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Framework engineering to produce dominant T cell
receptors with enhanced antigen-specific function
Sharyn Thomas1, Fiyaz Mohammed2, Rogier M. Reijmers 3, Annemarie Woolston 1, Theresa Stauss1,

Alan Kennedy 1, David Stirling 1, Angelika Holler1, Louisa Green 1, David Jones 4,

Katherine K. Matthews5, David A. Price 5, Benjamin M. Chain 1, Mirjam H.M. Heemskerk 3,

Emma C. Morris 1, Benjamin E. Willcox 2 & Hans J. Stauss 1*

TCR-gene-transfer is an efficient strategy to produce therapeutic T cells of defined antigen

specificity. However, there are substantial variations in the cell surface expression levels of

human TCRs, which can impair the function of engineered T cells. Here we demonstrate that

substitutions of 3 amino acid residues in the framework of the TCR variable domains con-

sistently increase the expression of human TCRs on the surface of engineered T cells.The

modified TCRs mediate enhanced T cell proliferation, cytokine production and cytotoxicity,

while reducing the peptide concentration required for triggering effector function up to 3000-

fold. Adoptive transfer experiments in mice show that modified TCRs control tumor growth

more efficiently than wild-type TCRs. Our data indicate that simple variable domain mod-

ifications at a distance from the antigen-binding loops lead to increased TCR expression and

improved effector function. This finding provides a generic platform to optimize the efficacy

of TCR gene therapy in humans.
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T cell receptor (TCR) gene transfer is an effective strategy to
produce therapeutic T cells with clinical benefit in the
treatment of cancer1–3. The ability of engineered T cells to

be stimulated by low concentration of peptide antigen is a key
parameter for the efficacy of TCR gene therapy. Hence, muta-
genesis of the antigen-binding regions CDR1, 2, and 3 has been
employed to select TCRs with enhanced affinity for cancer-
associated peptide antigens4–10. However, in vitro studies have
revealed that TCRs with affinities below 450 nM retained peptide
specificity, while higher TCR affinities were associated with loss of
specificity and increased reactivity against cells that did not
express the cognate target antigen6,7. In addition, high-affinity
interactions can disrupt serial TCR triggering which facilitates T
cell stimulation at low antigen concentrations11. Consequently,
TCRs with super-physiologically high affinities can fail to trigger
T cell responses at low peptide concentrations12.

Improving the surface density of TCR without changing TCR
affinity is an alternative strategy to enhance the avidity and
function of therapeutic T cells. To date, modifications in the TCR
constant regions, including the introduction of additional cysteine
di-sulfide bonds and sequences of murine origin, have been used
to improve human TCR α/β chain pairing and expression13–17.
However, human TCRs with identical constant regions show
large differences in surface expression, indicating a major role of
the variable (V) α and Vβ domains in TCR assembly18,19.

In this study, we explore whether residues in the framework of
the Vα and Vβ domains determine the efficacy of intracellular
TCR assembly and the level of surface expression. In addition, we
test the hypothesis that amino acid replacements in the Vα and
Vβ domains outside the antigen-binding CDR loops can be
exploited to enhance antigen-specific T cell effector function
without disturbing the fine specificity of TCRs.

Results
Dominant and subdominant TCR repertoire. In order to
identify dominant and subdominant TCRs in the natural human
repertoire we transduced human peripheral blood T cells with
synthetic TCRs that were engineered to achieve dominant
expression20. These synthetic TCRs were codon-optimized and
equipped with murine constant regions containing an additional
disulfide bond to enhance α/β chain pairing (Fig. 1a). Surface
expression of the introduced synthetic TCRs was assessed with
anti-murine constant region antibodies, and the expression of
endogenous ‘natural’ TCRs was assessed with anti-human con-
stant region antibodies. Using three different synthetic TCRs we
found a population of T cells that co-expressed both the intro-
duced and endogenous TCR and a population that expressed only
the introduced TCR (Fig. 1b; Supplementary Fig. 1a). This profile
allowed us to define ‘dominant’ endogenous TCRs that were co-
expressed with the synthetic TCR, and ‘weak’ endogenous TCR
that were unable to compete for cell surface expression with the
synthetic TCR. Untransduced T cells expressed only the endo-
genous TCR (Fig. 1b and Supplementary Fig. 1a, bottom right
quadrant).

We used flow cytometry to purify T cells with dominant and
weak endogenous TCRs, followed by TCR repertoire analysis
(Fig. 1c). From three different donors we used Sanger sequencing
to generate a sequence library containing 884 distinct TCR
clonotypes, half with a dominant and half with a weak expression
phenotype. Analysis of variable domain usage showed that
TRAV38-1, TRAV38-2, TRBV5-1, and TRBV7-8 were signifi-
cantly enriched in the dominant TCR library, whereas TRAV13-
2, TRBV9, TRBV7-9, and TRBV2 were over-represented in the
weak TCR library (Fig. 1d). Significantly increased frequencies of
particular amino acids were observed at certain positions in the

dominant TCRs (Supplementary Table 1). We also employed
next generation sequencing to generate much larger TCR libraries
from two additional donors21. These libraries contained more
than 130,000 distinct clonotypes, and the statistical analysis
revealed enrichment of additional amino acid residues that were
not detected in the small TCR library. The Vα and Vβ domains
have 77 residues located in the framework regions outside the
antigen-binding CDR loops. The Vα analysis showed over-
representation of certain amino acids at 63 of the 77 framework
positions, and the Vβ analysis revealed over-representation at 68
of 77 positions. In order to identify candidate positions for
experimental testing we used structural modeling and selected 14
residues for detailed functional analysis (Fig. 1e). The selected
residues were located in the framework regions and fell into one
of four categories: (1) solvent exposed; (2) hydrophobic core; (3)
Vα–Vβ interface; and (4) Vα–Cα or Vβ–Cβ interface (Fig. 1e).

Cell surface expression levels TCRα/β chains. We designed a
retroviral vector containing V5 and myc tags to quantify surface
expression levels of the TCR α and β chains using V5/myc-spe-
cific antibodies (Fig. 2a). The vector also contained the truncated
murine CD19 marker molecule to monitor transduction efficacy.
First we compared the expression of a TCRα/β sequence
(TRAV32-8/TRBV7-8) that was enriched in our dominant TCR
library with the expression of three TCRα/β sequences that were
enriched in our weak TCR library (Fig. 1d). Transduction of
human Jurkat cells, which expressed endogenous CD3 and TCR,
indicated that dominant TCR α/β chains were expressed in a
higher percentage of cells than weak TCR α/β chains (Fig. 2b). In
addition, the expression level of the weak TCRs was ~3–5-fold
lower compared to the expression of the dom TCR α/β chains
(Fig. 2c). This difference was observed when gating on Jurkat cells
expressing high or intermediate levels of the CD19 marker used
to monitor transduction efficacy. Similar results were obtained
with Jurkat cells lacking endogenous TCR (Supplementary
Fig. 2a), indicating that the surface expression of dominant TCR
is superior to that of weak TCR in the presence, and also in the
absence of competition from endogenous TCR.

Next, we tested whether the 14 candidate residues indicated in
Fig. 1e affected the level of TCR expression. Replacement of all 14
residues converted a weak TCR into a ‘dominant’ TCR (weak→
domTCR) by improving expression levels by more than 7-fold
(Fig. 2d, e). In contrast, replacing these residues in the dominant
TCR with the amino acids found in the weak TCR dramatically
reduced expression of the converted dom→weak TCR to
undetectable levels (Fig. 2d, e). A similar impact of the 14
residues on TCR expression was observed in Jurkat cells lacking
endogenous TCR (Supplementary Fig. 2b).

