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Meiotic crossovers characterized by haplotype-
specific chromosome painting in maize
Lívia do Vale Martins1,2,12, Fan Yu1,2,3,12, Hainan Zhao1,2,12, Tesia Dennison 4, Nick Lauter 4,5,

Haiyan Wang1,2, Zuhu Deng3, Addie Thompson 6,7, Kassandra Semrau8,11, Jean-Marie Rouillard8,9,

James A. Birchler10 & Jiming Jiang 1,2,7*

Meiotic crossovers (COs) play a critical role in generating genetic variation and maintaining

faithful segregation of homologous chromosomes during meiosis. We develop a haplotype-

specific fluorescence in situ hybridization (FISH) technique that allows visualization of COs

directly on metaphase chromosomes. Oligonucleotides (oligos) specific to chromosome 10 of

maize inbreds B73 and Mo17, respectively, are synthesized and labeled as FISH probes. The

parental and recombinant chromosome 10 in B73 x Mo17 F1 hybrids and F2 progenies can be

unambiguously identified by haplotype-specific FISH. Analysis of 58 F2 plants reveals lack of

COs in the entire proximal half of chromosome 10. However, we detect COs located in

regions very close to the centromere in recombinant inbred lines from an intermated B73 x

Mo17 population, suggesting effective accumulation of COs in recombination-suppressed

chromosomal regions through intermating and the potential to generate favorable allelic

combinations of genes residing in these regions.
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Meiotic recombination, which generates genetic variation
via exchange of DNA between homologous parental
chromosomes, is essential for plant and animal breed-

ing. Breeders rely on meiotic recombination to create new and
favorable combinations of parental alleles. Meiotic recombination
is initiated from the formation of double-strand breaks (DSBs) of
DNA molecules1. DSBs are then repaired through the double
Holliday junction or synthesis-dependent strand annealing
pathways, which result in meiotic crossovers (COs) or non-
crossovers (NCOs), respectively2. COs, which create a physical
connection of the homologous chromosome pairs, are also
essential for faithful chromosome segregation in meiosis. Thus,
essentially every chromosome at the first metaphase of meiosis
acquires at least one CO, which is known as the obligatory CO
rule3,4. The frequency of zero-CO chromosomes is extremely low
and is usually much less than 1% in different organisms4,5.

Meiotic COs can be mapped on chromosomes using different
methods. COs can be indicated based on the locations of late
recombination nodules (RNs) or protein markers associated with
COs, such as MLH1, on synaptonemal complexes (SCs)6,7.
However, it is often difficult or impossible to distinguish indivi-
dual SCs in the same plant species, which would prevent to map
each RN on a specific chromosome. Physical mapping of
genetically anchored DNA markers can be used to predict the
locations of COs on chromosomes. Physical mapping in plants
can be achieved by using cytogenetic stocks8,9, or by fluorescence
in situ hybridization (FISH) of DNA markers directly on chro-
mosomes10–14. However, physical mapping can unveil the rela-
tionship between genetical and chromosomal distances of the
DNA markers, but does not reveal the exact positions of indivi-
dual COs. Lastly, genomic in situ hybridization (GISH) can be
used to visualize COs derived from homoeologous chromo-
somes15–17. GISH, however, relies on presence of dispersed
repeats specific to each chromosone, thus, it can not be used to
detect COs from homologous chromosomes.

We develop a FISH technique that allows us to visualize
meiotic COs derived from homologous plant chromosomes. We
computationally identify large sets of oligonucleotides (oligos)
that are specific to chromosome 10 of either maize inbred B73 or
Mo17, two highly utilized inbreds that belong to two important
opposing heterotic groups18 and have been used extensively as
parental lines for genetic mapping and heterosis studies19–21. The
identified oligos are based on presence-absence variation (PAV),
single nucleotide polymorphisms (SNPs), and/or insertions and
deletions (indels) in chromosome 10 sequences derived from the
two inbreds. These oligos are then massively synthesized and
labeled as FISH probes. We are able to differentially paint the two
copies of parental chromosome 10 in a B73 ×Mo17 hybrid using
these haplotype-specific FISH probes. We intend to use this FISH
technique to detect and quantify meiotic COs derived from the
two homologous chromosome 10 in different maize populations.

