Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A domino reaction for generating β-aryl aldehydes from alkynes by substrate recognition catalysis

Abstract

The development of universal catalyst systems that enable efficient, selective, and straightforward chemical transformations is of immense scientific importance. Here we develop a domino process comprising three consecutive reaction steps based on the strategy of supramolecular substrate recognition. This approach provides valuable β-aryl aldehydes from readily accessible α-alkynoic acids and arenes under mild reaction conditions, employing a supramolecular Rh catalyst containing an acylguanidine-bearing phosphine ligand. Furthermore, the synthesis of a key intermediate of Avitriptan using this protocol is accomplished. The first step of the reaction sequence is proved to be the regioselective hydroformylation of α-alkynoic acids. Remarkably, molecular recognition of the ligand and the substrate via hydrogen bonding plays a key role in this step. Control experiments indicate that the reaction further proceeds via 1,4-addition of an arene nucleophile to the unsaturated aldehyde intermediate and subsequent decarboxylation.

Introduction

The pursuit of an ultimate catalytic system, which allows efficient, selective, and straightforward chemical transformations is an area of extreme interest in modern chemical science1. In this sense, supramolecular catalysis2,3 based on the substrate recognition via specific reversible interactions between substrate and catalyst-mimicking enzymes has emerged as a promising strategy4,5,6,7,8,9,10. In a pioneering work by Crabtree et al.11, molecular recognition enabled high regioselectivity in the oxygenation of saturated C−H bonds. Later, Reek and colleagues12,13,14,15,16,17,18,19, Bach and colleagues20,21,22,23,24,25,26,27, Zhang and colleagues28,29,30,31,32,33,34,35,36,37,38,39,40, and our group41,42,43,44,45,46,47 developed several methodologies resulting in excellent regio- and enantioselectivity, making use of substrate recognition catalysis. Nevertheless, notwithstanding the advances in this field, the scope and applicability of many methodologies11,12,20,41 is limited to very specific substrates leading to products with rather low molecular diversity. On the other hand, domino reactions can provide complex molecules in an elegant and efficient way48,49,50,51,52. Considering this, we envision that the combination of domino reactivity with supramolecular substrate recognition might overcome this limitation affording complex molecules from different easily available starting materials.

In line with our long-standing research interest in exploring supramolecular concepts in homogeneous catalysis, our group presented several examples of Rh-catalyzed domino reactions enabled by rational-designed supramolecular ligands42,44,45,46,47,53. In particular, a method for synthesizing terminal aliphatic aldehydes from α,β-unsaturated carboxylic acids involving a hydroformylation (HF)–decarboxylation sequence was developed (Fig. 1a)42. Due to the effect of carboxylic group (COOH), high regioselectivity was achieved. Recently, we successfully reported a Rh-catalyzed HF–hydrogenation process by using a rational-designed supramolecular ligand (L1), which efficiently transformed unsymmetrical β-alkynoic acids into aliphatic aldehydes in high regio- and chemoselectivity (Fig. 1b)47. Mechanistic studies suggested that the key intermediate in this reaction is the unsaturated aldehyde II. In consideration of the success in HF-decarboxylation of α,β-unsaturated carboxylic acids; herein, we attempt to explore the HF of α-alkynoic acids using the supramolecular ligand L1. In this approach, the analog intermediate III is proposed to be generated based on the previous results (Fig. 1c)42,47. Then, due to the activation of the carboxyl group, the Michael addition of suitable arenes (such as indole derivatives) to this unsaturated aldehyde III can proceed faster than the competitive hydrogenation of the double bond due to its steric effect. In this way, valuable β-aryl aldehydes17,54,55 are generated after the final decarboxylation step42 of the proposed intermediate IV (Fig. 1c).

Fig. 1
figure1

Domino reactions supported by supramolecular Rh catalyst. a Rh-catalyzed hydroformylation of α,β-unsaturated carboxylic acids followed by decarboxylation sequence. b Rh-catalyzed hydroformylation–hydrogenation of β-alkynoic acids. c Rh-catalyzed hydroformylation of α-alkynoic acids followed by Michael addition and decarboxylation