Subsequent experiments were designed to test the impact of
individual residues on TCR expression. The results demon-
strated that the change of proline at position 96 of the weak α
chain (P96α) to leucine (L96α), or a double amino acid change
from serine/asparagine (S9β/N10β) to arginine/tyrosine (R9β/
Y10β) at position 9 and 10 of the β chain resulted in nearly
three-fold increase in TCR surface expression (Fig. 3a, b). We
further tested biochemically similar amino acids at the same
positions. Supplementary Fig. 3 shows that a hydrophobic
amino acid at position 96α was sufficient to improve TCR
expression on the cell surface. Similarly, biochemically equiva-
lent amino acids at position 9β and 10β had similar effects on
TCR expression. The data also revealed that position 10 of the β
chain had a stronger effect on TCR expression than position 9
(Supplementary Fig. 3).

The introduction of valine at position 19α (V19α) and
threonine at position 24α (T24α) also improved TCR expression,
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Fig. 1 Identification of dominant and weak human TCRs. a Schematic representation of a synthetic dominant TCR containing codon-optimized human
variable domains and codon-optimized murine constant domains with an additional disulfide bond (C48α and C79β; IMGT nomenclature). b Dot plot of
polyclonal peripheral blood human T cells transduced with a synthetic dominant TCR specific for WT1 and double-stained with anti-human constant
domain antibodies to identify the endogenous TCR and anti-murine constant domain antibodies to identify the introduced TCR. Live, single cells were first
gated on CD3. Non-transduced (non-Tx) T cells are labeled. c Transduced T cells expressing weak endogenous TCRs and transduced T cells expressing
dominant endogenous TCRs were purified by flow cytometry. An unbiased molecular approach was then used to identify all expressed TCRs. The
experiment was repeated independently with n= 3 different donors, and the TCR-sequencing data were pooled. d T cells receptor variable gene segment
frequencies in the library of dominant TCRs (solid black bars) and the library of weak TCRs (open bars). *P < 0.05; **P < 0.01; ****P < 0.0001; ns, P > 0.05
(unpaired t-test). e Candidate residues in the framework regions of the Vα and Vβ domains that were selected for detailed studies based on structural
analyses and occurrence at high frequencies in the dominant TCR library. Candidate residues are shown in red letters. Numbers above the residues denote
the IMGT positions. The category numbers indicate the position of residues in the TCR structure. 1. Solvent exposed; 2. hydrophobic core; 3. Vα–Vβ
interface; 4. Vα–Cα or Vβ–Cβ interface. FR framework region, CDR complementarity-determining region
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but to a lesser extent than L96α and R9β/Y10β. In contrast,
introducing L39α and R55α as well as Q43β, dramatically reduced
expression of the weak TCR (Fig. 3a). The detrimental effect of
these three amino acids on surface expression was clearly context
dependent, because the same residues were present in the well-
expressed dominant TCR, or the converted weak→ domTCR
generated by introducing all 14 candidate residues, including
L39α, R55α, and Q43β, into the weak TCR (Fig. 2d). It was

therefore possible that these three residues were suboptimal and
impeded maximal expression of the dominant TCR. To test this
hypothesis, we introduced the weak TCR amino acids F39α,
D55α, and R43β into the dominant TCR and the converted
weak→ domTCR. These changes further improved surface
expression (Fig. 3c, d). Accordingly, not all amino acid residues
found in dominant TCR chains contribute equally to optimal
expression.
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RNA and intracellular protein expression levels. To gain
molecular insights into these effects, we used a prime flow RNA
assay to quantify intracellular TCR α/β mRNA and surface TCR
protein levels simultaneously. Intracellular levels of α/β mRNA
were similar for all TCRs analyzed and did not correlate with
surface levels of the respective proteins (Fig. 4a, b). For example,
the converted dom→weak TCR was not detectable on the cell
surface, despite high expression levels of the corresponding α/β
mRNA. We then used confocal microscopy to compare the level
of intracellular protein of the two TCR constructs with the
highest surface expression (weak→ dom TCR) and with the
lowest surface expression (dom→weak TCR). Conformation-
independent antibodies specific for the V5 tag were used to assess
the amount of intracellular α chain protein irrespective of TCR
folding and pairing. Jurkat cells transduced with either construct
expressed intracellular TCRs (Fig. 4c). Single cell quantification of
the confocal data indicated an association between the intensity of
staining for CD19 and the intensity of staining for V5, and
suggested that the amount of α chain was slightly higher for the
weak→ dom TCR compared with the dom→weak TCR
(Fig. 4d). However, comparison of the confocal profile and the
surface expression profile determined by flow cytometry (Fig. 4e)
demonstrated that a lack of TCR on the cell surface was not
caused by a lack of intracellular TCR. This finding suggested that
inefficient protein folding and/or suboptimal assembly of the α
and β chains impaired surface expression of the dom→weak
TCR.

Modeling of TCR structure. We next used TCR structural
modeling to explore in detail how residues in the framework of
the variable domains might affect TCR stability. In particular, we
explored the molecular mechanism by which amino acids chan-
ges in a weak TCR resulted in enhanced surface expression. The
weak TCR that was most extensively tested in our study consisted
of TRAV13-2 and TRBV7-3 (Fig. 1d). Since the structure of the
TRAV13-2 chain is yet to be determined, we performed our
modeling using TRAV13-1 (PDB code 3PL622), which is closely
related to TRAV13-2. The 3PL6 TCR structure consists of the
TRAV13-1 chain paired with TRBV7-3, the same chain that is
present in our weak TCR. The 14 variable domain residues that
were analyzed in this study were mapped onto the weak TCR
structure (Fig. 5a).

The change of P96α to L96α resulted in three-fold increase in
TCR expression (Fig. 3a, b). This residue protrudes from the
short 310 helix that precedes strand F and packs against the Cα
domain. Modeling of L96α in TRAV13-1 revealed additional
hydrophobic packing interactions with non-polar residues of the
Cα interface (e.g. V161α and P112α) relative to the weak TCR

(Fig. 5b). Thus, the improved TCR expression achieved with L96α
is possibly due to enhanced stability of the Vα–Cα interface,
although 3D structural data will be required to confirm this.

Substitutions at position 9β and 10β also enhanced TCR
expression (Fig. 3a, b). In TRBV7-3 the S9β and N10β residues
mediate minimal interactions at the Vβ–Cβ interface (Fig. 5c).
Modeling the replacement of S9β with R9β shows that it could
form a potential salt bridge with neighboring E159β (Cβ domain)
(Fig. 5c). Also, Y10β is predicted to form stacking interactions
with residues that protrude from the Cβ domain (Y218β and
H157β), which is likely to increase the stability of the Vβ–Cβ
interface relative to the native TRBV7-3 (Fig. 5c). Thus, the
improved TCR expression achieved by the introduction of R9β
and Y10β is likely caused by the enhanced stability of the Vβ–Cβ
interactions.

The positive effect of V19α on TCR expression can be
explained by its protrusion from strand B into the hydrophobic
core. Replacing S19α with V19α shows that the side chain of
valine could stabilize the hydrophobic core by mediating multiple
non-polar interactions with L11α (strand A), V13α (strand A),
I21α (strand B), and I91α (strand E) (Fig. 5d). Therefore, the
V19α substitution enhances the stabilization of the hydrophobic
core of the Vα domain. Finally, A24α is a solvent exposed residue
that protrudes from strand B. Modeling the replacement of A24α
with T24α suggests that this residue is likely to mediate a
hydrogen bonding interaction with the imidazole ring nitrogen of
H86α (strand E) (Fig. 5e). Thus the generation of a new hydrogen
bond can provide a molecular explanation of the improved TCR
expression mediated by T24α (Fig. 3a, b).