Results
Identification of haplotype-specific oligos. Chromosome 10 of
maize consists of 150.98 megabases (Mb) of DNA sequences22,23.
To develop oligo-FISH probes that can be used differentially paint
the chromosome 10 from maize inbreds B73 and Mo17, respec-
tively, we used Chorus (https://github.com/forrestzhang/Chorus)
to generate single copy oligos (45 nucleotides (nt)) from the
pseudomolecules of chromosome 10 of B7324 and Mo1723. We
obtained a total of 175,437 and 174,728 oligos for B73 (B73 oli-
gos) and Mo17 (Mo17 oligos), respectively. We then identified
B73 oligos that are absent in the Mo17 genome and vice versa (see
Methods section), which were named PAV oligos. B73 oligos that
contain mismatches and/or indels to the Mo17 chromosome

10 sequence, and vice versa, were defined as SNP oligos. We only
retained oligos with mismatches and/or indels located between
10–35 bp within each oligo. SNP oligos were identified in pairs
(see Methods section), one for B73 and one for Mo17. We cal-
culated the ΔTm between the B73 and Mo17 oligos of each pair
using primer325,26. Oligo pairs with ΔTm > 5 °C were discarded
to avoid hybridization bias towards one variant.

Chromosome painting using haplotype-specific oligo probes.
We identified 6251 and 5506 PAV oligos specific to B73 and
Mo17, respectively. These two sets of oligos were synthesized as
two oligo pools. The two synthesized pools of oligos were then
amplified, labeled, and hybridized to the metaphase chromo-
somes prepared from a B73 ×Mo17 hybrid plant. Each pool of
oligos generated distinct FISH signals highly specific to the
chromosome 10 derived from B73 (red) or Mo17 (green)
(Fig. 1a). The B73 PAV probe generated only minimal cross
hybridization to chromosome 10 from Mo17, and vice versa.
However, the Mo17 probe hybridized to the 45S ribosomal RNA
gene region on chromosome 6 from both inbreds (Fig. 1a). This
cross hybridization was found to be caused by three oligos that
shared 79–88% sequence similarity with the 45S rRNA genes.
These three oligos were not detected by the oligo selection
software.

We identified 4353 pairs of oligos that are differentiated by 5 or
more SNPs between the B73 and Mo17 chromosome
10 sequences. These two sets of oligos generated strong signals
on the respective chromosome 10 from B73 or Mo17. We
observed weak but visible cross hybridization of the B73 probe to
the Mo17 chromosome, and vice versa (Fig. 1b). Similarly, we
identified 3894, 6506, and 19,885 pairs of oligos that are
differentiated by 3–4 SNPs, 2 SNPs, and 1 SNP, respectively,
between the B73 and Mo17 chromosome 10 sequences. Each SNP
probe generated stronger signals on the respective chromosome
10 than on the other copy of chromosome 10 in the hybrid.
However, the cross hybridization signals became stronger as the
number of SNP decreased (Fig. 1). We then used different
combinations of these five pairs of oligo pools. The combined
pools of oligos with PAV, ≥5 SNPs, and 3–4 SNPs produced the
best contrast of haplotype-specific FISH signals (Fig. 2b, c). These
two probe pools, thereafter named hapB (haplotype B73, red) and
hapM (haplotype Mo17, green), and were used in all future FISH
experiments.

Probes hapB and hapM contain 14,498 and 13,753 oligos,
respectively. These oligos are not uniformly distributed on
chromosome 10 (Fig. 2a). The chromosomal region spanning
42–54Mb, which includes the centromere27, contained only 27
and 39 oligos in B73 and Mo17, respectively. Similarly, only 74
(115) oligos were identified in the first 2 Mb on the short arm and
19 (0) oligos identified in the final 1 Mb on the long arm of B73
(Mo17) (Supplementary Data 1). Thus, these regions showed
weak or undetectable FISH signals (Fig. 2c).

