sensitivity. A
multi-reward sensitive neuron might have a weak response when
the animal chooses the low-value reward and a strong response
when choosing the other, high-value reward, thus seemingly
coding chosen value. However, the responses would look exactly
the same if the neuron coded only the value of both rewards
irrespective of choice, which would amount to choice-
independent object value coding. By contrast, our use of the
same two reward types in both choice options allowed the dis-
tinction: about one fifth of our multi-reward sensitive revealed
preference neurons failed to code chosen value and defied simple
categorization or coded total value; reversely, one half of our
single-reward coding OFC neurons coded chosen value, analo-
gous to previous findings16,24,31,37–41. Thus, not all multi-reward-
sensitive OFC neurons coded the chosen value, and not all chosen
values coding OFC neurons were multi-reward sensitive.

Further, our single-reward coding neurons may correspond to
previously reported offer value neurons that code the value of
either one or the other component, but not both (L-shaped or
anti-L-shaped profiles of offer value neurons16. However, there
are two distinctions. First, our use of the same two rewards in
both choice options uncovered that some single-reward coding
responses reflected chosen value (Supplementary Tables 15–17),
rather than the reported offer value. Second, our single-reward
coding responses aggregated into a population signal that
reflected the scalar value of vectorial bundles by conforming to
neuronal ICs, rather than simply coding reward value on a
common-currency scale. Thus, our design with different quan-
tities of the same two reward types in both choice options
identified a rich repertoire of coding multi-component choice
options and facilitated disambiguation of neuronal decision
variable coding.

The SVM and LDA decoded the presented bundles and pre-
dicted behavioral choices from neuronal responses. The decoding
accuracy may surpass that of nearest neighbor classifiers for visual
stimulus identification42 and choice and learning prediction43–45.
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Decoders work opposite to standard statistics: regressions, cor-
relations, and ANOVAs use independent external variables
(reward bundles and choices) to explain the dependent neuronal
responses, whereas decoders use neuronal responses as inde-
pendent variables to discriminate and predict dependent external
variables (reward bundles and choices). Our decoders dis-
tinguished bundles and predicted choices from neuronal
responses; their accuracy increased meaningfully with the number
of neurons and, importantly, was substantial even when one
component of the revealed preferred bundle was smaller than in
its alternative. These results suggest a neuronal signal with suf-
ficient accuracy to potentially shape the animal’s behavior.
Interestingly, decoding accuracy was still appreciable with
responses showing neither significant revealed preference nor
single-reward coding and, as a control, with entirely unselected
responses, which suggested appreciable population coding below
single-neuron statistical thresholds.

Our monkeys’ choices complied with Arrow’s WARP when we
removed a non-preferred option from the three-bundle set27. Our
OFC responses followed Arrow’s WARP by staying strongest with
the bundle that remained revealed preferred when reducing the
three-bundle set to two bundles. The observation that the
responses varied only insignificantly between the two bundle sets
in one-half of these OFC neurons might suggest robust coding of
revealed preference. By contrast, the changed responses in the
other half of neurons may partly reflect the number of bundle
options or the slightly varying, but rank-maintaining choice
probability. The SVM decoding remained significant, despite
bundle set reduction, and thus supported the neuronal com-
pliance. The stability of the neuronal revealed preference signal
between bundles of different set size contrasts with the frequent
violations when extending two-bundle sets to three-bundle sets in
humans (similarity effect, compromise effect, asymmetric dom-
inance effect, attraction effect2,3). The failure to see such beha-
vioral violations in our monkeys27 may be due to the long-term
nature of the experiment during which the animals might have
recognized smaller distributions as parts of the full distribution
and failed to adapt, as seen before with more simple choices46,47.
Thus, in this stable situation, OFC neurons coded revealed pre-
ference irrespective of what else was on offer, suggesting their
responses complied with utility maximization in this situation.

The single-reward responses failed individually to code
revealed preference, but did so as a population. The signal
emerged from the combined regression coefficients of the single-
reward responses to the two bundle rewards, matched the beha-
vioral ICs around their 95% confidence intervals, and followed
the formalism of Revealed Preference Theory: same strength with
bundles along ICs, despite varying bundle composition, increase
across ICs even with one smaller bundle component, and non-
diagonal slope and nonlinear curvature. Further work should
elucidate the underlying mechanisms; econometric analyses could
provide out-of-sample tests for the precision of the aggregate
population code, and optogenetic stimulation could unravel the
contributing circuitry. Being a population signal, it should exist
also in human neuroimaging and could be used for translational
studies on decision disorders, such as gambling, drug addiction,
and obesity.

The observation that individual OFC neurons coded revealed
preference for bundles either in an integrated or in a segregated
fashion may inform the debate about the nature of economic
choice of multiple-component options. In some situations,
decision-makers may integrate bundle components with parti-
cular weights rather than according to their respective, common-
currency utilities1,3,5,48. Reasons for these heterogeneous findings
may include unequal attention to individual components and
sensory discrimination limits. The current two forms of bundle

coding might provide a neuronal basis for the different ways
multi-component choices are made and may go wrong.

Methods
Animals. Two adult male macaque monkeys (Macaca mulatta; Monkey A,
Monkey B), weighing 11.0 kg and 10.0 kg, respectively, were used in the experi-
ments. Neither animal had been used in any other study; the behavioral results
have been published in detail27.

Ethical approval. This research has been ethically reviewed, approved, regulated,
and supervised by the following UK and University of Cambridge (UCam) insti-
tutions and individuals:

UK Home Office, implementing the Animals (Scientific Procedures) Act 1986,
Amendment Regulations 2012, and represented by the local UK Home Office
Inspector
UK Animals in Science Committee
UK National Centre for Replacement, Refinement and Reduction of Animal
Experiments (NC3Rs)
UCam Animal Welfare and Ethical Review Body (AWERB)
UCam Biomedical Service (UBS) Certificate Holder
UCam Welfare Officer
UCam Governance and Strategy Committee
UCam Named Veterinary Surgeon (NVS)
UCam Named Animal Care and Welfare Officer (NACWO).

Implementation of basic concepts. We modeled the multi-component nature of
choice options as vectorial bundles that contained the same two distinct, inde-
pendently variable, scalar liquid rewards. We presented the animal with an option
set of two bundles, the Reference Bundle and the Variable Bundle, that appeared
simultaneously at equal reaching distance; only our axiomatic tests employed
three-bundle option sets. Thus, in keeping with general notions of discrete choice
models, the employed choice sets were exhaustive and had finite numbers of
options (two or three), and their options were mutually exclusive. The statistical
analysis of neuronal responses requires the use of multiple trials. Therefore, we
made our design compatible with basic assumptions of stochastic choice
theories13,28,29 (although testing Luce’s probability ratio formalism would have
required trial numbers beyond the scope of this study27). Thus, we assessed
revealed preference from the probability of multiple choices, rather than by tra-
ditional single-shot economic tests.