The modeling data above indicated that efficient interactions
between the variable and constant domains in the α and β chain
were particularly important for high-level TCR expression. We
therefore used eight different TCRs to test whether improving the
variable/constant interaction consistently enhanced expression of
TCRs irrespective of V-region usage and specificity. The data
showed that the combination of L96α, R9β, and Y10β did indeed
enhance the expression of all TCRs tested (Fig. 6a, b). Consistent
with previous reports the wild-type CMV2-TCR was an extreme
case of a poorly expressed TCR that was undetectable on the cell
surface18, which was similar to the profile observed when the
dominant TCR was converted into the poorly expressed dom→
weak TCR (Fig. 2d). The triple LRY modification of the CMV2-
TCR resulted in surface expression, although at lower levels than
the other TCRs. Comparison of all wild-type and LRY-modified
TCRs indicated that the replacement of three amino acids
consistently increased surface expression in Jurkat cells by ~2–6
fold (Fig.6a, b), irrespective of the presence or absence of
endogenous TCR (Supplementary Fig. 4a, b).

Fig. 2 Conversion of a weak TCR into a dominant TCR by replacement of 14 variable region framework residues. a Schematic representation of the
retroviral vector used for TCR expression studies. TCR α and β chain expression was determined using antibodies specific for the V5 and myc epitopes,
respectively. Transduction efficiency was determined using antibodies specific for murine CD19. b Representative example of n= 4 independent
experiments showing human Jurkat cells (expressing an endogenous TCR) transduced with a dominant (Dom) TCR (TRAV38-2/TRBV7-8) or three
different weak TCRs: weak 1 (TRAV13-2/TRBV7-3), weak 2 (TRAV23/TRBV7-9) or weak 3 TCR (TRAV29/TRBV2). Top panel: CD19 expression levels.
Middle panel: TCR α and β chain expression levels on gated CD19high cells. Bottom panel: TCR α and β chain expression levels on gated CD19intermediate

cells. c Pooled data (means ± SEM) showing TCR α and β chain expression levels normalized to the Dom TCR. n= 4 independent experiments. Top panel:
gated on CD19high cells. Bottom panel: gated on CD19intermediate cells. * P < 0.05 (Mann–Whitney U test) for all comparisons between the Dom TCR α
chain and the weak TCR α chains and for all comparisons between the Dom TCR β chain and the weak TCR β chains. MFI, median fluorescence intensity.
d Top panel: introduction of the 14 residues indicated in Fig. 1e into the weak 1 TCR (TRAV13-2/TRBV7-3) generated the weak→ dom TCR with enhanced
α/β expression on the cell surface. Bottom panel: replacement of the 14 residues in the Dom TCR (TRAV38-2/TRBV7-8) with the equivalent residues in
the weak 1 TCR (TRAV13-2/TRBV7-3) generated the dom→weak TCR with undetectable α/β expression on the cell surface. TCR constructs were
transduced into Jurkat cells expressing an endogenous TCR. Data are representative of four independent experiments. e Pooled data (means ± SEM)
showing TCR α and β chain expression levels normalized to the corresponding unmodified TCRs. n= 4 independent experiments. *P < 0.05
(Mann–Whitney U test) for all comparisons between the modified TCRs and the corresponding unmodified TCRs. MFI median fluorescence intensity. Vα
variable alpha, Vβ variable beta
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Function of modified TCRs. Next, we analyzed in detail the
expression and function of four antigen-specific TCRs in primary
human T cells. The presence of the V5 and myc tags provided a
powerful tool to distinguish the introduced TCR chains from the
endogenous human TCR. More importantly, the V5/myc-staining
profile enabled us to identify double-positive T cells expressing
both introduced TCR chains, and also single-positive T cells
expressing only one of the introduced chains mis-paired with an
endogenous TCR chain. Interestingly, there is a clear association
between the level of TCR expression in Jurkat cells (Fig. 6a) and
the frequency of primary human T cells expressing both TCR

chains (Fig. 6c). For example, the wild-type HA1.m7 TCR is
poorly expressed in Jurkat cells and displays high levels of mis-
pairing in primary T cells, as 41% of cells express only the
introduced α chain, 12% only the β chain, and 24% both α/β
chains. The analysis of all four TCRs showed that the LRY
modification increased the frequency of primary T cells expres-
sing both TCR α/β chains from a range of 20–50% to 50–80%
(Fig. 6d). This effect was confirmed using tetrameric antigen
complexes (Fig. 6e), which also stained primary T cells trans-
duced with LRY-modified TCRs more intensely than primary
T cells transduced with wild-type TCRs (Fig. 6f).
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In order to determine if the LRY modification enhanced
antigen-specific function, we stimulated TCR-transduced primary
T cells with cognate peptides and measured the intracellular
production of IFNγ and IL-2, after gating for equivalent
expression levels of CD19. The LRY modification resulted in at
least two-fold increase in the percentage of T cells producing IL-2
and/or IFNγ in response to stimulation with saturating
concentrations (10 μM) of peptide antigen (Fig. 7a, b). There
was a correlation between LRY-mediated increase in TCR
expression levels on the surface (Fig. 6b) and the relative increase
in antigen-specific cytokine production (Fig. 7b). Using multiplex
analysis we also tested the Th1, Th2, and Th17 cytokines secreted
by T cells expressing wild-type and LRY-modified TCRs. We
found that the LRY modification increased the production of all
13 cytokines tested. This included the Th1 cytokines IL-2, IFNγ,
and the Th2 cytokines IL-4, IL-5, IL-6, IL9, IL-10, and the Th17
cytokines IL-17A, IL-17F (Supplementary Fig. 5a). Together, this
suggested that the LRY modification did not preferentially
enhance Th1, Th2, or Th17 cytokine production. In addition,
the LRY modification substantially enhanced antigen-specific
proliferation, measured using a cytoplasmic dye (Fig. 7c),
cytotoxicity, determined by a flowcytometry assay (Fig. 7d), and
activation, measured using the surrogate marker CD69 (Fig. 7e).

When T cells were stimulated with titrated peptide concentra-
tions (10 μM–1 nM) the LRY modification substantially improved
the dose response profile (Fig. 7f and Supplementary Fig. 5b). For
example, stimulation of the LRY-modified CMV1 TCR with 3 nM
cognate peptide resulted in more IFNγ and IL-2 production than
stimulation of the wild-type TCR with a 3000-fold higher peptide
concentration of 10 μM. A similar improvement was observed for
the HA1.m2 TCR, while the HA2.19 TCR benefitted less from the
LRY-modification, most likely due to relatively high expression
levels of the wild-type TCR (Fig. 7f). Together, these data indicate
that the simple LRY-modification improved T cell avidity
substantially, which enabled robust antigen-specific immune
responses at low concentrations of peptide antigen.

To determine if the LRY-modification altered the TCR fine
specificity, we generated variants of the nine amino acid long
peptide epitope that is recognized by the CMV1-TCR. Each
native residue was replaced with alanine, except for the variant at
position 7, where the native alanine was replaced with serine.
These variants were used to stimulate transduced T cells
expressing the wild-type CMV1-TCR or the LRY-modified
TCR. The peptide-specific IFNγ production against each variant
peptide was assessed relative to the maximal response seen with
the unmodified cognate peptide (Fig. 7g). Identical analyses were
performed for the wild-type and LRY-modified versions of the
HA1.m2 and the HA2.19 TCRs (Supplementary Fig. 6). No
significant differences in cross-reactivity were observed between
any of these paired wild-type and LRY-modified TCRs.