Meiotic COs revealed by chromosome painting. We wanted to
exploit the potential of oligo-FISH using hapB and hapM to
detect meiotic COs derived from the homologous chromosome
10 from B73 and Mo17. We produced F2 seeds by pollinating
sibling B73 ×Mo17 hybrid plants. Each F2 plant contains two
copies of chromosome 10, with each homolog classified as par-
ental or recombinant (Fig. 3). We performed oligo-FISH experi-
ments on somatic metaphase chromosomes from 58 F2 plants
(BM1-BM58), resulting in the analysis of 116 copies of chro-
mosome 10. These chromosomes can be cataloged as eight dif-
ferent types based on the positions of chromosomal exchanges
(Fig. 3c). We identified at least one unambiguous B73-Mo17
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chromosomal exchange on 50 (43%) of the 116 chromosomes
(Supplementary Data 2), including 6 chromosomes with an
exchange on both arms (Fig. 3a). A chromosome 10 with three or
more COs was not identified in the analysis.

We measured the distance (μm) from each homologous
chromosome exchange position (EP) to the telomere of the
respective chromosome arm. This distance was divided by the
total length of the respective chromosome arm to calculate the
FLA (Fractional Length of the Arm) (see Methods section), which
was used to map the position of each EP on the arm (Fig. 4). For
example, if the FLA of an EP is 42.5 on the long arm, the distance
from this EP to the telomere is 42.5% of the long arm. We divided

the short and long arms of the chromosome into 100 intervals,
from 0 at the telomere to 100 at the centromere. Each EP was
then mapped to one of these intervals (Fig. 4). Most EPs were
located within intervals 20–40 on the short arm and intervals
10–55 on the long arm (Fig. 4). Thus, no EP was observed within
nearly half of the chromosome 10 flanking the centromere
(Fig. 4). In addition, double COs in the same arm were rare and
were found only in one of the 116 copies of chromosome 10
analyzed (Fig. 3b).

Validation of crossovers by genomic sequencing. Recombinant
or parental copies of chromosome 10 were unambiguously
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Fig. 1 Development of maize chromosome 10 oligo-FISH probes specific to inbreds B73 or Mo17. a Two oligo-FISH probes based on presence-absence
variation. b Two oligo-FISH probes based on 5 or more single nucleotide polymorphisms (SNPs). c Two oligo-FISH probes based on 3 or 4 SNPs. d Two
oligo-FISH probes based on 2 SNPs. e Two oligo-FISH probes based on 1 SNP. Oligo-FISH probes specific to the B73 haplotype were detected in red color.
Oligo-FISH probes specific to the Mo17 haplotype were detected in green color. Images in first column: Complete metaphase cells hybridized with the two
FISH probes; Images in the second column: digitally separated red FISH signals derived from the B73-specific probes; Images in the third column: digitally
separated green FISH signals derived from the Mo17-specific probes; Images in the forth column: merged FISH signals derived from both B73 and Mo17.
Arrows indicate the cross-hybridization signals at the 45 rDNA region associated with chromosome 6. Yellow arrowheads indicate the cross-hybridization
signals from B73-specific probes to Mo17 chromosome 10, and vice versa. Bars= 10 μm. The original gray-scale images used to generate the five color
images in the first column of all panels of Fig. 1 are provided as a Source Data file
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identified in 54 of the 58 F2 plants analyzed. In the remaining four
F2 plants (BM5, BM33, BM34, BM48) (Supplementary Data 2),
we observed putative recombinant chromosome(s) with faint
FISH signals that were inconsistently observed in the metaphase
cells analyzed (Fig. 5). We conducted genomic sequencing of
these four plants to validate the inconsistent identification of the
COs. In addition, no COs were identified in 18 of 58 (31%) F2
plants. We suspected that CO(s) may occur at the distal regions
on chromosome 10 in these plants. These COs may not be
detectable by FISH due to the lack of a sufficient number of oligos
selected from the distal regions (Fig. 2a, Supplementary Data 1).
Therefore, we also included six F2 plants (BM8, BM12, BM19,
BM21, BM31, BM42), which did not have visible COs, in the
sequencing analysis. These 10 plants included 13 copies of
chromosome 10 without a visible CO. We generated an average of
2.41× coverage of 150 bp paired-end Illumina sequences from
each of the 10 plants for the analysis.