We implemented the following notions of Revealed Preference Theory:

(1) Revealed preference indicates a relation between all options in a choice set
and depends on all components of all bundles.

(2) Revealed preference for a given bundle is inferred from the measured
probability of choice of that bundle over all alternative bundles in the same
option set during multiple trials. We inferred revealed preference from a
choice probability of P > 0.5 with two options and P > 0.333 with three
options

(3) Increasing quantities of one component of one bundle, with all other
components constant, leads to monotonically increasing probability of
choosing this bundle over its alternative, as modeled by an S-shaped
psychophysical choice function.

(4) Bundles are equally revealed preferred, and inferred to have equal utility for
the animal, when the animal chooses them with equal probability (P= 0.5
each in a two-option set; P= 0.333 each in a three-option set).

(5) Every bundle has a subjective value for the decision maker, called utility,
that depends only on the reward quantities of both juice components. A
bundle is chosen with a higher probability than any other bundle in the
same option set if and only if its utility for the animal is higher than that of
any other bundle in that option set. A bundle that is chosen with equal
probability against another bundle is assumed to have the same utility as the
other bundle. These choices were complete; our previous report showed that
they were also transitive27.

(6) A bundle that is revealed preferred to all other bundles in a given option set
should remain revealed preferred when one or more of the alternative
bundles are removed from the option set (Arrow’s Weak Axiom of Revealed
Preference36).

(7) Each two-component bundle is graphically represented at the intersection of
the x-coordinate (reward B) and y-coordinate (reward A) of a two-
dimensional plot (Fig. 1a).

(8) A bundle that is as revealed preferred as another bundle, as shown by choice
indifference, is graphically represented as a two-dimensional indifference
point (IP). The two red dots in Fig. 1a are IPs relative to the black dot, and
relative to each other.

(9) Several IPs align as an indifference curve (IC) on which each bundle is as
revealed preferred as any other bundle on that same IC, despite different
physical bundle composition. The black curve in Fig. 1a is an IC. Bundles on
higher ICs (farther from origin) are revealed preferred to bundles on lower
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ICs, and all bundles on a given IC are revealed preferred to bundles below
that IC. Bundles on the red IC in Fig. 1b are revealed preferred to bundles
on the blue IC.

(10) A neuronal revealed preference signal should be indistinguishable between
equally revealed preferred bundles, and thus between all bundles on the
same IC (along blue and red ICs in Fig. 1b), but should increase
monotonically, or decrease monotonically with inverse coding, with the
utility of the bundle across increasing ICs (from blue to red ICs). Although
such revealed preference-related changes vary monotonically with choice
probability, they need not necessarily correlate numerically with probability.
In this study, the terms revealed preference neuron and revealed preference
response refer specifically to Revealed Preference Theory, although revealed
preferences can be elicited in any observable choice; use of this term does
not necessarily imply that the responses carry a numeric code for preference
as defined by choice probability.

(11) Variations in the composition of equally revealed preferred bundles on the
same IC illustrate the graded, fractional and continuous trade-off between
bundle components: some quantity of one component is given up in order
to gain one unit of the other component without a preference change
(Fig. 1a). The trade-off, or compensation in utility, determines the
asymmetric IC slope and nonlinear IC curvature, thus dissociating revealed
preference from physical bundle composition. A neuronal revealed
preference signal should follow IC slope and curvature (Fig. 1b).

(12) As a control for meaningful revealed preference, a revealed preferred bundle
must remain revealed preferred even when one of its components is smaller
than in the alternative bundle (requiring overcompensation by the other
bundle component). A neuronal revealed preference signal should satisfy
this test (Fig. 1b; blue vs. red stars).

The stochastic choices in our monkeys were meaningful, as shown by the
systematic trade-off, well-ordered ICs, transitivity despite one smaller bundle
component, and compliance with Arrow’s WARP27. Thus, the behavior elicited
with our design seemed to follow the IC scheme of Revealed Preference Theory.

The symmetric design with two-component bundles and two-dimensional ICs
specified the minimum conditions for studying revealed preference for multi-
component choice options. Continuous variation of both reward components
allowed us to test the graded, fractional, and continuous component trade-off
within choice options, as a change in one component can compensate for a change
in the other component. Such a trade-off reflects the emergence of scalar measures,
such as stochastic preferences or neuronal responses, from vectorial bundles and is
characterized by ICs with IPs away from the axes, and towards the center, of the
two-dimensional plot (Fig. 1a, b; Supplementary Fig. 2)27. By contrast, standard
psychophysical assessments of choice indifference compare one reward with
specific quantity in one choice option with its alternative in the other choice
option16,20. Put graphically, these tests assess IPs only at the axes (or on specific
points, depending on scale points) of a two-dimensional graph and do not allow to
construct ICs from bundles in between (Supplementary Fig. 26b).

General behavior. The animals were habituated during several months to enter
and then sit relaxed in a primate chair (Crist Instruments) for a few hours each
working day. They were trained in specific, computer-controlled behavioral tasks in
which they contacted visual stimuli on a horizontally mounted touch-sensitive
computer monitor (Elo) in front of them. Following task training for 4 to
6 months, animals were surgically implanted with a recording chamber for elec-
trophysiological recordings, which typically lasted for another 6–10 months. The
animals performed the behavioral task during most working days of the week. Each
daily task training session lasted for 1 to 2 h; each daily electrophysiological
recording session lasted for 1.5 to 3 h. The animals were exposed to a constant, full
reward range.

During the experimental sessions, a single animal sat in the primate chair 30 cm
away from the computer touch monitor. Its eye positions in the horizontal and
vertical plane were monitored with a noninvasive infrared oculometer (Iscan).
MATLAB software (Mathworks) running on a Microsoft Windows XP computer
controlled the behavior and collected, analyzed, and presented data online. A
solenoid valve (ASCO, SCB262C068) controlled by the same Windows computer
served to deliver specific quantities of liquids. A Microsoft SQL Server 2008
Database served for Matlab offline data analysis.