Tumor protection by modified TCRs. In a final series of
experiments, we used a preclinical xenograft model to study the
effect of LRY modification on tumor control in vivo. Mice were
inoculated with U266 multiple myeloma cells, expressing HLA-
A*0201 and the HA1 minor histocompatibility antigen that is
recognized by the HA1.m7 TCR. After injection, U266 cells were
allowed to form established tumors in the bone marrow for
10 days, and mice were then treated with engineered CD8+

T cells transduced to express the wild-type HA1.m7 TCR, the
LRY-modified HA1.m7 TCR or the control CMV1 TCR. On day
0 of treatment all mice displayed similar tumor burden as
determined by bioluminescent imaging (Fig. 8a). All groups of
mice received the same number of transduced CD8+ T cells,
determined according to surface expression of CD19. Biolumi-
nescent images taken at day 14 showed that mice treated with the
LRY-modified HA1.m7 TCR had the lowest tumor burden
(Fig. 8a). The imaging data collected over the 28-day period after
T cell transfer showed that the LRY-modified HA1.m7 TCR was
significantly more potent at inhibiting tumor growth in vivo than
the wild-type TCR (Fig. 8b).

Discussion
We have dissected the molecular basis by which the variable
domain framework regions determine the efficacy of TCR
assembly and surface expression. In each TCR chain, the inter-
actions between the variable and constant domains were parti-
cularly important for efficient surface expression. Replacement of
one suboptimal residue at the Vα–Cα interface and two sub-
optimal residues at the Vβ–Cβ interface consistently increased
TCR expression by approximately three-fold on the surface of
transduced cells. In keeping with previous reports, we found that
strong versus poor surface expression is an intrinsic TCR feature
seen in the presence, but also in the absence of competition from
endogenous TCRs18. This strongly suggests that the driving force
of TCR evolution was the generation of diversity at the expense of
optimal assembly and surface expression. We speculate that
thymic repertoire selection may function to adjust differences in
TCR expression levels. Thymocytes with poorly expressed TCRs
may not reach the avidity threshold for positive selection and
preferentially die by neglect, while thymocytes with strongly
expressed TCRs may exceed the avidity threshold for negative
selection resulting in their preferential deletion from the selected
repertoire.

We used a relatively small library of 884 TCR clonotypes with
dominant and weak expression phenotypes. The modeling of the
amino acid positions in the 3D TCR structure was employed to
select a set of 14 candidate residues for detailed functional studies.
Although we identified particular residues with dramatic effects
on TCR expression, it was possible that we overlooked certain

Fig. 3 Single amino acid replacements in the framework regions of the Vα and Vβ domains can enhance TCR expression. Site-directed mutagenesis was
used to introduce single amino acids present in the framework regions of the dominant TCR (TRAV38-2/TRBV7-8) into the framework regions of the weak
1 TCR (TRAV13-2/TRBV7-3). a Representative example of four independent experiments showing Jurkat cells transduced with constructs encoding the
unmodified weak 1 TCR or mutated variants of the weak 1 TCR with changes in the indicated framework residues of the Vα and Vβ domains. The dot plots
show TCR α/β expression levels on gated Jurkat cells expressing equivalent levels of CD19. b Pooled data (means ± SEM) showing how individual residues
affected TCR α and β chain expression levels in Jurkat cells. Normalized to the weak 1 TCR. n= 4 independent experiments. P values were less than 0.05
for most comparisons between the mutated variants and the weak 1 TCR (Mann–Whitney U test). P values were more than 0.05 (ns) for M50α and T5α
with respect to α chain expression and for M50α, T5α, S86α and T20α with respect to β chain expression (Mann–Whitey U test). MFI median fluorescence
intensity. c The L39α, R55α and Q43β residues present in the dominant (Dom) TCR (TRAV38-2/TRBV7-8) were replaced with the F39α, D55α and R43β
residues present in the weak 1 TCR (TRAV13-2/TRBV7-3). Similarly, the F39α, D55α and R43β residues were introduced into the weak→ dom TCR
(Fig. 2d) to replace L39α, R55α and Q43β. The dot plots show TCR α/β expression levels on gated Jurkat cells expressing equivalent levels of CD19. Data
are representative of four independent experiments. d Pooled data (means ± SEM) showing how residues F39α, D55α and R43β affected TCR α and β chain
expression levels in Jurkat cells. Normalized to the unmodified TCRs. n= 4 independent experiments. *P < 0.05 for all comparisons between the modified
TCRs and the corresponding unmodified TCRs (Mann–Whitney U test). MFI median fluorescence intensity. Vα variable alpha, Vβ variable beta
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residues with more subtle effects on TCR expression. In order to
explore this, we have used next generation sequencing to generate
large libraries containing more than 130,000 α/β TCR clonotypes
with dominant and weak expression phenotypes. Bioinformatic
analyses of these large TCR libraries confirmed the importance of
hydrophobic residues at position 96 of the α-chain, and of

arginine and tyrosine at positions 9 and 10 of the β-chain
(Supplementary Table 1). Moreover, a number of additional
amino acid residues were significantly more frequent in the
dominant TCR library compared with the weak TCR library.
However, it seems likely that the role of these additional residues
is relatively subtle, because the LRY modification alone was
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Fig. 4 Dominant and weak TCRs have similar intracellular mRNA and protein expression levels. Jurkat cells were transduced with the four TCR constructs
used in Fig. 2d. a Top panel: cells were stained for V5 to determine TCR α chain expression on the cell surface. Bottom panel: a prime flow assay was used
to quantify intracellular TCR α/β mRNA. Cells were gated for equivalent expression of CD19. Data are representative of three independent experiments.
b Pooled data (means ± SEM) showing α/βmRNA levels normalized to the dominant (Dom) TCR. n= 3 independent experiments. ns (non-significant), P >
0.05 (Mann–Whitney U test) for all comparisons between the dominant TCR and the weak TCRs. MFI median fluorescence intensity. c Jurkat cells were
transduced with the weak→ dom TCR or the dom→weak TCR and sorted by flow cytometry to purify CD19high cells. These cells were permeabilized and
stained with anti-CD19 (green) and anti-V5/TCR α (red) for analysis via confocal microscopy. Bottom panel: overlay of CD19 and V5/TCR α expression.
Scale bars are 10 μM. d Single cell analysis of the confocal data showing the quantification of CD19 and V5/TCR α expression for cells transduced with the
weak→ dom TCR (red circles) and cells transduced with the dom→weak TCR (blue circles). e Cell surface expression levels of CD19 and V5/TCR α or
CD19 and Myc/TCR β for cells transduced with the weak→ dom TCR (red) and cells transduced with the dom→weak TCR (blue) as determined by flow
cytometry of non-permeabilised cells
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Fig. 6 Replacement of three framework residues reduces TCR mispairing and enhances TCR expression. The roles of L96α, R9β and Y10β (LRY) were
tested in three weak TCRs selected from the weak TCR library and in five antigen-specific TCRs (2 TCRs specific for CMVpp65, 2 TCRs specific for HA140,
and 1 TCR specific for HA2). a A representative example of n= 3 independent experiments showing Jurkat cells (expressing an endogenous TCR)
transduced with the indicated wild-type TCRs (top row) or the corresponding LRY-modified TCRs containing L96α, R9β and Y10β (bottom row).TCR α/β
surface expression was determined on gated cells expressing equivalent levels of CD19. b Pooled data (means ± SEM) showing the fold increase in TCR α
and β chain expression for eight LRY-modified TCRs compared with the corresponding wild-type TCRs. n= 3 independent experiments. MFI median
fluorescence intensity. c Human peripheral blood T cells were transduced with the indicated wild-type or LRY-modified TCRs. The dot plots show
expression of the introduced TCR α and β chains on T cells gated for equivalent expression of CD19. Data are representative of n= 5 independent
experiments. d Pooled data (means ± SEM) showing the percentage of T cells expressing both TCR α and β chains when transduced with the indicated
wild-type or LRY-modified TCRs. n= 5 independent experiments. P values were less than 0.05 for all comparisons between the modified TCRs and the
corresponding wild-type TCRs (unpaired t-test; *P < 0.05; ****P < 0.0001). e Shown is the percentage of tetramer-binding human T cells transduced with
the indicated wild-type or LRY-modified TCRs. The data is representative of at least five independent experiments. f The percentages of tetramer-binding
CD8+ and CD4+ T cells from n= 6 independent experiments with the CMV1 TCR, n= 5 independent experiments with the HA1.m7 TCR, and n= 5
independent experiments with the HA2.19 TCR. Data are shown as mean ± SEM. Vα variable alpha, Vβ variable beta