BM5 contained two copies of Mo17-derived chromosome 10.
A CO was detected on the short arm of one chromosome 10 in 8
of 25 (32%) metaphase cells analyzed (Fig. 5). Sequencing analysis
showed that one chromosome 10 has a CO at 5.04Mb (Fig. 5).
Thus, the oligo-FISH result was supported by the sequencing
data. Similarly, BM33 also contained two copies of Mo17-derived
chromosome 10. FISH detected a CO on the short arm of one
chromosome 10 in 11 of 19 (58%) metaphase cells analyzed.
Sequencing analysis revealed a CO at 6.45Mb on the short arm of
one chromosome (Fig. 5), thereby supporting the CO observed
with oligo-FISH.

BM34 contained two copies of Mo17-derived chromosome 10.
We observed hapB FISH signals at the distal regions of the long
arms of both chromosome 10 homologs in 6 of 29 (21%)
metaphase cells analyzed (Fig. 5). Sequencing analysis revealed a
single CO on the long arm of each chromosome 10 homolog: at
145.73Mb (5.25 Mb away from the end of the long arm telomere)

and 148.93 Mb (2.06 Mb away from the long arm telomere),
respectively (Fig. 5). Thus, the sequencing data confirmed the
locations of COs on the long arms of both chromosomes.

BM48 contained one B73-derived and one Mo17-derived
chromosome 10. We observed weak hapB FISH signals on the
Mo17-derived chromosome 10, and weak hapM FISH signals on
the B73-derived chromosome 10, but only in 35% (9/26) and 8%
(2/26) of the metaphase cells, respectively. Sequencing analysis
identified a duplicated B73 fragment between 3.86 Mb and 5.42
Mb on the short arm (Fig. 5). This fragment was possibly resulted
from a putative double COs occurred at 3.86Mb and 5.42Mb,
respectively, or two single COs, one at 3.86Mb on the B73-
derived chromosome 10, and one at 5.42Mb on the Mo17-
derived chromosome 10 (Fig. 5).

COs were not detected by oligo-FISH in BM8, BM12, BM19,
and BM21. However, a single CO was discovered on one copy of
chromosome 10 in each of these four lines by sequence analysis.
The EPs of these four COs were 5.53 Mb, 2.37 Mb, 1.69Mb, and
1.74 Mb away from the end of the chromosome, respectively
(Fig. 5). COs were not detected in BM31 and BM42 using oligo-
FISH or sequencing analysis (Fig. 5).

In summary, genomic sequencing of 10 F2 plants revealed COs
in 9 of the 20 copies of chromosome 10, including 4 copies of
recombinant chromosome 10 that were FISH negative. No COs
were detected in BM31 and BM42 (Fig. 5). The comparative
analysis showed that COs cannot be reliably detected by the hapB
and hapM probes if the EP is located <5Mb away from the
telomere of a chromosome arm, which contain only ~600 oligos
within each probe (Supplementary Data 1).