Results

Optimization of reaction conditions

To investigate the proposed domino reaction, 2-butynoic acid S1 and 1,3,5-trimethoxybenzene (TMB) were selected as model substrates. The optimization of reaction conditions is shown in Table 1. Initially, the reaction was carried out employing S1 and TMB (1:1, n/n) in 1,2-dichloroethane (DCE) at 55 °C in the presence of 1 mol% of [Rh(CO)2acac] and 5 mol% of L1 under 6 bar of CO/H2 (1:1) (Table 1, entry 1). A nuclear magnetic resonance (NMR) study of the crude reaction mixture indicated that 3-(2,4,6-trimethoxyphenyl)butanal 1 was formed as the main product in 35% yield, similar to the conversion of TMB (36%, Table 1, entry 1). Despite the full conversion of the starting material S1, no other side products were identified. When camphorsulfonic acid (CSA) was used as the additive47, the yield of 1 was increased to 53% with a moderate conversion of 57% for TMB (Table 1, entry 2). A yield of 65% was obtained by varying the syngas pressure from 6 to 20 bar (see Supplementary Table 1). Other solvents and reaction temperatures were studied with DCE providing the most promising result at 35 °C (72% yield, Table 1, entry 3, and see Supplementary Tables 2 and 3). Slight effects on the yield were observed when changing the ratio of Rh and L1 (Table 1, entry 3 and 4, and Supplementary Table 4). Increasing the amount of CSA from 6 to 9 mol% (Table 1, entry 5) and decreasing it from 6 to 3 mol% (Table 1, entry 6) led to inferior yields (37% and 64% yield, respectively). This indicates that the quantitative protonation of the acylguanidyl group into the acylguanidinium cation is essential for the performance of the catalyst47. Other acids were also tested (see Supplementary Table 5): TsOH and TfOH afforded lower yields, meanwhile TFA gave similar results to CSA (73% vs. 74% yield). Excellent yield was achieved by changing the ratio of S1 to TMB from 1.0 to 1.5 (90% yield, Table 1, entry 7). Finally, the influence of the electronic properties of the ligand was investigated (Table 1, entries 7–11). We observed that when the σ-donor ability of the phosphine ligand was increased the catalytic activity drops to a moderate level for L2 and L3. The even more electron rich ligands L4 and L5 showed no product formation. This confirms that the initially used ligand L1 is superior to its analogs.

Table 1 Optimization of reaction conditionsa

Scope of the proposed domino reaction

With the optimized reaction conditions in hand, the general scope of this catalytic protocol was examined. As shown in Table 2, when using TMB as the nucleophile, a variety of α-alkynoic acids could be successfully transformed to the corresponding β-aryl aldehydes in good yields. The length of the alkyl chain of the substrates (from Me to n-C14H19) slightly affected the yields (111, 73–90% yield). Bulkier secondary alkyl substituents such as i-Pr and Cy were well tolerated (12 and 13, 81% and 74% yield, respectively). Other functional groups such Bn and CN were also tested, affording the corresponding terminal aldehydes in good to excellent yields (15 and 16, 77% and 92% yield, respectively). Surprisingly, 3-(2,4,6-trimethoxyphenyl)-propanal 17 was obtained in 51% yield by using 3- (trimethylsilyl)-2-propynoic acid S17, whereas 2-propynoic acid cannot be transformed to 17 under the same conditions. This indicates that the TMS-protection of substrate S17 is essential to achieve the desired transformation under the reaction conditions, whereby the TMS group was cleaved in situ and product 17 was formed.

Table 2 Substrate scope of α-alkynoic acids with TMBa

As a ubiquitous structural element, the motif of indole is frequently found in bioactive natural products and pharmaceuticals56,57. Encouraged by this fact, we decided to evaluate our supramolecular catalytic system in the presence of indole derivatives as nucleophiles (Table 3). Using modified reaction conditions (see Supplementary Table 8), 1-methylindole reacted well with S1, leading to the 3-(1-methyl-1H-indol-3-yl)butanal 18 in 81% yield. The chain length (R = n-C14H19) or bulkier substituent (R = i-Pr) of α-alkynoic acids slightly affected the reaction efficiency (19 and 20, 77% and 76%, respectively). Unfortunately, free indole cannot be transformed under these conditions. However, a variety of protective groups such as Bn, PMB, and TIPS at 1-position of indole were well tolerated (2123, 81–90% yield) overcoming this limitation by subsequent deprotection. 1-Pivaloylindole showed no activity under the same reaction conditions. Different substitution patterns at 5-position of the 1-methylindole were evaluated: the electron donating groups Me (25) and OMe (26) gave just moderate yields (63% and 56% yield, respectively). On the other hand, electron poor substituents such as F (27) and Br (28) resulted in very good yields (86% and 82% yield, respectively). It should be noticed that indolyl bromide 28 might be further functionalized by transition metal-catalyzed cross-coupling reactions58. Substrates with substituents such as Me (29, 48% yield) and Ph (30, 88% yield) at 2-position of the indole ring were also successfully transformed. Finally, other arene nucleophiles were tested: 1-(dimethylamino)-3-methoxybenzene showed high activity affording product 31 in 90% yield and when dimethylaniline was used, 32 was obtained in 66% yield. However, 1, 3-dimethoxybenzene did not react under these reaction conditions to 33.