Visual stimuli and reward bundles. The computer-touch monitor presented the
animal with two visual stimuli at the left and right (angle of 4°) representing two
bundles, respectively (Fig. 1c; Supplementary Fig. 1). Each stimulus indicated a
bundle that contained the same two distinct liquid rewards with independently set
quantities (reward A, plotted along the y-axis of a 2D graph, and reward B, plotted
along the x-axis). The stimuli were also the touch targets in the task; they appeared
at equal reaching distance to the animal, which performed one arm movement to
touch the stimulus of the chosen bundle; thus, each bundle was equally affordable
to the animal. Each reward was indicated by a distinctly colored stimulus with a
superimposed rectangle containing a value bar whose vertical position indicated
the quantity of that reward (higher bar= farther away from the animal=more
liquid). The notion of higher being better constitutes a valid metaphor across
species49 (Fig. 1c). In the standard option set, two bundles appeared at the fixed,

pseudorandomly alternating left and right positions on the computer monitor; each
bundle contained two stimuli. By contrast, the option set for testing Arrow’s Weak
Axiom of Revealed Preference (WARP)36 consisted of three bundles presented side
by side, each with two stimuli. The symmetry in number, presentation and type of
reward between the two bundles served to reduce confounds. In both bundles,
reward A (top, violet) was always blackcurrant juice, whereas reward B (bottom,
green) could be any of four rewards, namely grape juice, water, apple squash or
mango juice. A fifth bundle type contained monosodium glutamate (MSG) added
to blackcurrant juice (reward A) and inositol monophosphate (IMP) added to
grape juice (reward B); this bundle composition was used to test synergistic,
enhancing effects of the combination of MSG with IMP. Occasional tests used
other combinations of these rewards.

Behavioral task. After the animal’s hand had contacted a resting-touch stimulus
on the computer monitor, the two visual bundle stimuli (or three-bundle stimuli
for WARP) appeared on the monitor (Supplementary Fig. 1). Left and right
positions of the bundle stimuli alternated pseudorandomly, but there was no
further distinction between the stimuli that could serve for identifying them as
distinct objects. The animal held the touch key for 0–2 s (0–3 s for three bundles),
and then a Go signal appeared (blue dots underneath the bundles). Without any
further imposed delay, the animal released the touch key after an average reaction
time of 445 ms (Monkey A: 396 ms, Monkey B: 493 ms) and touched the blue Go
spot underneath the bundle of its choice. This choice revealed the animal’s pre-
ference at this moment. The animal kept touching the Go spot for 1 s, after which it
received the reward quantities of the chosen bundle, consisting first of reward A,
always followed 500 ms later by reward B. By always delivering the reward com-
ponents in the same sequence, and by always using blackcurrant juice as reward A,
we incurred a consistent discount of reward B that contributed a constant, non-
varying, constituent factor to the subjective value (utility) of that reward. No
attempt was made to separate this temporal discounting-derived factor from other
factors of the bundle reward. The delay, rather than simultaneous delivery of both
rewards, was introduced to reduce possible interactions between the different
rewards of the bundles.

Estimation of behavioral ICs. All bundles along a single IC are equally revealed
preferred, and thus constitute IPs, and bundles on ICs further away from the origin
are revealed preferred over those closer to the origin. Our design tested the graded,
fractional and continuous trade-off at equal revealed preference between a gain in
one bundle component and a loss in the other bundle component. The trade-off is
a defining feature of Revealed Preference Theory and implemented as Marginal
Rate of Substitution (MRS), defined as the quantity of one component that is given
up in order to obtain one additional unit of the other component at choice
indifference between the two bundles (equal revealed preference for each bundle).
Formally, MRS is the negative first derivative of the IC slope (MRS=−dy/dx). In
Fig. 1a, the MRS is initially 3:1 and becomes 1:1 with increasing reward B. An non-
1:1 trade-off (nondiagonal slope) indicates different subjective value for identical
reward amounts, which can be estimated on a common-currency scale of one
reference reward (“numeraire”). Thus, MRS, slope and currency define equally well
the trade-off.

The behavioral method used to obtain a choice IP has been presented in full
detail27. With two bundle options, the animal chose between the preset Reference
Bundle (left in Fig. 1c) and the Variable Bundle (right) in multiple trials. Thus, the
constant Reference Bundle provided a stable reference against the changing bundle
composition in the Variable Bundle. We set one reward in the Variable Bundle to
one unit (≥0.1 ml) above the quantity of the same reward in the Reference Bundle,
while pseudorandomly varying the quantity of the other reward widely. The
variation of the animal’s repeated choice with that single varying reward allowed us
to construct a full psychophysical function and estimate the IP from a Weibull fit
(point of subjective equivalence; P= 0.5 choice of each bundle; Fig. 1d). We
obtained each IP from a total of 80 trials (two left–right stimulus positions with five
equally spaced reward quantities in eight trials). To avoid known adaptations in
OFC neurons15,46,50, we always tested the full reward range of the experiment.

To obtain an IC, we fit a series of IPs with several different functions using
weighted least mean squares. These functions included a linear (first-degree)
polynomial (y= ax+ b), a quadratic (second-degree) polynomial (y= ax2+ bx+ c)
and a hyperbolic function (d= ax+ by+ cxy). Polynomials and hyperbolas
provided the equally best fits to the behavioral data (adjusted R2s of 0.80–0.97)27.
As the neuronal data were fit somewhat better by a hyperbola (regression with
interaction) than a quadratic polynomial, we used only the hyperbolic function

d ¼ ax þ byþ cxy ð1Þ

with x and y as reward quantities, a as slope (currency), c as curvature. The
hyperbolic function provided the slope (coefficient b) and curvature (coefficient a) of
the behavioral IC. The hyperbolic function can be written in an equivalent form to
the regression with interaction used for analyzing neuronal responses (β0= β1A+
β2B+ β3AB; see Eq. (7) below). Supplementary Fig. 2 shows hyperbolic IC fits to
empirically estimated behavioral IPs for all bundles used for neuronal recordings.
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Control regressions for behavioral choice. To test whether the animal’s choice
reflected the quantity of the bundle rewards, rather than other, unintended vari-
ables such as spatial bias, we used the logistic regression

P Vð Þ ¼ β0 þ β1CTþ β2RAþ β3RBþ β4VAþ β5VBþ β6CLþ β7RefLþ β8VT� 1þ ε

ð2Þ
with P (V) as probability of choice of Variable Bundle, β0 as offset coefficient, β1–β7
as strength (slope) coefficients indicating the influence of the respective regressor,
CT as trial number within block of consecutive trials, RA as quantity of reward A of
Reference Bundle, RB as quantity of reward B of Reference Bundle, VA as quantity
of reward A of Variable Bundle, VB as quantity of reward B of Variable Bundle, CL
as choice of any bundle stimulus presented at the left, RefL as Reference Bundle
stimulus shown at the left, VT-1 as choice of Variable Bundle in previous trial, and
ε as error. We used a binomial fit with logit link function to obtain standardized β-
coefficients. The results from this regression suggested that the animals based their
choice on the quantities of the combined bundle rewards, rather than on the
identity of the bundles, both in choice over zero-reward bundles and in choice
between two non-zero bundles (Supplementary Fig. 3a, b).