Characterization of recombinant inbred lines. B73 and Mo17
have been popular parental lines used in genetic mapping of
maize. An intermated B73 ×Mo17 recombinant inbred line
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Fig. 2 Development of hapB and hapM probes. a Distribution of 14,498 oligos (red) of probe hapB and 13,753 oligos (green) of probe hapM on maize
chromosome 10. The chromosome was divided into 500-kb windows and number of oligos was calculated for each window. The distribution of the number
of oligos is shown in the line plot and heatmap. y-axis is the number of oligos in each 500-kb window. b Oligo-FISH on metaphase chromosomes from a
B73 ×Mo17 hybrid using hapB (red) and hapM (green). Bar= 10 μm. c The oligo-FISH signals were digitally separated from panel (b). The original gray-
scale images used to generate the color image in Fig. 2b are provided as a Source Data file
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(IBMRIL) population was developed by randomly intermating
plants for four generations following the F2 generation28. The
increased recombination in this population has resulted in a
nearly 4-fold increase in the genetic map distance compared with
conventional nonintermated RIL populations29. Thus, chromo-
somes in IBMRIL are expected to contain four times of more COs
compared to the F2 plants from the B73 ×Mo17 hybrids. We
intended to use oligo-FISH to cytologically characterize the
multiple COs on chromosome 10, which were delineated by
genotype and genome sequence data30,31.

We re-analyzed the chromosome 10 genotyping data of the
IBMRIL population (see Methods section) and chose 10 IBMRILs
for oligo-FISH analysis. A total of 45 genetically immortalized CO
events were identified across the 10 IBMRILs using genotypic
data sets30,31 (Supplementary Table 1). The genotypic data
indicated that these 10 IBMRILs contain multiple COs located
throughout chromosome 10 (Fig. 6). Several of these IBMRILs
contain putative COs located in the pericentromeric regions.
FISH using the hapB and hapM probes revealed that nearly all of
the recombination events predicted by the genotypic data were
associated with a visible CO. For example, line Mo189 was
predicted to contain a proximal B73 chromosome segment,
including the centromere, and a distal B73 segment on the long
arm (Fig. 6, Supplementary Data 3). Oligo-FISH mapping

revealed that chromosome 10 of Mo189 contains two chromo-
somal segments, including the centromere, from B73 and two
segments from Mo17 (Figs. 6 and 7a, b). Similarly, both
genotyping and oligo-FISH data showed that chromosome 10
of Mo270 contains two segments from Mo17, including the
centromere, and two segments from B73 (Figs. 6 and 7c, d).
However, we were not able to detect the putative small
chromosomal fragments, which were indicated by a single or
few DNA markers, such as those associated with lines Mo270 and
Mo346 (Fig. 6). These regions may represent small chromosomal
segments from B73 or Mo17, but cannot be visualized by oligo-
FISH using the hapB and hapM probes.

COs close to the centromere of chromosome 10 were
detected in several IBMRILs. For example, an EP on chromo-
some 10 of Mo189 was mapped at FLA 68.8 on the long arm
(Figs. 6 and 7b). The EP that is most close to the centromere
was mapped at FLA 84.6 on the long arm of chromosome 10 of
Mo029 (Fig. 6). Marker analysis on 209 IBMRILs showed that
11 additional lines (in addition to the five lines in Fig. 6)
contain a CO with a breakpoint at the same position as Mo189
or more close to the centromere of chromosome 10. Therefore,
the intermating process is highly effective to recover and
accumulate the rare CO events occurred in the pericentromeric
regions.
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Fig. 3 Crossovers between B73 and Mo17 chromosome 10 revealed by oligo-FISH mapping using probes hapB and hapM. a Oligo-FISH mapping of B73 ×
Mo17 F2 plant BM15. Probes hapB and hapM are shown in red and green, respectively. The single arrow identifies a single chromosomal exchange position
(EP) on the B2-classified chromosome. Double arrows point to the two chromosomal EPs on the M4-classified chromosome. Bar= 10 μm. b Oligo-FISH
mapping of B73 ×Mo17 F2 plant BM20. The single arrow points a single EP on the B3-classified chromosome. Double arrows point to the two EPs of double
crossovers (COs) on the B5∗-classified chromosome. Bar= 10 μm. c Upper panel: diagrams of the 8 types of parental or recombinant chromosomes
identified in F2 plants. B indicates B73; M indicates Mo17. Lower panel, representative images of the two copies of chromosomes 10 in 48 F2 plants. One
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The original gray-scale images used to generate the color images in Figs. 3a, b are provided as a Source Data file
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Discussion
COs are not evenly distributed along the chromosomes in most
plant species studied so far. Suppression of genetic recombination
in the pericentromeric regions has been well documented in a
number of plant species8,9,13. Physical mapping of a large number
of RNs indicated the lack of recombination in the pericentromeric
regions of maize chromosomes, although such analysis was
conducted only in a single inbred line KYS32. The RN-based
analysis showed that the pericentromeric regions, which account
approximately half of the length of each chromosome, were
nearly free of RNs32. Recombination suppression in the peri-
centromeric regions was also supported by physical mapping of
genetically achored DNA markers on maize chromosomes33–35.
We demonstrate that several IBMRILs contain COs close to the
centromere of chromosome 10 (Fig. 6), which were not detected
in the 58 F2 plants (Fig. 4). Thus, the intermating process was
effective to accumulate COs in recombination-suppressed chro-
mosomal regions, which can be used to generate favorable allelic
combinations of genes residing in these regions.