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-12441-w

10 NATURE COMMUNICATIONS |         (2019) 10:4451 | https://doi.org/10.1038/s41467-019-12441-w | www.nature.com/naturecommunications

www.nature.com/naturecommunications


LR
Y

/W
T

 fo
ld

 in
cr

ea
se

 o
f

to
ta

l c
yt

ok
in

e 
pr

od
uc

tio
n

CMV1 HA1.m2 HA2.19
0

1

2

3

4

ba

C
tr

l
R

el
C

tr
l

R
el

C
tr

l
R

el
C

tr
l

R
el

C
tr

l
R

el
C

tr
l

R
el

C
tr

l
R

el
C

tr
l

R
el

0

10

20

30

40

50
IFN-γ

IL-2

IFN-γ + IL-2

CMV1 HA1.m2 HA1.m7 HA2.19

%
 C

D
19

 h
ig

h 
ce

lls

WT LRY WT LRY WT LRY WT LRY

C
D

69
 p

os
iti

ve
 c

el
ls

 (
%

)

CMV1 HA1.m2 HA2.19
0

10

20

30

40

50

60

70
Wild-type TCR

+LRY residues

S
pe

ci
fic

 to
ta

l
pr

ol
ife

ar
ito

n 
(%

)

CMV1 HA1.m2 HA2.19
0

10
20
30
40
50
60
70
80 Wild-type TCR

+ LRY residues

c d e

S
pe

ci
fic

 k
ill

in
g 

(%
)

0

20

40

60

80

100 Wild-type TCR

+ LRY residues

CMV1 HA1.m2 HA2.19

f

10 1
10

0 
nM

30
 n

M
10

 n
M

3 
nM

1 
nM

C
tr

l p
ep 10 1

10
0 

nM
30

 n
M

10
 n

M
3 

nM
1 

nM
C

tr
l p

ep 10 1
10

0 
nM

30
 n

M
10

 n
M

3 
nM

1 
nM

C
tr

l p
ep 10 1

10
0 

nM
30

 n
M

10
 n

M
3 

nM
1 

nM
C

tr
l p

ep 10 1
10

0 
nM

30
 n

M
10

 n
M

3 
nM

1 
nM

C
tr

l p
ep 10 1

10
0 

nM
30

 n
M

10
 n

M
3 

nM
1 

nM
C

tr
l p

ep

0

100

200

300

400
Wild-type TCR

+LRY residues

CVM1 TCR

0

200

400

600
HA1.m2 TCR

Wild-type TCR

+LRY residues

R
el

at
iv

e 
ch

an
ge

 in
IF

N
γ 

pr
od

uc
tio

n

R
el

at
iv

e 
ch

an
ge

 in
IF

N
γ 

pr
od

uc
tio

n

R
el

at
iv

e 
ch

an
ge

 in
IF

N
γ 

pr
od

uc
tio

n

50

0

100

150

200

250
HA2.19 TCR

Wild-type TCR

+LRY residues

N
or

m
al

is
ed

 IF
N

-g
am

m
a

0.0

0.5

1.0

1.5

pCMV pA1 pA2 pA3 pA4 pA5 pA6 pS7 pA8 pA9

Wild-type TCR

+LRY residues

ns

ns

ns ns
ns ns

ns

ns
ns

g

Fig. 7 Residues L96α, R9β, and Y10β enhance antigen-specific effector functions. Human T cells transduced with wild-type or L96α, R9β, and Y10β (LRY)-
modified TCRs were stimulated with peptide-loaded T2 cells. a A representative example of n= 3 independent experiments showing the frequencies of
gated CD19high T cells that produced IFNγ and/or IL2. b Pooled data (means ± SEM) showing the fold increase in total specific cytokine production by LRY-
modified TCR-transduced cells over the corresponding wild-type TCR-transduced cells. n= 3 independent experiments. Cytokine produced by stimulation
with the irrelevant peptide were subtracted from cytokine produced by cognate peptide. c Transduced T cells labeled with Cell Trace Violet were co-
cultured for 5 days with peptide-loaded T2 cells. Shown are the percentages of wild-type or LRY-modified TCR-transduced CD8+ T cells that underwent
antigen-specific proliferation. Proliferation arising from irrelevant peptide stimulation was subtracted from cognate peptide-induced proliferation. n= 3
independent experiments. d The indicated transduced T cells were co-cultured overnight with T2 cells pulsed with control peptide or cognate peptide.
Shown is the antigen-specific killing of n= 7 independent experiments for the CMV1 TCR and n= 6 independent experiments for the HA1.m2 and HA2.19
TCRs. e Transduced T cells were co-cultured for 4 h with peptide-loaded T2 cells. Shown are n= 3 independent experiments measuring antigen-specific
upregulation of CD69 on CD8+ T cells expressing wild-type or LRY-modified TCRs. CD69 expression in response to irrelevant peptide stimulation was
subtracted from cognate peptide induced CD69 expression. f Transduced T cells were stimulated overnight with T2 cells loaded with the indicated
concentrations of cognate peptide. IFNγ production was measured by ELISA. Data were pooled (means ± SEM) and normalized to IFNγ production by wild-
type TCR-transduced T cells stimulated with T2 cells loaded with 10 μM cognate peptide. n= 3 independent experiments. g CMV1 TCR-transduced T cells
were stimulated overnight with T2 cells expressing variant or cognate peptide. IFNγ production was measured by ELISA. Data were pooled (means ± SEM)
and normalized to IFNγ produced in response to cognate peptide stimulation. n= 3 independent experiments. ns (non-significant), P > 0.05
(Mann–Whitney U test) for all comparisons between the LRY-modified TCR and the wild-type TCR
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sufficient to increase TCR expression by 3–6 fold, which mirrors
the difference in expression levels between dominant and
weak TCRs.