However, the animal might have based its choice on spatial parameters, rather
than reward quantities. We assessed this possibility with the logistic regression

P Lð Þ ¼ β0 þ β1CTþ β2LAþ β3LBþ β4RiAþ β5RiBþ β6RefLþ β7LT� 1þ ε ð3Þ
with P (L) as probability of left choice, CT as trial number within block of
consecutive trials, LA as quantity of any bundle reward A whose stimulus was
presented at the left on the computer monitor, LB as quantity of bundle reward B
presented at left, RiA as quantity of bundle reward A presented at right, RiB as
quantity of bundle reward B presented at right, RefL as Reference Bundle stimulus
presented at left, and LT-1 as left choice in previous trial. The results from this
regression suggested that the animals based their choice on the quantities of the
combined bundle rewards, rather than on spatial variables, both in choice over
zero-reward bundles and in choice between two non-zero bundles (Supplementary
Fig. 3c, d).

Surgical procedures and electrophysiology. A head-restraining device and a
recording chamber (40 × 40 mm, Gray Matter) were implanted on the skull under
full general anesthesia and aseptic conditions. The stereotactic coordinates of the
chamber enabled neuronal recordings of the orbitofrontal cortex (OFC)51. We
located the OFC from bone marks on coronal and sagittal radiographs taken with a
guide cannula inserted at a known coordinate in reference to the implanted
chamber, using a medio-lateral vertical and a 20° degree forward directed approach
(Supplementary Fig. 6). Monkey A provided data from the left hemisphere,
Monkey B from the right hemisphere, via a craniotomy in each animal ranging
from Anterior 30 to 38, and Lateral 0 to 19. We conducted single-neuron elec-
trophysiological recordings using both custom made glass-coated tungsten elec-
trodes52 and commercial electrodes (Alpha Omega, Israel) (impedance of ~1
MOhm at 1 KHz). Electrodes were inserted into the cortex with a multi-electrode
drive (NaN drive, Israel) with the same angled approach as used for the radio-
graphy. Neuronal signals were collected at 20 kHz, amplified using conventional
differential amplifiers (CED 1902 Cambridge Electronics Design), and band-passed
filtered (high: 300 Hz, low: 5 kHz). We used a Schmitt-trigger to digitize the analog
neuronal signal online into a computer-compatible TTL signal. However, we did
not use the Schmitt-trigger to separate simultaneous recordings from multiple
neurons, in which case we searched for another single-neuron recording or occa-
sionally stored the data in analog form for offline separation by dedicated software
(Plexon offline sorter). An infrared eye tracking system monitored eye position
(ETL200; ISCAN).

Trial types for neuronal tests. We conducted electrophysiological recordings
during choices between bundles positioned on specific IPs of behavioral ICs. We
tested at least ten trials per bundle during two-option choices (between two bundles
containing the same two rewards in varying quantity) for general data collection,
and three-option choices (between three bundles) for testing Arrow’s WARP, using
the same experimental designs as our behavioral study27.

With two-option choice sets, we tested two trial types:

a. Zero-reward bundle trials: both rewards of the Reference Bundle were set to
zero quantity, whereas the Variable Bundle contained at least one non-zero
quantity. As the zero-reward bundle was constant, only the explicitly varied
non-zero bundle should affect the animal’s choice. Indeed, given their
extensive training, the animals unfailingly chose the varying nonzero
bundle. This version-related neuronal responses primarily to variations of
the nonzero option and aided in their interpretation. These trials were also
helpful for keeping the animals attentive and focused on the task. Trial
blocks with zero-reward bundles consisted usually of five equally spaced
quantities of both rewards of the nonzero bundle.

b. Choice trials: one or both rewards of both bundles were set to the quantities
of any IP on any IC, and the animal chose the bundle of its preference.
These trials provided the core data of the study. Blocks of choice trials
consisted of 24 trial types that were repeated ten or more times depending
on neuronal recording stability (12 options, 2 left–right pseudorandomly

alternating stimulus positions). A subform of choice trials consisted of trials
with degenerate bundles that anchored them to the two coordinate axes of
the indifference map; the nonzero reward of one bundle was set to a specific
quantity on one axis, and the quantity of the other nonzero reward of the
alternative bundle was set to a specific quantity on the other axis. These
anchoring trials served (i) to establish the basic neuronal relationship to the
quantity of individual rewards, (ii) to provide behavioral control measures
for motivation and reward-specific satiety27, and (iii) to allow regression
analysis of chosen value coding using the value of any bundle reward relative
to the common currency of blackcurrant juice or blackcurrant–MSG (which
served as reference, numeraire) (Eqs (11, 12)). A block of anchor trials
consisted typically of 80 trials. The data were excluded whenever a
behavioral change in common-currency value was detected (Supplementary
Fig. 5).

As some neurons in orbitofrontal cortex (OFC) are known to adapt to the
distribution of reward quantity27,46,50, we interspersed ~20% zero-reward bundle
and anchor trials between full choice trials in order to keep the quantity
distribution constant.

When testing WARP, the animal chose between three simultaneously presented
bundles. In two of these bundles, one reward of one bundle and the other reward of
the other bundle were set to zero quantity, thus anchoring the bundles to the two
respective axes of the indifference map. The third bundle contained variable
quantities of both rewards, thus being located on an IC away from the axes. The
two anchor bundles were set on the same IC, whereas the third bundle was set
either on that same IC or on an IC above or below that of the two anchor bundles.

Assessment of basic task relationships. We measured electrophysiological
activity from 694 single OFC neurons during task performance. Tested bundles
alternated pseudorandomly; data were post hoc ordered for presentation. Unless
otherwise stated, we analyzed neuronal impulses during four task epochs vs. Pre-
trial control (1 s): visual Bundle stimulus (2 s), Go signal (1 s), Choice (1 s) and
Reward (2 s, starting with reward A, followed 0.5 s later by reward B, thus covering
both rewards).

We used the paired Wilcoxon test (P < 0.01) for comparing the activity in each
neuron during each task epoch separately against the Pretrial control epoch. A
neuron was considered task-related if its activity in at least one of the four task
epochs differed significantly from the activity during the Pretrial control epoch.
This Wilcoxon analysis yielded one or more statistically significant task-related
responses in 441 OFC neurons out of the 694 tested OFC neurons.