Table 3 Substrate scope of indole derivatives and other nucleophilesa

To further explore the potential application of our protocol in biologically active targets, a concise synthesis of a key intermediate 35a for Avitriptan59, as an attractive candidate for an antimigraine drug, was shown in Fig. 2. Under the optimal reaction conditions, benzyl protected 5-chloroindole S34 reacted well with 3-(trimethylsilyl)propynoic acid (S17), providing the desired β-aryl aldehydes 34 in 93% (n(34a):n(34b) = 1:3) yields. The corresponding alcohols 35 were obtained in quantitative yields after simple reduction using NaBH4. Notably, 35b was easily transformed into 35a with a catalytic amount of KOtBu60. Following the literatures known steps61,62, Avitriptan could be successfully achieved.

Fig. 2
figure2

Synthesis of intermediate 35a for Avitriptan. i: [Rh(CO)2acac]/L1/CSA/S17/S34 = 1:6:6:150:100, 0.5 mmol scale of S34, CO/H2 (1:1, 30 bar), DCE (3 mL), 50 °C, 20 h. ii: NaBH4 (2 equiv.), MeOH, 0 °C, 30 min. iii: KOtBu (10 mol%), 18-crown-6 (10 mol%), DMSO:H2O (19:1, v/v), 80 °C, 5 h. TMS = trimethylsilyl

Discussion

To clarify the role of L1 in this domino reaction process, several control experiments were undertaken as shown in Table 4. With a phenyl ring analog of L1, ligand L6, which may also allow for supramolecular substrate–ligand interactions, only poor yields and conversions were observed and it indicated the pyridyl ring of L1 is key to the catalytic activity (Table 4, entry 2). Furthermore, the combination of 2-pyridinyl-bis-[3’,5’-bis(trifluoromethyl)phenyl]phosphine L7 and acylguanidine L8 resulted in no formation of the desired product (Table 4, entry 3). This suggests that the molecular-recognition function and the catalytic unit must be an integral part of the same molecular catalyst, to achieve the unique catalytic activity and selectivity. Using a rhodium catalyst derived from the monodentate ligand L9, only very low conversion ( < 2%) of both substrates was observed (Table 4, entry 4). We assumed that the substrate recognition via hydrogen bonding is crucial for our catalytic system. As expected, when MeOH was used as a solvent, the reactivity dramatically dropped, because the essential hydrogen bonding interactions between the catalyst and the substrate were disturbed (Table 4, entry 5). Moreover, using methyl ester S36, without the complementary acid functionality, no formation of desired β-aryl aldehyde was observed (Table 4, entry 6). When the reaction was carried out under argon instead of syngas atmosphere, the L1-derived catalyst showed basically no activity and the addition reaction of TMB to the triple bond of S1 was not observed (Table 4, entry 7). This suggests that the HF process is the first step of the reaction sequence rather than the addition reaction. When the reaction of S1 proceeded without addition of TMB, poor conversion (42%, Table 4, entry 8) was observed and interestingly aldehyde III (Fig. 1c) was observed in 3% yield with poor selectivity (see Supplementary Fig. 3). This indicates that TMB could efficiently trap the intermediate generated from the HF process. Finally, when the isotopically labeled substrate [1–13C]-2-nonynoic acid S37 was subjected to the reaction conditions, product 6 (without isotopic label) was observed (Table 4, entry 9). This is a clear proof that the aldehyde group was not obtained by hydrogenation of the carboxylic acid.