We found that TCR expression levels had a profound effect on
the magnitude of antigen-specific T cell responses. In some cases,
a three-fold increase in TCR density resulted in more than 1000-
fold reduction in the peptide concentration that was required to
trigger robust T cell effector function. This underscores the
importance of the described framework region modification
strategy for TCR gene therapy. We anticipate that our approach
will enhance expression of most human TCRs and augment the
therapeutic efficacy of gene-modified T cells. The observation that
TCR density improves T cell avidity is consistent with previous
studies showing that high TCR expression levels were essential for
efficient T cell activation by weak agonist peptides23. The
requirement for high TCR expression was overcome by stimu-
lation with strong agonist peptides, indicating that enhanced
TCR–peptide affinity could compensate for suboptimal TCR
densities. Although many studies have explored the role of TCR
affinity in T cell activation, it has been technically more chal-
lenging to modulate TCR density to determine its effect on T cell
avidity24. Our analysis of variant peptides indicated that the LRY

modification does not change the cross-reactivity profile of TCRs.
However, it is important to note that enhanced antigen sensitivity
allows LRY-modified TCRs to recognize lower concentrations of
variant peptides, as well as lower concentrations of the cognate
peptide. Clinical trials will be therefore required to assess the
safety of LRY-modified TCRs and assess whether the recognition
of low concentrations of variant peptides might increase the
toxicity profile of adoptive therapy with T cells expressing LRY-
modified TCRs.

We have shown that the LRY modification provides a
TCR intrinsic benefit that leads to improved expression in cells
without endogenous TCR chains. We also found that the
modification is effective in reducing TCR mis-pairing in cells that
do express endogenous TCRs. At present, we do not know
whether the enhanced antigen-specific functional activity of
LRY-modified TCRs is primarily related to the improved cell
surface expression or the reduction of mis-pairing with endo-
genous TCR chains. We have started to address this question
using CRISPR-mediated deletion of endogenous TCR α and β
chains, which allows us to compare the expression and function
wild-type and LRY-modified TCRs in the absence of mis-pairing
with endogenous TCR chains.
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Fig. 8 Residues L96α, R9β, and Y10β improve tumor control in vivo. NSG mice were injected i.v. with 2 × 106 HLA-A*0201+ U266 multiple myeloma cells,
which naturally express HA1. These cells were transduced with luciferase to enable bioluminescent imaging of the resulting tumors. a Top panel: all mice
displayed similar tumor burdens after 10 days (day 0 of treatment). Mice were then injected i.v. with 3 × 106 human CD19+ CD8+ T cells expressing either
the control (ctrl) CMV1 TCR (n= 4), the wild-type HA1.m7 WT TCR (n= 5) or the LRY-modified HA1.m7 TCR (n= 5). Bottom panel: mice injected with
the LRY-modified HA1.m7 TCR showed the lowest tumor burdens on day 14 of treatment. b Pooled summary data (means ± SEM) of bioluminescent
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How peptide binding initiates TCR signaling is not fully
understood, but proposed mechanisms include serial triggering,
kinetic proofreading, kinetic segregation, and conformational
change11,25–27. A recent study comparing various TCR-signaling
models concluded that a combination of kinetic proofreading and
serial triggering most accurately fitted experimental data of T cell
activation28. In this model, TCR binding to cognate peptide–HLA
complexes needs to persist for a certain amount of time to achieve
a signaling competent state. Although the molecular details of this
signaling competent state are not clear, it is thought to include
tyrosine phosphorylation by Lck, ZAP70 binding and clustering
of TCRs at the center of the immunological synapse. A higher
density of TCR molecules in the T cell membrane is likely to
increase the probability of encountering rare cognate
peptide–HLA complexes in the membrane of antigen-presenting
cells, which drives synapse formation and facilitates the rebinding
of clustered TCRs to peptide–HLA complexes. The three residues
identified in our study stabilized the interface between the vari-
able and constant domains, which may increase the rigidity of
TCR molecules. Although it is currently not known whether TCR
rigidity has any impact on the likelihood of achieving a signaling-
competent state, it is a potential explanation for our observation
that LRY-modified TCRs mediated vastly improved the efficiency
of T cell activation at low antigen concentrations.

The framework engineering approach described here reduced
the level of mis-pairing with endogenous TCR chains, which can
produce novel α/β combinations of random specificity, including
potential autoreactivity. Murine model experiments have clearly
demonstrated that mis-pairing can cause fatal toxicity after
adoptive transfer of TCR-gene-modified syngeneic T cells29.
Similarly, in vitro studies of TCR-gene-modified human T cells
revealed that mis-pairing can produce potentialy harmful novel
specificities30. Although a causal link between mis-pairing and
severe toxicity has not yet been demonstrated in patients, tech-
nologies that reduce mis-pairing are likely to mitigate the risk of
unwanted toxicity in vivo.

In conclusion, the framework engineering platform described
in this study provides exciting opportunities to optimize the
surface expression and boost the therapeutic efficacy of
human TCRs.

Methods
Cells, media, antibodies, tetramers, peptides, and enzymes. Jurkat cells lacking
endogenous TCR expression were obtained from Dr. F. Falkenburg, Leiden Uni-
versity Medical Center, Netherlands. Phoenix amphotropic packaging cells were
obtained from Dr. G. Nolan, Stanford University, USA (ATCC CRL-3213). HLA-
A2+ T2 cells, which lack the transporter associated with antigen processing and
can be efficiently loaded with exogenous peptides, were obtained directly from the
ATCC (CRL-1992). All cell lines used were routinely tested to exclude infection
with Myoplasma. HLA-A2+ PBMCs were obtained from volunteer donors via the
National Health Blood Transfusion Service (NHSBT) after obtaining NHSBT
approval NCI0287/P772 and UCL Research Ethics approval (ID 15887/001) Unless
otherwise stated, cells were cultured in RPMI medium (Lonza) supplemented with
10% fetal calf serum, 1% penicillin/streptomycin and 1% L-glutamine (Gibco).
Phoenix amphotropic packaging cells were cultured in IMDM medium (Lonza)
supplemented with 10% fetal calf serum, 1% penicillin/streptomycin, and 1% L-
glutamine (Gibco). The following anti-human antibodies were used in flow cyto-
metry experiments: anti-CD3–FITC (clone HIT3a), anti-CD3–PerCP-Cy5.5 (clone
SK7), anti-CD8–APC-Cy7 (clone SK1), anti-CD69–APC (clone FN50), anti-TCR
β–PerCP-Cy5.5, anti-IFNγ–FITC (clone B27), and anti-IL-2–PE (clone MQ1-
17H12) (all from BD Biosciences). The following anti-murine antibodies were used
in flow cytometry experiments: anti-TCR β–APC (clone H57-597; BD Biosciences)
and anti-CD19–PE-Cy7 and anti-CD19–PerCP-Cy5.5 (clone ID3; eBioscience).
Other antibodies used in this study were anti-V5–PE and anti-V5–APC (rabbit
polyclonal; Abcam), myc purified (clone 9E10; AbD Serotec), and anti-IgG1–PE
(clone A85-1; BD Biosciences). The following antibodies were used in confocal
microscopy experiments: anti-murine CD19 (clone ID3; eBioscience), purified anti-
V5 (goat polyclonal; Abcam), donkey anti-rat IgG1–AF488 (polyclonal; Invitrogen)
and donkey anti-goat IgG1–AF546 (polyclonal; Invitrogen). PE-labeled HLA-A2/
NLV, HLA-A2/HA1, and HLA-A2/HA2 tetramers were obtained from MBL. The
pCMVpp65 (NLVPMVATV) and control pWT235 (CMTWNQMNL) peptides

were synthesized by ProImmune, and the pHA1 (VLHDDLLEA) and pHA2
(YIGEVLVSV) peptides were sythesized by the Core Facility at Leiden University
Medical Center. The restriction enzymes Not1, SacII, NcoI, BglII, and BsrG1 were
purchased from New England Biolabs.