To confirm the Wilcoxon-identified task relationships with a different statistical
test (method-independent assessment), we used a one-factor ANOVA with
150 -ms sliding window (bin-width of 50 ms) and required four consecutive
windows (total of 600 ms) to define significance against the Pretrial control epoch
(P < 0.01). The ANOVA analysis yielded task-related responses in 493 OFC
neurons out of the 694 tested OFC neurons. All Wilcoxon-significant neurons were
also ANOVA significant. Thus, the ANOVA analysis confirmed the results from
the fixed-window Wilcoxon analysis. For reasons of conservative statistics, all
further analyses focussed on the task-related responses in the 441 Wilcoxon-
significant task-related neurons.

Of the 441 neurons with task-related responses identified by the Wilcoxon test,
325 neurons were tested in binary, two-option choice over a zero-reward bundle,
391 neurons (including the 325 neurons) were tested in binary, two-option choice
between two non-zero bundles, and 56 neurons were tested in trinary, three-bundle
choice for WARP (including six neurons submitted to all three tests).

Definition of neuronal revealed preference coding. Revealed preference
responses of single neurons should follow the typical scheme of behavioral ICs
described by Revealed Preference Theory (Fig. 1b), which requires three crucial
characteristics:

Characteristic 1: Following the monotonicity assumption on preferences8,
activity should change monotonically across behavioral ICs with increasing
behavioral revealed preference, even when a revealed preferred bundle contains one
smaller reward component than the alternative bundle. Such monotonic neuronal
response changes reflect increasing quantities of one or both bundle rewards,
assuming a positive monotonic subjective value function on reward quantity; the
current study did not test bundles and situations that were possibly not associated
with positive monotonic value functions, such as negatively valued rewards, post-
satiety rewards, or punishers. Importantly, a monotonic activity change (increase
or decrease) defines the sensitivity to revealed preference of the neuron under
study. Without demonstrating such sensitivity, the next analysis would be
meaningless.

Characteristic 2: All bundles along a same-revealed-preference IC should elicit
the same, insignificantly varying neuronal response. Their activity should reflect
the systematic trade-off between the two bundle rewards while maintaining the
same revealed preference. This crucial characteristic requires the same neuronal
responses to bundles that are equally revealed preferred, despite different physical
bundle composition. Thus, neuronal responses should differ insignificantly, despite
different quantities of the two bundle rewards as long as the bundles were equally
revealed preferred (i.e., positioned on the same behavioral IC). By contrast,
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responses varying significantly along individual ICs would not code the crucial
graded trade-off, and thus not follow the formalism of Revealed Preference Theory.

Characteristic 3: The ICs are often not symmetric (diagonal) and linear, and the
neuronal response should match these behavioral parameters. The IC slope reflects
the currency relationship between the two bundle rewards, indicating the revealed
preference relation between the two rewards of a bundle, and thus the value of one
reward relative to a common-currency reference reward (numeraire). We estimated
slope and curvature parameters from regression coefficients of each neuronal
response (see below) and compared them with the average slope and curvature of
all behavioral ICs of a given bundle type.

To summarize, to suggest multi-component bundle coding compatible with the
graphic formalism of Revealed Preference Theory, a given neuronal response must
necessarily show revealed preference sensitivity (characteristic 1), reflect the
systematic trade-off at equal revealed preference by insignificantly varying with
different bundles positioned on the same IC (characteristic 2), and have similar IC
slope and curvature as the behavioral IC of the tested bundle type (characteristic 3).

In contrast to these responses concerning combinations of two bundle rewards,
single-reward coding responses would vary only with a single bundle reward. Some
OFC neurons are known to code only single reward (offer value coding16); their
existence was confirmed in our study and provided a contrast to revealed
preference coding (note that single-reward lexicographic preferences were not
observed in the behavioral choices in our study27).

Statistical analysis of neuronal revealed preference coding. We used the three
characteristics mentioned above to identify a neuronal signal compatible with the
graphic formalism of Revealed Preference Theory. We used a conservative statis-
tical approach with minimal assumptions about the nature of the potential neu-
ronal code. We assumed only positive or negative monotonic relationships with
reward quantity and ordinal (rank-ordered) relationships to revealed preference
(more is better, without indicating by how much); we did not assume linear
numeric relationships. For comparison with other neurophysiological studies, we
used the most basic, best-understood statistical tools for analyzing neuronal data.
To this end, we employed a combination of three statistical tests that reflected the
three characteristics, comprising (1) conventional linear regressions to assess the
monotonicity of neuronal response change across ICs in approximation to line-
arity, but without formally assuming it (P < 0.05 for β-coefficients; t test) (see
below, Eq. (4)), (2) Spearman rank-correlation to confirm ordinal monotonicity of
response change across ICs without assuming a particular numeric scale (P < 0.05),
and (3) two-factor ANOVA to assess significant response change in the spirit of
ICs: significance across ICs and insignificance within ICs, without regard of
monotonicity of change (P < 0.05 for factors). An insignificant change within ICs in
the ANOVA is not necessarily equal to an absence of change; however, significance
across ICs would suggest sufficient test sensitivity to indicate that insignificance
within ICs was not due to test insensitivity or insufficient data. Therefore, we
considered an absence of neuronal response change along an IC in the corre-
sponding ANOVA factor as meaningful and indicative of response similarity. We
used the two-factor ANOVA instead of a double-linear regression for this purpose,
because an absence of significance in a regression indicates insignificant monotonic
change while not ruling out non-monotonic changes; an ANOVA would be sen-
sitive also to non-monotonic changes, and an absence of significance in an
ANOVA is therefore closer to absence of change. To indicate coding of revealed
preference, a neuronal response had to pass all three tests. Due to the conservative
nature of these tests, our analysis may have underestimated the incidence and
importance of revealed preference signals in OFC. Note that we also obtained
population codes for revealed preference from combining single neuron responses
not passing all three tests (see below).

To assess the described characteristics, we used the three statistical tests on the
441 Wilcoxon-identified task-related neurons as follows:

Characteristic 1: To capture the scalar neuronal activity representing the
vectorial bundle (y= f (reward A, reward B)) in the most conservative,
assumption-free manner possible, we tested neuronal sensitivity to both bundle
components as necessary requirement for revealed preference coding, using the
linear regression:

y ¼ β0 þ β1Aþ β2Bþ ε ð4Þ

with y as neuronal response in any of the four task epochs, measured as impulses/s
and z-scored normalized to the Pretrial control epoch of 1.0 s (z-scoring of
neuronal responses applied to all regressions listed below), A and B as milliliter
quantity of reward A (plotted at y-axis on 2D indifference map, Fig. 1b) and reward
B (plotted at x-axis), respectively, β0 as offset coefficient, β1 and β2 as neuronal
coding slope coefficients, and ε as error consisting of the sum of individual errors of
each expression (err0, err1, err2 for offset and respective regressors 1 and 2). The
coefficients β1 and β2 needed to be either both positive (indicating positive
neuronal relationship, higher neuronal activity reflecting more reward quantity) or
both negative (inverse neuronal relationship) to reflect the additive nature of the
individual bundle components giving rise to revealed preference (P < 0.05, unless
otherwise stated; t test). Equation (4) together with same-signed βs (either both βs
positive or both βs negative) constituted our basic screening statistics that defined
the number of neurons potentially coding revealed preference.