Table 4 Control experimentsa

High-pressure in situ infrared (IR) and in situ NMR experiments were further carried out to study the reaction mechanism. As shown in Supplementary Fig. 17, the formation of characteristic signals (δ = − 10.28 p.p.m., JH-P = 12.2 Hz) of Rh-hydride species was observed as a triplet peak, which indicated that two L1 ligands coordinated to the Rh center. The coupling constant of Rh-P (JRh-P = 164.2 Hz, Supplementary Fig. 18) indicated a trigonal bipyramidal structure with an equatorial–equatorial conformation for the related Rh complex17,63,64. Furthermore, the formation of product could be easily followed from the high-pressure in situ IR spectroscopy (Supplementary Fig. 9). Based on the generally accepted mechanism of Rh-catalyzed HF in the presence of the triarylphosphine ligand and the presented results, we propose a sequential mechanism consisting of three consecutive steps: HF, Michael addition, and decarboxylation (Fig. 3)65. The mechanism might start by the coordination of the substrate to the Rh-complex A affording complex B, suggested by DFT calculation (see Supplementary Fig. 19), where the substrate is activated via recognition and preorientation to the Rh center. Due to this interaction, an α-selective HF could take place giving rise to intermediate C41. Then, intermediate D could be released regenerating the initial Rh complex A. Intermediate D might further proceed via Michael addition of an arene nucleophile to intermediate E, followed by the decarboxylation process affording the final product.

Fig. 3
figure3

Proposed reaction mechanism. It includes Rh-catalyzed hydroformylation of α-alkynoic acids, Michael addition of arene nucleophiles, and decarboxylation

The order of this reaction pathway was further confirmed by the control experiments shown in Fig. 4. The α,β-unsaturated aldehyde (38) and TMB were subjected to the optimized reaction conditions with (i) and without (ii) the catalyst. In none of these cases, product formation was observed. This provided a solid support that the Michael addition occurs before the decarboxylation step.

Fig. 4
figure4

Controlled experiments of the Michael addition. i: [Rh(CO)2acac]/L1/CSA/38/TMB = 1:6:6:150:100, 0.5 mmol scale of TMB, DCE (1.5 mL), 35 °C, 24 h, Argon. ii: n(38):n(TMB) = 1.5:1, 1 mmol scale of TMB, DCE (2 mL), 35 °C, 24 h, Argon

In conclusion, we have successfully developed a domino process from easily accessible α-alkynoic acids, which yields valuable β-aryl aldehydes with high molecular complexity tolerating a variety of functional groups. Furthermore, the synthesis of a key intermediate of Avitriptan using this protocol was accomplished. Based on our study of the reaction mechanism, this domino reaction is triggered by the Rh-catalyzed HF of α-alkynoic acids promoted by hydrogen-bonding interaction between the ligand and the substrate. Consecutive Michael addition of arenes as nucleophiles followed by decarboxylation of the carboxyl function leads to the β-aryl aldehyde products. It should be noticed that the carboxyl function plays a crucial role as a transient and traceless directing group for the introduction of the aldehyde function. This study also highlights the unique advantages of the substrate recognition-directed catalysis in combination with domino reactions. Investigations for an asymmetric version of this protocol are currently being undertaken in our lab.

Methods

General procedure D for the catalysis reaction

To a flame dried glass liner (Supplementary Fig. 2a) containing a magnetic stirring bar, [Rh(CO)2acac], ligand L1, 1,3,5-trimethoxybenzene (TMB) (or other nucleophiles), and CSA were added subsequently. The glass liner was sealed by an aluminum crimp cap with silicon septum (Supplementary Fig. 2a) and argon was purged for 5 min via syringes (Supplementary Fig. 2b). DCE was added followed by the liquid substrate (if the substrate was a solid, it was added before purging argon) via a syringe under argon atmosphere. The reaction mixture was stirred for 10 min (a clear reaction solution was obtained; Supplementary Fig. 2c). The glass liner was transferred into the Premex stainless steel autoclave Medimex (100 mL) under argon atmosphere quickly. The autoclave was purged three times with 5 bar of synthesis gas (CO/H2, 1:1) and was pressurized to 20 bar (or 30 bar). Then, it was conducted at 35 °C (or 50 °C) for 20 h. Afterwards, the autoclave was cooled down to room temperature and depressurized. Then, 0.5 equiv. of dimethylacetamide (DMAc, 43.6 mg) was added as the internal standard into the crude reaction mixture. Samples were analyzed by NMR analysis after the evaporation of solvent. The corresponding aldehydes were purified by flash chromatography to afford analytically pure products.

Caution: All operations involving carbon monoxide must be carried out in a well-ventilated fume-hood. Use of a gas-leak detector for carbon monoxide is highly recommended.

Data availability

For experimental details and procedures, spectra for all unknown compounds and details from DFT calculation, see Supplementary Files. All data underlying the findings of this study are available from the corresponding author upon reasonable request.

References

  1. 1.

    Trost, B. M. Atom economy-a challenge for organic synthesis: Homogeneous catalysis leads the way. Angew. Chem. Int. Ed. 34, 259–281 (1995).

    CAS  Article  Google Scholar 

  2. 2.