If a single CO is associated with chromosome 10 during
meiosis of the B73 × Mo17 hybrid, two of the four chromatids
will be involved in this CO event. Therefore, 50% of the pro-
geny chromosome 10 will become a recombinant chromosome
that may be detected by FISH. Our FISH analysis of 58 F2 BM
plants indicated that 60 of the 116 copies of chromosome 10 are
not recombinant chromosomes (Supplementary Data 2). We
sequenced 10 F2 BM plants, including 13 copies of chromosome
10 that were FISH negative (Fig. 5). Sequence analysis showed
that 69% (9/13) of these FISH-negative chromosome 10 were
confirmed as non-recombinant chromosomes. Therefore, the
percentage of chromosome 10 without CO is estimated to be
36% (69% × 60/116) in the F2 population. Luo et al. (2019)36

have recently developed a technique to sequence individual
gametophyte using a maize hybrid derived from a cross
between inbreds Zheng58 and SK. They reported that 18% male
gametes and 31% female gametes from this hybrid do not
contain a CO on chromosome 1036, which would result in 25%
of chromosome 10 without CO in F2 population. Thus, our data
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Fig. 5 Oligo-FISH and sequencing analyses of 10 F2 plants. Red arrows indicate the B73 FISH signals located on Mo17-derived chromosome 10 in BM5,
BM33, BM34, and BM48. These crossovers (COs) were inconsistently detected in different metaphase cells in each line. Black arrows mark the
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of 36% chromosome 10 without CO in the B73 × Mo17 F2
population is higher than the predicted 25% in the Zheng58 ×
SK F2 population. This variation may be caused by the different
maize inbreds used in the F1 hybrids. In Arabidopsis, meiotic
COs on chromosome 4, the smallest chromosome, were ana-
lyzed by genotyping F2 plants resulting from a cross between
ecotypes Columbia and Landsberg37. Approximately 30% (423
of 1404) chromosome 4 do not contain a CO37, which is close
to 36% of non-recombinant maize chromosome 10 in
our study.

A major recent advance of FISH is the application of probes
based on synthetic oligos38–40. Oligo-based chromosome painting
probes have been developed in several plant species and applied
in various types of chromosomal studies41–47. We demonstrate
that haplotype-specific oligo-FISH can be to visualize meiotic
COs derived from homologous chromosomes derived from dif-
ferent maize inbreds. Although COs can be mapped using RNs or
protein markers7,32, these traditional methods can only predict
the positions of COs on SCs in a specific maize line. In contrast,
haplotype-specific FISH maps the chromosomal breakpoints
derived from historical COs, including breakpoints derived from
multiple COs on recombinant inbred lines from the intermated
B73 ×Mo17 population (Fig. 7), which can not be analyzed by the
traditional methods. The haplotype-specific FISH probes will
have unique applications in tracking specific chromosomes
derived from a single genotype (Supplementary Note 1). For
example, such probes can be used to examine the extent of
somatic recombination reported in several plant species48,49.
Haplotype-specific probes can potentially be used to distinguish
true homologous chromosome pairing from pairing of homo-
eologous chromosome with minor structural variation in poly-
ploid species.