By contrast, we tested the coding of single rewards A or B with the reduced
regressions:

y ¼ β0 þ β1Aþ ε ð5Þ
and

y ¼ β0 þ β1Bþ ε ð6Þ
with ε= err0+ err1. To demonstrate single-reward coding, we required significance
in (1) Eqs (5) and (6) for only reward A or only reward B, respectively, but not in
both Eqs. (2) Eq. (4) for only the A or only the B reward but not both regressors,
and (3) the F-test between Eqs (4) and (5) (identifying coding of reward B) and
between Eqs (4) and (6) (identifying coding of reward A).

Characteristic 1: All neurons with significant positive or negative changes
identified by Eq. (4) needed to be also significant in the Spearman rank-
correlation test.

Characteristics 1 and 2: To assess together the first two necessary conditions for
revealed preference coding in a direct and intuitive way, we used a two-factor
ANOVA on each Wilcoxon-identified task-related response that was significant for
both regressors in Eq. (4); the factors were across-IC (ascending rank order of
behavioral ICs) and within-IC (same rank order of behavioral IC). To be a
candidate for coding revealed preference, changes across ICs should be significant
(P < 0.05), changes within-IC should be insignificant, and their interaction should
be insignificant.

Characteristic 3: Whereas the regression defined by Eq. (4) would provide a
conservative estimate of revealed preference coding, the full construction of
neuronal ICs for comparison with behavioral ICs requires inclusion of the IC
curvature that depends on both rewards. To this end, we extended Eq. (4) by
adding the interaction term AB:

y ¼ β0 þ β1Aþ β2Bþ β3ABþ ε ð7Þ
with ε= err0+ err1+ err2+ err3. The neuronal IC slope was estimated from the
ratio of coefficients β2/β1. Note the different meanings of the slope term: the
neuronal IC slope (β2/β1) describes the relative coding strength of the two bundle
rewards (reflecting the currency of the two rewards), whereas the neuronal coding
slope alone (β) describes the strength of neuronal response. The neuronal IC
curvature was the β3-coefficient of the interaction term AB (all β‘s P < 0.05; t test).
The regression defined by Eq. (7) is identical to the hyperbolic model used for
fitting behavioral ICs (d= ax+ by+ cxy).

To assess numerically the match in slope and curvature parameters between
neuronal responses and behavioral ICs, we searched for an overlap between the
means of the neuronal IC slope and curvature parameters and the ±95% confidence
interval of the distribution of the behavioral IC slope and curvature parameters,
and vice versa. Although these parameters combine into the local slope (negative of
Marginal Rate of Substitution, MRS), they may differ in opposite directions and, by
mutually canceling their difference, might falsely indicate an MRS match; therefore,
we performed separate comparisons for slope and curvature.

To compare graphically the neuronal responses in any of the four task epochs
with the behavioral ICs, we plotted two-dimensional neuronal ICs along which all
neuronal responses were equal. As per definition a response y would be constant
along a whole neuronal IC, we merged y with the constants offset (β0) and error (ε)
into a common final constant k:

k ¼ β1Aþ β2Bþ β3AB ð7aÞ
To draw the neuronal IC, we computed the quantity of component A as a

function of component B from the derived equation:

A ¼ k� ðβ2=β1ÞBþ β3B ð7bÞ
To obtain a two-dimensional map of neuronal ICs, we plotted the preset

quantity of component B on the x-axis and the quantity of component A computed
from Eq. (7b) on the y-axis. For details, see below (Population plots).

Further regressions served as controls for the validity of our basic analysis
(Eqs (4) and (7)), such as the quadratic model:

y ¼ β0 þ β1Aþ β2Bþ β3A
2 þ β4B

2 þ ε ð8Þ
with ε= err0+ err1+ err2+ err3+ err4. We also used a higher-order interaction
model:

y ¼ β0 þ β1Aþ β2Bþ β3A
2 þ β4B

2 þ β5ABþ ε ð9Þ
with ε= err0+ err1+ err2+ err3+ err4+ err5.

However, we based our neuronal analysis on the most conservative model
involving Eq. (4), as it avoided up to 5% false positives due to its fewer regressors
and thus allowed us to be as conservative as possible to reduce the number of
assumptions about this previously unreported neuronal signal.

For a more comprehensive assessment, we incorporated all individual bundle
components, together with additional variables, into a single regression:

y ¼ β0 þ β1CTþ β2RAþ β3RBþ β4VAþ β5VBþ β6CV

þ β7VT� 1þ β8CLþ ε
ð10Þ

with y as neuronal response, β0 as offset coefficient, β1–β8 as neuronal coding slope
coefficients, CT as trial number within block of consecutive trials, RA as reward A
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in Reference Bundle, RB as reward B in Reference Bundle, VA as reward A in
Variable Bundle, VB as reward B in Variable Bundle, CVB as choice of Variable
Bundle in current trial, VT-1 as choice of Variable Bundle in previous trial, and CL
as choice of any bundle stimulus presented on the left.

Polar plot of neuronal reward sensitivity. The purpose of this analysis was to
graphically display the general sensitivity of OFC neurons to single or multiple
rewards and align the presentation with data from previous studies15,16. This
analysis provided quantitative information about one of the basic requirements of
revealed preference coding, namely the monotonic increase or decrease of activity
with increasing quantity of both bundle rewards across ICs (characteristic 1 above),
but without addressing trade-off, slope, and curvature (characteristics 2 and 3). The
2D polar plot of Supplementary Fig. 11a shows such monotonic changes and
indicates the relative coding strength of each of the two bundle rewards based on
the neuronal coding slope (β-coefficients in linear regression Eq. (4)); further
characteristics of revealed preference such as systematic trade-off across multiple
IPs and IC curvature played no role in these graphs. The alignment of the colored
dots along the diagonal axis reflects the relative strength of the β-coefficients for
each bundle reward (A+ B+ and A−B− responses, defined by significance of both
β-coefficients; the sign indicates positive or inverse monotonic coding). A deviation
of the alignment angle from the diagonal line indicates a non-1:1 currency rela-
tionship between the two bundle rewards (for definition of common currency, see
below). The polar plot of Supplementary Fig. 11a shows also data from neuronal
responses that coded only one of the bundle rewards (A+, B+, A−, B− responses).
For these neurons, the β-coefficients from the regression analysis with Eq. (4) were
significant for only one reward and aligned toward the vertical and horizontal axes
of the 2D plots. These categories occurred with all tested bundle combinations
(Tables 1a and 3a) and in all four task epochs (Supplementary Figs. 11b–f, 12).
These plots display the monotonic quantitative coding of individual rewards as
necessary (but not sufficient) condition for coding revealed preference among
multi-reward bundles. However, the plots did not capture a neuronal code for the
trade-off as crucial formalism of Revealed Preference Theory.