    Raynal, M., Ballester, P., Vidal-Ferran, A. & van Leeuwen, P. W. Supramolecular catalysis. Part 1: non-covalent interactions as a tool for building and modifying homogeneous catalysts. Chem. Soc. Rev. 43, 1660–1733 (2014).

    CAS  PubMed  Article  Google Scholar 

  3. 3.

    Raynal, M., Ballester, P., Vidal-Ferran, A. & van Leeuwen, P. W. Supramolecular catalysis. Part 2: artificial enzyme mimics. Chem. Soc. Rev. 43, 1734–1787 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  4. 4.

    Breit, B. Supramolecular approaches to generate libraries of chelating bidentate ligands for homogeneous catalysis. Angew. Chem. Int. Ed. 44, 6816–6825 (2005).

    CAS  Article  Google Scholar 

  5. 5.

    Meeuwissen, J. & Reek, J. N. Supramolecular catalysis beyond enzyme mimics. Nat. Chem. 2, 615–621 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  6. 6.

    Carboni, S., Gennari, C., Pignataro, L. & Piarulli, U. Supramolecular ligand-ligand and ligand-substrate interactions for highly selective transition metal catalysis. Dalton Trans. 40, 4355–4373 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  7. 7.

    Dydio, P. & Reek, J. N. H. Supramolecular control of selectivity in transition-metal catalysis through substrate preorganization. Chem. Sci. 5, 2135–2145 (2014).

    CAS  Article  Google Scholar 

  8. 8.

    Davis, H. J. & Phipps, R. J. Harnessing non-covalent interactions to exert control over regioselectivity and site-selectivity in catalytic reactions. Chem. Sci. 8, 864–877 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  9. 9.

    Mote, N. R. & Chikkali, S. H. Hydrogen-bonding-assisted supramolecular metal catalysis. Chem. Asian J. 13, 3623–3646 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  10. 10.

    Nurttila, S. S., Linnebank, P. R., Krachko, T. & Reek, J. N. H. Supramolecular approaches to control activity and selectivity in hydroformylation catalysis. ACS Catal. 8, 3469–3488 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. 11.

    Das, S., Incarvito, C. D., Crabtree, R. H. & Brudvig, G. W. Molecular recognition in the selective oxygenation of saturated C-H bonds by a dimanganese catalyst. Science 312, 1941–1943 (2006).

    ADS  CAS  PubMed  Article  Google Scholar 

  12. 12.

    Dydio, P., Dzik, W. I., Lutz, M., de Bruin, B. & Reek, J. N. Remote supramolecular control of catalyst selectivity in the hydroformylation of alkenes. Angew. Chem. Int. Ed. 50, 396–400 (2011).

    CAS  Article  Google Scholar 

  13. 13.

    Dydio, P., Rubay, C., Gadzikwa, T., Lutz, M. & Reek, J. N. “Cofactor”-controlled enantioselective catalysis. J. Am. Chem. Soc. 133, 17176–17179 (2011).

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    Dydio, P., Detz, R. J. & Reek, J. N. Precise supramolecular control of selectivity in the Rh-catalyzed hydroformylation of terminal and internal alkenes. J. Am. Chem. Soc. 135, 10817–10828 (2013).

    CAS  PubMed  Article  Google Scholar 

  15. 15.

    Dydio, P., Ploeger, M. & Reek, J. N. H. Selective isomerization–hydroformylation sequence: A strategy to valuable α-methyl-branched aldehydes from terminal olefins. ACS Catal. 3, 2939–2942 (2013).

    CAS  Article  Google Scholar 

  16. 16.

    Dydio, P. & Reek, J. N. H. Supramolecular control of selectivity in hydroformylation of vinyl arenes: easy access to valuable β-aldehyde intermediates. Angew. Chem. Int. Ed. 52, 3878–3882 (2013).

  17. 17.

    Dydio, P., Detz, R. J., de Bruin, B. & Reek, J. N. Beyond classical reactivity patterns: hydroformylation of vinyl and allyl arenes to valuable β- and γ-aldehyde intermediates using supramolecular catalysis. J. Am. Chem. Soc. 136, 8418–8429 (2014).

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Dydio, P. & Reek, J. N. Scalable and chromatography-free synthesis of 2-(2-formylalkyl)arenecarboxylic acid derivatives through the supramolecularly controlled hydroformylation of vinylarene-2-carboxylic acids. Nat. Protoc. 9, 1183–1191 (2014).

    PubMed  Article  PubMed Central  Google Scholar 

  19. 19.