Generation of retroviral TCR constructs. DNA constructs were cloned into
retroviral pMP71 vectors using Not1 at the 5′ end and BsrG1 at the 3′ end. The
synthetic dominant TCRs, specific for CMVpp65, Epstein-Barr virus (EBV) LMP2,
or Wilm’s tumor antigen 1 (WT1), were engineered previously to incorporate
codon-optimized human variable domains and codon-optimized murine constant
domains31. An extra inter-chain disulfide bond was introduced between the murine
constant domains (C48α and C79β). Each gene construct incorporated a TCR α
chain, a viral P2A sequence, a TCR β chain, a viral T2A sequence, and truncated
murine CD19. A V5 tag was present at the N terminus of the TCR α variable
domain. Two myc tags were present at the N terminus of the TCR β variable
domain. The dominant TCR construct incorporating non-codon-optimized human
variable and constant domains was synthesized by GeneArt (Thermo Fisher Sci-
entific) and was designed so that the V5/TCR α variable and myc/TCR β variable
domains were delimited by unique restriction sites (Not1/SacII and Nco1/BglII,
respectively). The additional V5/TCR α variable segments and myc/TCR β variable
segments were also synthesized by GeneArt. The remaining TCR constructs were
engineered by switching the variable domains using restriction enzyme digests and
ligating with the Quick Ligation (New England Biolabs). The dominant TCR
expressed TRAV38-2/TRBV7-8, the weak 1 TCR expressed TRAV13-2/TRBV7-3,
the weak 2 TCR expressed TRAV23/TRBV7-9, the weak 3 TCR expressed
TRAV29/TRBV2, and the CMV1 TCR expressed TRAV24/TRBV6-5. The α and β
variable sequences of the CMV2 TCR (TRAV12-3/TRBV20-1), the HA1.m2 TCR
(TRAV13-1/TRBV7-9), the HA1.m7 TCR (TRAV25/TRBV7-9), and the HA2.19
TCR (TRAV20/TRBV18) were described previously18,32,33. The α and β variable
segments were designated according to the IMGT nomenclature. Amino acid
substitutions were introduced using either a Quikchange II XL Site-Directed
Mutagenesis Kit (Agilent Technologies) or a GeneArt Site-Directed Mutagenesis
PLUS Kit (Thermo Fisher Scientific).

Expression of retroviral TCR constructs. For retroviral production, 2 × 106

phoenix amphotropic packaging cells were cultured in 10-cm culture plates for 24 h
in complete IMDM media. The cells underwent a 100% media change and were
transiently transfected with the retroviral vectors (2.6 μg) and amphotropic
envelope (1.5 μg) using FuGENE® HD transfection reagent (Promega). Viral
supernatants were harvested 48 h following transfection. Jurkat cells were split 24 h
before retroviral transduction, and PBMCs were activated for 48 h using CD3/
CD28 antibody-coated Dynabeads (Thermofisher) and IL2 (Roche). Retroviral
transductions were conducted on retronectin (Takara) coated 24-well plates. 500 μL
of virus supernate and 1 × 106 cells were added per well, and spun at 2000 rpm,
32 °C, for 2 h. Viral supernate was removed and replaced with fresh media. Codon-
optimized WT1 TCR containing murine constant domains with an additional
disulfide bond were also stably transduced into Jurkat cells (referred to as Jurkat
cells expressing an endogenous TCR). TCR expression on the cell surface was
determined 72 h after transduction via flow cytometry. Data were acquired using
an LSRFortessa (BD Biosciences) and analyzed with FlowJo software (Tree Star
Inc.). For transduced Jurkat cells, single, live cells were gated for high or inter-
mediate expression of CD19 (to normalize for transduction efficiency), and TCR
expression was determined by staining for the V5/TCR α chain and the myc/TCR β
chain. For transduced primary T cells, live, single cells were gated on CD3 and
either CD8 and/or CD19 as appropriate, and TCR expression was determined by
staining for the V5/TCR α chain and the myc/TCR β chain. For tetramer-binding
studies, transduced primary T cells were gated on live, single cells, and tetramer
expression determined in CD3+/CD8+ T cells.

TCR α/β mRNA assay. Jurkat cells were transduced with the dominant TCR, the
weak 1 TCR, the dom→weak TCR or the weak→ dom TCR and stained for CD19
and V5. A prime flow RNA assay (eBioscience) was then conducted using probe
sets designed to bind human TCR α constant domain and human TCR β constant
domain transcripts. Expression data were acquired using an LSRFortessa and
analyzed with FlowJo software. Cells were gated for high expression of CD19. The α
constant domain was read on AF488, and the β constant domain was read
on AF647.

Confocal microscopy. Jurkat cells transduced with either the dom→weak TCR or
the weak→ dom TCR were stained with purified anti-CD19, washed, resuspended
in ice-cold methanol (8 min at –20 °C), washed again, stained with donkey anti-rat
IgG1–AF488, washed one more time and sorted by flow cytometry, gating for high
expression of CD19. Cells were stained with purified anti-V5, washed, stained with
donkey anti-goat IgG1–AF546, and cytospun onto slides (100,000 cells in 100 μl).
Confocal data were collected using an inverted Nikon Eclipse Ti equipped with an
×60 oil immersion objective. Constant laser powers and acquisition parameters
were maintained throughout. Digital images were prepared using Fiji.
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Antigen-specific cytokine production assays. For intracellular cytokine pro-
duction, 3 × 105-irradiated (80 Gy) T2 cells were loaded for 2 h with 10 μM peptide
and co-cultured for 18 h with 3 × 105 TCR-transduced human T cells in the pre-
sence of 1 μg/ml brefeldin A (Sigma-Aldrich) in a total volume of 250 μl of culture
medium per well in round-bottom 96-well plates. Cells were then surface stained
for CD8 and CD19, fixed/permeabilized using a Fixation/Permeabilization Solution
Kit (BD Biosciences), and stained intracellularly for IFNγ and IL-2. Data were
acquired using an LSRFortessa and analyzed with FlowJo software. For extracellular
cytokine secretion, 1 × 105-irradiated T2 cells were loaded for 2 h with the indicated
concentrations of peptide and co-cultured for 18 h with 1 × 105 TCR-transduced
human T cells in round-bottom 96-well plates containing 250 μl of culture medium
per well. Supernatants were harvested from duplicate wells and tested for IFNγ and
IL-2 using human ELISA Kits (BD Biosciences). Absorbance was read at 450 nm. A
similar experimental set-up was used for the LEGENDplex assay (BioLegend), with
the exception that irradiated T2 cells were loaded with 10 μM peptide, and
supernatants were tested for secreted cytokines using a Human Th Cytokine Panel
(BioLegend).

Proliferation assay. 2.5 × 104-irradiated T2 cells loaded with 10 μM peptide and
5 × 104 bulk-transduced T cells labeled with Cell Trace Violet (Invitrogen) were co-
cultured for 5 days in round-bottom 96-well plates containing 250 μl of culture
medium per well. Cells from duplicate wells were pooled, stained for CD8 and
CD19, and analyzed by flow cytometry. Data were acquired using an LSRFortessa
and analyzed with FlowJo software.

CD69 upregulation assay. 3 × 105-irradiated T2 cells loaded with 10 μM peptide
and 3 × 105 bulk-transduced T cells were co-cultured for 4 h in round-bottom 96-
well plates containing 250 μl of culture medium per well. Cells were stained for
CD8, CD19, and CD69, and analzyed by flow cytometry. Data were acquired using
an LSRFortessa and analyzed with FlowJo software.