Methods
Plant materials and associated genomic data sets. Hybrids between B73 and
Mo17 were developed and sibling F1 plants were pollinated to generate F2 seeds.
IBMRIL seed was originally obtained from the Maize Genetics Cooperative Stock
Center and was bulked and quality-controlled as described50. This ensured cor-
respondence with the genotype data used to construct the original IBM2 map30,
which are available at MaizeGDB51. To add genetic detail for the chromosome 10
investigation, data for 1761 SNPs genotyped for the IBMRILs31 was merged with
the 64 markers available in the IBM2:chromosome 10 data set. Physical genomic
coordinates of the markers corresponding to the Zm00001d genome24 were
obtained using resources available at MaizeGDB51.

Development of haplotype-specific oligo-FISH probes. Chorus software
(https://github.com/forrestzhang/Chorus) was used to generate single copy 45-nt
oligos from chromosome 10 of B7324 and Mo1723, respectively, with a parameter of
Chorus “-l 45 –homology 75 –step 5”. B73 reference genome Zm-B73-REFER-
ENCE-GRAMENE-4.024 and Mo17 genome Zm-Mo17-REFERENCE-CAU-1.023

were download from NCBI under project PRJNA10769 and PRJNA358298,
respectively. To validate the repetitiveness of each oligo, we generated the fre-
quency distribution of 17-mers from B73 (SRR407544 and SRR407504, JGI) and
Mo17 (SRR5826129,23) genomic sequencing data. Any 17-mers with a frequency
more than 100 in the genome was defined as a repetitive 17-mer. Oligos containing
2 or more repetitive 17-mers were discarded.

In total, 175,437 and 174,728 oligos from B73 and Mo17 chromosome 10 were
generated, respectively (Supplementary Note 1). To identify oligos that distinguish
the chromosome 10 sequences from the two inbreds, we mapped B73 (Mo17)
oligos to Mo17 (B73) reference genome using BWA ALN52 with default parameters
and blastn in BLAST53 with parameter “-task blastn”. B73 (Mo17) oligos that were
not identified on Mo17 (B73) chromosome 10 were defined as PAV oligos. B73
(Mo17) oligos containing mismatches and/or indels to Mo17 (B73) chromosome
10 were defined as SNP probe. We only retained SNP oligos with mismatches and/
or indels located between 10 and 35 bp within each oligo. For each B73 oligo, the
B73 sequences at SNPs and/or indels were replaced by the Mo17 sequences, and
vice versa. Therefore, SNP oligos are in pairs, in which one oligo set is homologous
to the B73 genome but showed mismatches and/or indels to Mo17 genome and
vice versa. We then calculated the ΔTm (difference of melting temperature)
between B73 oligo and Mo17 oligo of each oligo pair using primer325,26. We
discarded oligo pairs with ΔTm > 5 °C to avoid hybridization bias toward one

Mo189a

b d

c Mo270

Fig. 7 Oligo-FISH characterization of two lines from the IBMRIL population. a Oligo-FISH analysis of Mo189. Bar= 10 μm. b The oligo-FISH signals of the
two chromosome 10 were digitally separated from panel (a). Signals from one copy of chromosome 10 are exemplified. Two B73 chromosomal blocks
(red), including the centromere, and two Mo17 blocks (green) are identified on chromosome 10. Arrowheads indicate the centromeric region that shows
weak signals due to few oligos available. c Oligo-FISH mapping of Mo270. Bar= 10 μm. d The oligo-FISH signals of the two chromosome 10 were digitally
separated from panel (c). Signals from one copy of chromosome 10 are exemplified. Two Mo17 blocks (green), including the centromere and two B73
blocks (red) are identified on chromosome 10. Arrowheads indicate the centromeric region that shows weak signals due to few oligos available. The
original gray-scale images used to generate the color images in Fig. 7a and c are provided as a Source Data file
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variant. The SNP oligo pairs were divided into four different classes: oligos with 1
SNP, 2 SNPs, 3–4 SNPs, and 5 or more SNPs. The two probes used for CO
characterization, hapB and hapM, included all PAV oligos and oligos with 3–4
SNPs, and 5 or more SNPs. These two probes contained 14,498 and 13,753 oligos,
respectively (Supplementary Data 4).