    Théveau, L. et al. Cofactor-controlled chirality of tropoisomeric ligand. Organometallics 35, 1956–1963 (2016).

    Article  CAS  Google Scholar 

  20. 20.

    Fackler, P., Berthold, C., Voss, F. & Bach, T. Hydrogen-bond-mediated enantio- and regioselectivity in a Ru-catalyzed epoxidation reaction. J. Am. Chem. Soc. 132, 15911–15913 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  21. 21.

    Voss, F., Herdtweck, E. & Bach, T. Hydrogen bond induced enantioselectivity in mn(salen)-catalysed sulfoxidaton reactions. Chem. Commun. 47, 2137–2139 (2011).

    CAS  Article  Google Scholar 

  22. 22.

    Fackler, P., Huber, S. M. & Bach, T. Enantio- and regioselective epoxidation of olefinic double bonds in quinolones, pyridones, and amides catalyzed by a Ruthenium porphyrin catalyst with a hydrogen bonding site. J. Am. Chem. Soc. 134, 12869–12878 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  23. 23.

    Hoke, T., Herdtweck, E. & Bach, T. Hydrogen-bond mediated regio- and enantioselectivity in a C-H amination reaction catalysed by a supramolecular Rh(ii) complex. Chem. Commun. 49, 8009–8011 (2013).

    Article  CAS  Google Scholar 

  24. 24.

    Zhong, F. & Bach, T. Enantioselective construction of 2,3-dihydrofuro[2,3-b]quinolines through supramolecular hydrogen bonding interactions. Chem. Eur. J. 20, 13522–13526 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  25. 25.

    Frost, J. R., Huber, S. M., Breitenlechner, S., Bannwarth, C. & Bach, T. Enantiotopos-selective C-H oxygenation catalyzed by a supramolecular Ruthenium complex. Angew. Chem. Int. Ed. 54, 691–695 (2015).

    CAS  Google Scholar 

  26. 26.

    Zhong, F., Pothig, A. & Bach, T. Synergistic stereocontrol in the enantioselective Ruthenium-catalyzed sulfoxidation of spirodithiolane-indolones. Chem. Eur. J. 21, 10310–10313 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  27. 27.

    Burg, F., Gicquel, M., Breitenlechner, S., Pothig, A. & Bach, T. Site- and enantioselective C-H oxygenation catalyzed by a chiral Manganese porphyrin complex with a remote binding site. Angew. Chem. Int. Ed. 57, 2953–2957 (2018).

    CAS  Article  Google Scholar 

  28. 28.

    Zhao, Q., Li, S., Huang, K., Wang, R. & Zhang, X. A novel chiral bisphosphine-thiourea ligand for asymmetric hydrogenation of β,β-disubstituted nitroalkenes. Org. Lett. 15, 4014–4017 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  29. 29.

    Zhao, Q. et al. Rhodium-catalyzed asymmetric hydrogenation of unprotected NH imines assisted by a thiourea. Angew. Chem. Int. Ed. 53, 8467–8470 (2014).

    CAS  Article  Google Scholar 

  30. 30.

    Han, Z. et al. Highly enantioselective synthesis of chiral succinimides via Rh/bisphosphine-thiourea-catalyzed asymmetric hydrogenation. ACS Catal. 6, 6214–6218 (2016).

    CAS  Article  Google Scholar 

  31. 31.

    Li, P., Hu, X., Dong, X.-Q. & Zhang, X. Rhodium/bisphosphine-thiourea-catalyzed enantioselective hydrogenation of α,β-unsaturated N-acylpyrazoles. Chem. Commun. 52, 11677–11680 (2016).

    CAS  Article  Google Scholar 

  32. 32.

    Li, P. et al. Synthesis of chiral β-amino nitroalkanes via Rhodium-catalyzed asymmetric hydrogenation. Org. Lett. 18, 40–43 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  33. 33.

    Wen, J., Jiang, J. & Zhang, X. Rhodium-catalyzed asymmetric hydrogenation of α,β -unsaturated carbonyl compounds via thiourea hydrogen bonding. Org. Lett. 18, 4451–4453 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  34. 34.

    Wen, J., Tan, R., Liu, S., Zhao, Q. & Zhan, X. Strong brønsted acid promoted asymmetric hydrogenation of isoquinolines and quinolines catalyzed by a Rh-thiourea chiral phosphine complex via anion binding. Chem. Sci. 7, 3047–3051 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. 35.