Antigen-specific killing assay. Transduced T cells were expanded by stimulation
with cognate peptide for 1 week prior to assay set-up. For this, 5 × 105-transduced
cells, 2 × 105-irradiated T2 cells loaded for 2 h with cognate peptide, and 2 × 106-
irradiated autologous PBMCs as feeder cells were co-cultured in 24-well plates in
2 mL of complete RPMI media supplemented with 10 U/mL IL-2 (Roche). For the
antigen-specific killing assay, T2 cells loaded with cognate peptide and labeled with
0.02 mM CFSE were mixed at a 1:1 ratio with T2 cells loaded with control peptide
and labeled with 0.2 mM CFSE. Mixed T2 cells were co-cultured with expanded
transduced T cells at E:T ratios of 1:1 or less for 18 h. Antigen-specific killing was
calculated from the flow cytometry data using the following equation: % specific
killing= 100–[(relevant/irrelevant) with T cells/(relevant/irrelevant) with no
T cells × 100].

Peptide variant assay. 1 × 105 T2 cells loaded with 10 μM cognate peptide or
alanine (or serine) peptide variants were co-cultured for 18 h with 1 × 105 bulk-
transduced T cells in round-bottom 96-well plates containing 250 μl of culture
medium per well. All conditions were assayed in duplicate. Supernatants were
tested for secreted IFNγ using a human IFNγ ELISA Kit (BD Biosciences) and
absorbance was read at 450 nm as described above. NLV peptide variants were
ALVPMVATV, NANPMVATV, NLAPMVATV, NLVAMVATV, NLVPAVATV,
NLVPMAATV, NLVPMVAAV, NLVPMVATA, and NLVPMVSTV. HA1 peptide
variants were ALHDDLLEA, VAHDDLLEA, VLADDLLEA, VLHADLLEA,
VLHDALLEA, VLHDDALEA, VLHDDLAEA, VLHDDLLAA, and VLHDDLLES.
HA2 peptide variants were AIGEVLVSV, YAGEVLVSV, YIAEVLVSV,
YIGAVLVSV, YIGEALVSV, YIGEVAVSV, YIGEVLASV, YIGEVLVAV, and
YIGEVLVSA. Variant peptides were synthesized by Severn Biotech Ltd.

In vivo anti-tumor efficacy. NOD.Cg-Prkdc(scid)Il2rg(tm1Wjl)/SzJ (NOD scid
gamma, NSG) mice were purchased from The Jackson Laboratory and subse-
quently bred and maintained at the Leiden University Medical Centre Animal
Facility. All mouse studies were performed in accordance with guidelines of Lieden
University Medical Center after obtaining permission from the national and local
Ethical Committees for Animal Research (AVD116002017891) and in accordance
with Dutch laws on animal experiments. All mice were provided with water and
food ad libitum. Male NSG mice were injected i.v. with 2 × 106 U266 multiple
myeloma cells transduced with luciferase (pCDH-EF1-Luc2-P2A-tdTomatoRed),
obtained from Kauhiro Oka via Addgene (plasmid 72486). For tumor visualization,
mice were injected i.p. with 200 μl of 7.5 mM D-luciferine (Cayman Chemical Co.)
and anesthetized with 3% isoflurane. Bioluminescent images were obtained using a
CCD camera (IVIS Spectrum, PerkinElmer). Ten days after tumor outgrowth, mice
were injected i.v. with 3 × 106 CD19+ CD8+ T cells expressing the wild-type HA1.
m7 TCR, the LRY-modified HA1.m7 TCR or the control CMV1 TCR. Tumor
growth was monitored at 2–3-day intervals for a total of 28 days. Statistical analysis
was performed using Prism software version 7 (GraphPad). Significance was
determined using a two-way ANOVA with Tukey’s multiple comparison test.

Sequencing of endogenous dominant and weak human TCRs. Peripheral blood
T cells from healthy donors were transduced with retroviral vectors encoding
strongly expressed synthetic TCRs containing human variable domains and murine
constant domains with an artificial disulfide bond between residue 48 of the α
chain and residue 79 of the β chain. Antibodies specific for the human constant β
domain were used to assess expression of endogenous human TCRs, and antibodies
specific for the murine constant β domain were used to assess expression of the
introduced synthetic TCRs. Flow cytometric sorting was used to purify transduced
donor T cells that either co-expressed the endogenous and introduced TCRs or
expressed only the introduced TCR. Two methods were used to determine the
endogenous TCR sequences from extracted mRNA. The first method employed an
unbiased template-switch anchored RT-PCT to amplify all expressed TCR alpha
and TCR beta gene rearrangements, which were then subcloned and sequenced
using a conventional Sanger-based approach34,35. The second method employed
total RNA isolated from sorted T cells, collected in Tempus™ Blood RNA tubes
(Thermofisher #4342792) using the manufacturer’s protocol for RNA extraction.
The method introduces unique molecular identifiers attached to individual cDNA
molecules to provide a quantitative and reproducible method of library prepara-
tion. Full details for both the experimental TCRseq library preparation and the
subsequent computational analysis (V, J, and CDR3 annotation) using Decom-
binator was recently published21,36.

Statistical TCR analysis. TCR library generated by Sanger sequencing: the nucleic
acid sequences were translated into amino acids and aligned using IMGT reference
numbering (http://www.imgt.org/). To compare amino acid frequencies at every
residue in the dominant and weak TCR libraries, 2 × 2 contingency tables were
computed for each position in the alignment, representing the observed counts of
each amino acid type A versus all other types (~A) in the dominant versus the weak
TCR sequences. The null hypothesis was that the relative frequency of occurrence
of amino acid type A was the same in the dominant and the weak TCR sequences
at a given position, and P values were calculated from the hypergeometric dis-
tribution using Fisher’s exact test without correction for multiple comparisons.
Rejection of the null hypothesis indicated that amino acid type A was significantly
enriched in either the dominant or the weak TCR sequence at a given position.

TCR library generated by next generation sequencing: at each position of the
framework regions we compared the frequency of all amino acids in the dominant
and in the weak TCR libraries using either Fisher’s exact test performed on each
donor independently, or the Cochran–Mantel–Haenszel test (CMH) performed on
both donors together. The results were adjusted for multiple comparisons using the
Bonferroni correction.

TCR 3D structural modeling. The weak TCR that was most extensively tested in
our study comprised TRAV13-2, TRBV7-3. The TRAV13-2 chain was modeled
with I-TASSER (Iterative Threading ASSEmbly Refinement) server37 using the
closely related TRAV13-1 structure (PDB code 3PL6) as a threading template. The
3PL6 TCR structure consists of the TRAV13-1 chain paired with TRBV7-3, the
same chain that is present in our weak TCR. Therefore, the I-TASSER-derived
TRAV13-2 model was superimposed onto the TRAV13-1 chain of the
3PL6 structure to generate a molecular model of TRAV13-2/TRBV7-3 TCR
complex. Models of weak to strong TCRs incorporating the 14 variable domain
framework residues were also generated using the I-TASSER server. For all mod-
eling studies with I-TASSER, the target sequences were initially threaded through
the PDB library by the meta threading server, LOMETS2. Continuous fragments
were excised from LOMETS2 alignments and structurally reassembled by replica-
exchange Monte Carlo simulations. The simulation trajectories were subsequently
clustered and used as the preliminary state for second round I-TASSER assembly
simulations. Finally, lowest energy structural models were selected and refined by
fragment-guided molecular dynamic simulations to optimize hydrogen-bonding
interactions and remove steric clashes. Analysis of molecular interactions was
performed using programs of the CCP4 suite38. Model visualization was carried out
using COOT39. Structural figures were generated using PyMOL (The PyMOL
Molecular Graphics System, Version 1.8 Schrödinger, LLC).

Data availability
The data generated during and/or analyzed during the current study are available from
the corresponding author on reasonable request. TCR sequences have been deposited to
BioProject database under the accession number SUB6223064.
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