Neuronal chosen value coding. Chosen value is defined as the value of a choice
option the animal considers, would obtain or has obtained by its choice. In analogy,
unchosen value refers to the value of the option not chosen. As each option
consisted of two components, we defined the chosen value (CV) of each option in
two ways. The conservative approach made minimal assumptions and used a linear
combination of the quantity of the two-component rewards A (blackcurrant juice)
and B (any of the other five rewards):

CV ¼ Aþ k1B ð11Þ
A more sophisticated approach accounted for IC nonlinearity by adding the

interaction term AB:

CV ¼ Aþ k1Bþ k2AB ð11aÞ
In analogy, we defined unchosen value (UCV) by linear combination as:

UCV ¼ Aþ k1B ð12Þ
and with interaction term AB as:

UCV ¼ Aþ k1Bþ k2AB ð12aÞ
Weighting parameter k1 served to adjust for differences in subjective value

between rewards A and B, such that the quantity of reward B enters the regression
on a common-currency scale defined by reward A. Weighting parameter k2 is
identical to coefficient β3 of Eq. (7) and served to account for interaction between
the two bundles to reflect IC nonlinearity.

In detail, we established parameter k1 during neuronal recording sessions from
behavioral choice IPs using quantitative psychophysics in anchor trials (80 trials
per test, see above Trial types for neuronal tests), rather than reading it from fitted
ICs. Thus, k1 equals the ratio of coefficients β2/β1 (see Eq. (7)). We established a
common-currency scale in ml for all tested rewards by defining blackcurrant juice
or blackcurrant–MSG (reward A) as reference (numeraire); the subjective value of
any reward is expressed as real-number multiple k1 of the quantity of the
numeraire at choice indifference.

Specifically, the animal chose between the Variable Bundle that contained a
psychophysically varied quantity of blackcurrant juice (the other bundle reward
being set to 0 ml) and the Reference Bundle that contained a fixed quantity of the
other reward (blackcurrant juice being set to 0 ml). At choice indifference, the
quantity of blackcurrant juice (reward A) in the Variable Bundle defined the
common-currency value of the other reward, from which we calculated parameter
k1 as A/B. A k1 of <1 indicates that more quantity is required for choice
indifference against blackcurrant juice, and that k1 brings down this higher
quantity to a level comparable with that of reward A; thus, a k1 < 1 suggests that the
tested reward has lower subjective value than blackcurrant juice. By contrast, a k1 >
1 suggests higher subjective value, as less quantity is required for choice
indifference, and that k1 elevates this lower quantity to the level of reward A. An
example result is seen on the highest IC in Supplementary Fig. 2b; the quantity of
0.8 ml of water (reward B: y= 0, x= 0.8 ml) was positioned on the same IC
established from psychophysically assessed IPs, and thus was subjectively equally

valuable to the animal, as 0.5 ml of blackcurrant juice (reward A: y= 0.5 ml, x= 0).
In this case, k1=A/B= 0.5/0.8= 0.625. Thus, water was subjectively worth 0.625
of the value of blackcurrant juice; the k1 of 0.625 put the water indifference
quantity of 0.8 ml to a subjectively equivalent value of 0.5 ml for Eqs (11) and (12).

We assessed the coding of chosen value and unchosen value in all neurons
coding revealed preference in choices between two nonzero bundles, using the
following regression:

y ¼ β0 þ β1CVþ β2UCVþ err ð13Þ
with err as a compound error for all regressors.

We defined the following forms of chosen and unchosen value coding according
to the significance of the two β-coefficients (P < 0.05; t test; Table 3): absolute
chosen value refers only to the option the animal is choosing; relative chosen value
refers to the difference chosen value minus unchosen value; unchosen value refers
only to the option the animal is not choosing; total value refers to the sum chosen
value plus unchosen value.

For a more comprehensive assessment, we incorporated additional choice
variables:

y ¼ β0 þ β1CTþ β2CVþ β3UCVþ β4CV� 1þ β5UCV� 1þ β6RefL

þ β7VT� 1þ β8CLþ ε
ð14Þ

with CT as a consecutive trial number, CV as a chosen value, UCV as a value of the
unchosen option, CV-1 as a chosen value in previous trial, UCV-1 as an unchosen
value in previous trial, RefL as a Reference Bundle stimulus shown on the left, VT-1
as a choice of Variable Bundle in previous trial, and CL as a choice of left bundle.
Coefficient CL varied with left choice, as opposed to left position of the reference
bundle, RefL, irrespective of choice. Applying regression Eq. (14) without CL
resulted in insignificant variation in the other coefficients up to 6.56% ± 2.17
(mean ± SEM).

Neuronal population plots. We obtained the two-dimensional ICs of neuronal
population responses and their numeric analyses shown in Figs. 3 and 6e, f, and
Supplementary Figs. 17–19 and 25 from the following steps.

1a) For the population plots of revealed preference responses shown in
Fig. 3a–d and Supplementary Figs. 17, 18, and 25, we used the individual revealed
preference responses identified by our conservative three-test procedure with the
double linear regression (Eq. (4)). Each neuron could have a distinct response in
one or more of the four task epochs of Bundle stimulus, Go signal, Choice, and
Reward. Thus, the number of responses was expected to be equal to or higher than
the number of responding neurons.

1b) For the aggregate population plots shown in Fig. 6e, f and Supplementary
Fig. 25, we used the individual single-reward responses identified by Eqs (5) or (6)
and confirmed by significance for the same, but not the other reward in the double-
linear regression (Eq. (4)) plus significance in the F-test between Eq. (4) and either
Eq. (5) or Eq. (6).

2) To obtain an average neuronal impulse count for a given response to a given
bundle in any of the four task epochs, we counted the total number of neuronal
impulses in the analysis window for the respective task epoch. Then we divided that
count by the number of test trials.