    Han, Z., Wang, R., Gu, G., Dong, X.-Q. & Zhang, X. Asymmetric hydrogenation of maleic anhydrides catalyzed by Rh/bisphosphine-thiourea: Efficient construction of chiral succinic anhydride. Chem. Commun. 53, 4226–4229 (2017).

    CAS  Article  Google Scholar 

  36. 36.

    Li, P., Huang, Y., Hu, X., Dong, X. Q. & Zhang, X. Access to chiral seven-member cyclic amines via Rh-catalyzed asymmetric hydrogenation. Org. Lett. 19, 3855–3858 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  37. 37.

    Zhang, T., Jiang, J., Yao, L., Geng, H. & Zhang, X. Highly efficient synthesis of chiral aromatic ketones via Rh-catalyzed asymmetric hydrogenation of β,β -disubstituted enones. Chem. Commun. 53, 9258–9261 (2017).

    CAS  Article  Google Scholar 

  38. 38.

    Zhang, Z., Han, Z., Gu, G., Dong, X.-Q. & Zhang, X. Enantioselective synthesis of chiral 3-substituted-3-silylpropionic esters via Rhodium/bisphosphine-thiourea-catalyzed asymmetric hydrogenation. Adv. Synth. Catal. 359, 2585–2589 (2017).

    CAS  Article  Google Scholar 

  39. 39.

    Li, X. et al. Rhodium-catalyzed asymmetric hydrogenation of β-cyanocinnamic esters with the assistance of a single hydrogen bond in a precise position. Chem. Sci. 9, 1919–1924 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. 40.

    Lang, Q., Gu, G., Cheng, Y., Yin, Q. & Zhang, X. Highly enantioselective synthesis of chiral γ-lactams by Rh-catalyzed asymmetric hydrogenation. ACS Catal. 8, 4824–4828 (2018).

    CAS  Article  Google Scholar 

  41. 41.

    Smejkal, T. & Breit, B. A supramolecular catalyst for regioselective hydroformylation of unsaturated carboxylic acids. Angew. Chem. Int. Ed. 47, 311–315 (2008).

    CAS  Article  Google Scholar 

  42. 42.

    Smejkal, T. & Breit, B. A supramolecular catalyst for the decarboxylative hydroformylation of α,β -unsaturated carboxylic acids. Angew. Chem. Int. Ed. 47, 3946–3949 (2008).

    CAS  Article  Google Scholar 

  43. 43.

    Smejkal, T., Gribkov, D., Geier, J., Keller, M. & Breit, B. Transition-state stabilization by a secondary substrate-ligand interaction: a new design principle for highly efficient transition-metal catalysis. Chem. Eur. J. 16, 2470–2478 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  44. 44.

    Diab, L., Smejkal, T., Geier, J. & Breit, B. Supramolecular catalyst for aldehyde hydrogenation and tandem hydroformylation-hydrogenation. Angew. Chem. Int. Ed. 48, 8022–8026 (2009).

    CAS  Article  Google Scholar 

  45. 45.

    Fuchs, D., Rousseau, G., Diab, L., Gellrich, U. & Breit, B. Tandem Rhodium-catalyzed hydroformylation-hydrogenation of alkenes by employing a cooperative ligand system. Angew. Chem. Int. Ed. 51, 2178–2182 (2012).

    CAS  Article  Google Scholar 

  46. 46.

    Diab, L., Gellrich, U. & Breit, B. Tandem decarboxylative hydroformylation-hydrogenation reaction of α,β-unsaturated carboxylic acids toward aliphatic alcohols under mild conditions employing a supramolecular catalyst system. Chem. Commun. 49, 9737–9739 (2013).

    CAS  Article  Google Scholar 

  47. 47.

    Fang, W. & Breit, B. Tandem regioselective hydroformylation-hydrogenation of internal alkynes using a supramolecular catalyst. Angew. Chem. Int. Ed. 57, 14817–14821 (2018).

    CAS  Article  Google Scholar 

  48. 48.

    Tietze, L. F. Domino reactions in organic synthesis. Chem. Rev. 96, 115–136 (1996).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  49. 49.

    Nicolaou, K. C. & Chen, J. S. The art of total synthesis through cascade reactions. Chem. Soc. Rev. 38, 2993–3009 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  50. 50.

    Poulin, J., Grise-Bard, C. M. & Barriault, L. Pericyclic domino reactions: Concise approaches to natural carbocyclic frameworks. Chem. Soc. Rev. 38, 3092–3101 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  51. 51.

    Volla, C. M., Atodiresei, I. & Rueping, M. Catalytic C-C bond-forming multi-component cascade or domino reactions: Pushing the boundaries of complexity in asymmetric organocatalysis. Chem. Rev. 114, 2390–2431 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  52. 52.