Oligo-FISH. All seeds were germinated in the laboratory and plants were trans-
ferred to the greenhouse. Root tips were collected from the plants and were treated
with nitrous oxide at a pressure of 160 psi (~10.9 atm) for 2 h. Root tips were
harvested from plants growing in greenhouses. Chromosome preparation from root
tips followed published protocols42. We synthesized 10 different oligo pools (five for
B73, five for Mo17), including two PAV oligo pools, and four paired (i.e., eight total)
oligo pools with 1 SNP, 2 SNPs, 3–4 SNPs, or ≥5 SNPs. The B73 oligo probes were
labeled with digoxigenin and Mo17 probes were labeled with biotin. Amplification
and labeling of the oligo-based probes were according to published protocols41. All
biotin-labeled probes were detected by anti-biotin fluorescein (Vector Laboratories,
Burlingame, California) and digoxigenin-labeled probes were detected by anti-
digoxigenin rhodamine (Roche Diagnostics, Indianapolis, Indiana). DAPI (4’,6-
diamidino-2-phenylindole) was used to counterstain chromosomes in the Vecta-
Shield antifade solution (Vector Laboratories). FISH images were captured using a
QImaging Retiga EXi Fast 1394 CCD. The original gray scale images were processed
with Meta Imaging Series 7.5 software. The contrast of the gray scale images was
adjusted and merged using Adobe Photoshop CS3 software.

For each unambiguously identified meiotic CO we measured the distance, or
length (μm), from the chromosomal exchange point (EP) to the telomere of the
respective chromosome arm. The length (μm) of the respective chromosome arm
bearing the CO was also measured. The chromosomal position of each EP is
presented as a FLA (Fractional Length of the Arm) by dividing the measured distance
by the total length of the chromosome arm. DRAWID (https://doi.org/10.3897/
compcytogen.v11i4.20830) was used to measure the distance from the FISH signal to
the telomere of the corresponding arm, as well as the length of the entire arm.

Sequencing and analysis. Genomic DNA was isolated from 10 F2 plants (BM5,
BM33, BM34, BM48, BM8, BM12, BM19, BM21, BM31, BM42) for Illumina
sequencing. We generated an average of 2.41× coverage of 150 bp pair-end
sequences from these plants. The sequence data was mapped to the B73
RefGen_v424 by BWA MEM software with default parameters52. Reads with
mapping quality more than 50 were retained for SNP calling. SNPs were detected
using freebayes with parameter “-C 1 –m 50 –q 30”54. Raw SNPs were further
filtered using vcffilter in freebayes package by “DP < 40” and “QUAL/DP > 10”. The
bin map was constructed using a sliding window approach55 with minor mod-
ification. SNPs were scanned in 300‐SNP‐windows and the genotype of each
window defined by the percentage of B73 and Mo17 SNPs: the windows were called
homozygous B73 genotype when SNPB73 is more than 80% in the window,
homozygous Mo17 genotype when SNPMo17 is more than 80% in the window and
heterozygous genotype when SNPB73 was between 20 and 80%.

Reporting summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this article.

Data availability
Data supporting the findings of this work are available within the paper and its
Supplementary Information files. A reporting summary for this article is available as a
Supplementary Information file. The datasets generated and analyzed during the current
study are available from the corresponding author upon request. Genomic sequencing
data of the 10 maize lines have been deposited to NCBI Sequence Read Archive (SRA)
under project PRJNA540894 (https://www.ncbi.nlm.nih.gov/bioproject/?
term=PRJNA540894). The source data underlying Figs. 1, 2b, 3a, 3b, 7a, and c are
provided as a Source Data file.
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