3) To obtain a normalized count for each response, we calculated the z-score for
each response obtained in step 2 (subtraction from mean neuronal activity during
the Pretrial epoch and division by standard deviation of that activity).

4) To obtain a neuronal z-score population count for each bundle, we averaged
all z-scored neuronal responses to that bundle (Fig. 3a, b). Thus, neurons with
significant changes in >1 task epoch contributed multiple responses to the
population average. As subjective revealed preferences are by definition specific to
each individual animal, we never averaged neuronal responses across animals (nor
their behavioral data).

5a) For the two-dimensional population plots of revealed preference responses
shown in Fig. 3a–d and Supplementary Figs. 17 and 18, we regressed all z-scored
individual neuronal revealed preference responses, which had been initially
identified by the three-test procedure (see point 1a above), using Eqs (7) and (7b)
and plotted the neuronal IC with the newly estimated regression coefficients (βs).
Thus, each neuronal IC reflected the best regression fit to insignificantly differing
responses along that IC. We plotted each neuronal IC from the preset quantity of
component B on the x-axis and the quantity of component A computed from Eq.
(7b) on the y-axis. We indicated the z-scored strength of every significant neuronal
revealed reference response in any of the four task epochs by coloring the bundle
position on the two-dimensional map (Fig. 3a, b and 11g–j). Thus, the x–y position
of each dot corresponded to the reward quantity of the two bundle components (A,
B), the color of each dot reflected the response strength (from blue to orange and
red), and same-colored dots represented similar response strength. Note that the
neuronal responses had initially been identified by our conservative three-test
procedure (using Eq. (4) for the regression, see point 1a above).

5b) To validate the populations plots by the out-of-sample tests shown in
Fig. 3e, f, we set new bundles not used for modeling neuronal ICs to specific x–y
positions on the two-dimensional map. Then we established the strength of the
positive or inverse coding response to each new bundle and indicated it by coloring
the bundle position on the two-dimensional map. Then we computed the distance
between the position of the new bundle and the neuronal IC that represented the
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strength of the response closest to that induced by the bundle (same color as
bundle position). As metric for Fig. 3e, f, we followed the notion of Eq. (7b) and
used the vertical (y-axis) distance between bundle position and neuronal IC of
matching color (i.e., in units of ml of blackcurrant juice or blackcurrant–MSG
juice).

5c) For the aggregate population plots shown in Fig. 6e, f, we regressed all z-
scored single-reward coding responses on the quantity of reward A and reward B
and plotted the neuronal IC using Eq. (7b) with the regression coefficients (βs)
derived from Eqs (5) and (6), respectively, and averaged from single responses.

5d) For the mixed-aggregate population plots shown in Supplementary Fig. 25,
we regressed all z-scored revealed preference and single-reward coding responses
on the quantity of reward A and reward B and plotted the neuronal IC using Eq.
(7b) with the regression coefficients (βs) derived from Eqs (5–7), respectively, and
averaged from single responses.

6) To obtain the ±95% neuronal confidence intervals for Fig. 3a, b and
Supplementary Figs. 17 and 18, we used the err0 term from the offset in the
regression (Eq. (7)) and plotted it, in the direction of the y-axis, above and below
the curve derived from Eq. (7b).

Neuronal decoders. We used linear support vector machine (SVM) and linear
discriminant analysis (LDA) algorithms to decode neuronal activity according to
bundles on different behavioral ICs during choice over zero-reward bundle (bundle
distinction) and, separately, according to behavioral choice between two nonzero
bundles located on different ICs (choice prediction). We implemented both
decoders as custom-written software in MATLAB R2015b (Mathworks). The SVM
decoder with linear kernel was accomplished with svmtrain and svmclassify pro-
cedures (our previous work had shown that use of nonlinear svm kernels does not
improve decoding44). The SVM decoder was trained to find the optimal linear
hyperplane for the best separation between two neuronal populations relative to
lower vs. higher ICs. The LDA decoder was obtained with fitcdiscr and predict
procedures. The LDA decoder was trained to find the axes (linear discriminants)
for best separation between lower vs. higher ICs by maximizing the ratio of
between-class variance to within-class variance, what may be described as reducing
the data variation in the same class when increasing at the same time the data
separation between classes. The first two linear discriminant components were
additionally used to graphically represent the separation between lower and higher
ICs for selected datasets.

All analyses employed single-neuron data, consisting of single-trial impulse
counts that had been z-normalized to the activity during the Pretrial epoch in all
trials recorded with the neuron under study. The analysis included activity from all
neurons showing revealed preference coding during any of the four task epochs, as
identified by our three-test statistics, except where noted. The neurons were
recorded one at a time; therefore the analysis concerned aggregated pseudo-
populations of neuronal responses.

The decoding analysis used 10 trials per neuron for each of two ICs (total of 20
trials). Extensive analysis suggested that higher inclusion of 15–20 trials per group
did not provide significantly better decoding rates (while reducing the number of
included neurons). For neurons that had been recorded with >10 trials per IC, we
selected randomly 10 trials from each neuron for each of the two ICs. We used a
leave-one-out cross-validation method, in which we removed one of the 20 trials
and trained the SVM/LDA decoder on the remaining 19 trials. We then used the
SVM/LDA decoder to assess whether it accurately detected the IC of the left-out
trial. We repeated this procedure 20 times, every time leaving out another one of
the 20 trials. These 20 repetitions resulted in a percentage of accurate decoding (%
out of n= 20). The final percentage estimate of accurate decoding resulted from
averaging the results from 150 iterations of this 20-trial random selection
procedure.

To distinguish from chance decoding, we randomly shuffled the assignment of
neuronal responses to the tested ICs, which should result in chance decoding
(accuracy of 50% correct). A significant decoding with the real, non-shuffled data
would be expressed as statistically significant difference against the shuffled data
(P < 0.01; Wilcoxon rank-sum test).

For visualization with LDA, we selected randomly ten trials from all neurons
that were tested with two bundles located on two ICs (lowest and highest IC). The
bundles were selected for a specific analysis, such as choice over zero-reward
bundle, choice between two nonzero bundles, revealed preferred bundles with one
lower reward quantity than in the alternative bundle, individual task epochs, or any
combination thereof. We attributed the first linear discriminant to separation
between bundles on two different ICs, and the second linear discriminant to
separation of bundles along same ICs. For the two-dimensional graph, we
randomly selected five combinations of randomly selected ten trials of neuronal
responses to each bundle and superimposed the data (see Fig. 4e, f).

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The data are available from the authors upon reasonable request. A Reporting Summary
for this article is available as a Supplementary Information file.
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