    Mayer, S. F., Kroutil, W. & Faber, K. Enzyme-initiated domino (cascade) reactions. Chem. Soc. Rev. 30, 332–339 (2001).

    CAS  Article  Google Scholar 

  53. 53.

    Abillard, O. & Breit, B. Domino hydroformylation/enantioselective cross-aldol addition. Adv. Synth. Catal. 349, 1891–1895 (2007).

    CAS  Article  Google Scholar 

  54. 54.

    Duerfeldt, A. S., Brandt, G. E. L. & Blagg, B. S. J. Design, synthesis, and biological evaluation of conformationally constrained cis-amide Hsp90 inhibitors. Org. Lett. 11, 2353–2356 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  55. 55.

    Payne, D. T., Zhao, Y. & Fossey, J. S. Ethylenation of aldehydes to 3-propanal, propanol and propanoic acid derivatives. Sci. Rep. 7, 1720 (2017).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  56. 56.

    Cacchi, S. & Fabrizi, G. Synthesis and functionalization of indoles through Palladium-catalyzed reactions. Chem. Rev. 105, 2873–2920 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  57. 57.

    Cacchi, S. & Fabrizi, G. Update 1 of: synthesis and functionalization of indoles through Palladium-catalyzed reactions. Chem. Rev. 111, PR215–PR283 (2011).

    PubMed  Article  Google Scholar 

  58. 58.

    Biffis, A., Centomo, P., Del Zotto, A. & Zecca, M. Pd metal catalysts for cross-couplings and related reactions in the 21st century: a critical review. Chem. Rev. 118, 2249–2295 (2018).

    CAS  PubMed  Article  Google Scholar 

  59. 59.

    Saxena, P. R. et al. Effects of avitriptan, a new 5-HT1B/1D receptor agonist, in experimental models predictive of antimigraine activity and coronary side-effect potential. Naunyn Schmiedeberg. Arch. Pharmacol. 355, 295–302 (1997).

    CAS  Article  Google Scholar 

  60. 60.

    Hudrlik, P. F., Holmes, P. E. & Hudrlik, A. M. Protiodesilylation reactions of β-and γ-hydroxysilanes: deuterium labeling and silicon-directed epoxide openings. Tetrahedron Lett. 29, 6395–6398 (1988).

    CAS  Article  Google Scholar 

  61. 61.

    Brodfuehrer, P. R. et al. An efficient fischer indole synthesis of avitriptan, a potent 5-HT1D receptor agonist. J. Org. Chem. 62, 9192–9202 (1997).

    CAS  Article  Google Scholar 

  62. 62.

    Zheng, B., Li, M., Gao, G., He, Y. & Walsh, P. J. Palladium-catalyzed α-arylation of methyl sulfonamides with aryl chlorides. Adv. Synth. Catal. 358, 2156–2162 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  63. 63.

    Diebolt, O., Tricas, H., Freixa, Z. & van Leeuwen, P. W. N. M. Strong π‑acceptor ligands in rhodium-catalyzed hydroformylation of ethene and 1-octene: operando catalysis. ACS Catal. 3, 128–137 (2013).

    CAS  Article  Google Scholar 

  64. 64.

    van Leeuwen P. W. N. M. & Claver C. Rhodium Catalyzed Hydroformylation (Kluwer Academic Publisher, 2016).

  65. 65.

    Sträter, N., Lipscomb, W. N., Klabunde, T. & Krebs, B. Two-metal ion catalysis in enzymatic acyl and phosphoryl-transfer reactions. Angew. Chem. Int. Ed. 35, 2024–2055 (1996).

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Alexander von Humboldt Foundation (W.F.) for a postdoctoral fellowship. We thank Dr. Manfred Keller for invaluable assistance with NMR spectroscopy.

Author information

Affiliations

Authors

Contributions

W.F. conceived the idea. W.F. performed the synthesis, experiments, and characterizations. F.B. performed experiments and NMR tests. Y.D. performed some NMR tests. W.F. and F.B. discussed the results and commented on the manuscript. W.F. wrote the manuscript. B.B. revised the manuscript and supervised the work.

Corresponding author

Correspondence to Bernhard Breit.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Communications thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fang, W., Bauer, F., Dong, Y. et al. A domino reaction for generating β-aryl aldehydes from alkynes by substrate recognition catalysis. Nat Commun 10, 4868 (2019). https://doi.org/10.1038/s41467-019-12770-w

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing