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Learning the pattern of epistasis linking genotype
and phenotype in a protein
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Understanding the pattern of epistasis—the non-independence of mutations—is critical for

relating genotype and phenotype. However, the combinatorial complexity of potential epi-

static interactions has severely limited the analysis of this problem. Using new mutational

approaches, we report a comprehensive experimental study of all 213 mutants that link two

phenotypically distinct variants of the Entacmaea quadricolor fluorescent protein—an oppor-

tunity to examine epistasis up to the 13th order. The data show the existence of many high-

order epistatic interactions between mutations, but also reveal extraordinary sparsity,

enabling novel experimental and computational strategies for learning the relevant epistasis.

We demonstrate that such information, in turn, can be used to accurately predict phenotypes

in practical situations where the number of measurements is limited. Finally, we show how

the observed epistasis shapes the solution space of single-mutation trajectories between the

parental fluorescent proteins, informative about the protein’s evolutionary potential. This

work provides conceptual and experimental strategies to profoundly characterize epistasis in

a protein, relevant to both natural and laboratory evolution.
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The central properties of proteins—folding, biochemical
function, and evolvability—arise from a global pattern of
cooperative energetic interactions between amino acid

residues. When introducing amino acid substitutions in a protein,
cooperativity manifests itself as context-dependence of the effects
of those mutations, or epistasis1. Knowledge of the extent and
distribution of epistasis in a protein is essential for understanding
its evolution. For example, when a certain functional improve-
ment requires a combination of mutations that are individually
unfavorable, no single-mutation trajectory exists that increases
fitness at each step, and evolution towards the new functionality
will be hampered2–4. Being able to uncover epistasis is relevant
for the reconstruction of phylogenetic trees5 and for estimating
the evolutionary potential of antibiotic resistance genes6,7 and
viruses8, but also for protein engineering efforts that make use of
directed evolution: information on epistatic architectures should
prove useful in the selection of evolvable templates9,10, in
focusing mutations to highly-epistatic regions of a protein11, or in
identifying cooperative units for DNA shuffling experiments12,13.

However, the challenge of mapping epistasis is extraordinarily
complex. Epistasis can occur due to nonlinearities in any process
linking genotype and fitness and can occur at the pairwise level
(two-way) or extend to a series of higher-order terms (three-way,
four-way, etc.) that describes the full extent of possible interac-
tions14–17. As a consequence, the number of potential epistatic
interactions grows exponentially with the number of positions in
a protein, a combinatorial problem that becomes rapidly inac-
cessible to any scale of experimentation. Indeed, the theoretical
complexity of this problem is such that it is not feasible or
rational to propose an exhaustive mapping of epistasis for any
protein.

How, then, can we practically characterize the architecture of
epistatic interactions between amino acids? We reasoned that a
strategy may emerge from a focused experimental case study in
which we make all possible combinations of mutations within a
limited set of positions within a protein—a dataset from which we
can directly determine the extent of epistasis and explore possible
simplifying methods. As a model system, we chose the Entacmaea
quadricolor fluorescent protein eqFP61118, a protein in which
spectral properties and brightness represent easily measured,
quantitative phenotypes with a broad dynamic range. Recently,
two variants of eqFP611 have been reported, one bright deep-red
(mKate2, λex= 590 nm, λem= 635 nm19) and one bright blue
(mTagBFP2, λex= 405 nm, λem= 460 nm20), that are separated
by thirteen mutations (Fig. 1a); we will refer to these as the
“parental” genotypes.

By developing new technologies for high-throughput combi-
natorial mutagenesis and quantitative phenotyping, we explored
the full space of 213= 8192 variants comprising the parental
genotypes and all possible intermediates between them. These
data reveal a broad range of high-order epistatic interactions
between mutations, suggesting great complexity in the relation-
ship between genotype and phenotype. However, we find that
epistasis is also highly sparse compared to theoretical limits, a
property that opens up the use of powerful computational tech-
niques for uncovering the epistatic architecture with practical
experimental or sequence-based approaches. If sparsity is general,
this observation suggests an approach for accurate phenotypic
predictions of unobserved mutants based on phenotypic mea-
surements of a limited set of genotypes, which we illustrate using
our model system. Finally, we obtain a view of the model pro-
tein’s evolutionary potential: we find that the observed high-order
epistasis greatly limits the number of viable single-mutation tra-
jectories between the blue and red variants of eqFP611, but not so
much as to preclude paths in which fluorescence is maintained
throughout. The most severe epistasis occurs at mutational steps

involved in the actual color switch, indicating a strong coopera-
tivity between the fluorophore and its immediate environment.

Results
A complete combinatorial mapping of phenotypes. We devel-
oped an efficient iterative gene synthesis approach to simulta-
neously construct and barcode the full library of 8192 fluorescent
protein (FP) variants that represents the parental genotypes
mKate219 and mTagBFP220 and all possible intermediates
(Fig. 1b, Supplementary Fig. 1, and “Methods”). This strategy
makes it possible to readout the identity of every combination of
mutations simply by high-throughput DNA sequencing of the
barcode region—a method that should be generally valuable for
studies of high-order epistasis. We expressed the library in
Escherichia coli, carried out two-color fluorescence activated cell
sorting (FACS) to select variants with brightness above a
threshold, deep sequenced the input and selected libraries, and
computed the frequency fa of every FP allele a in the sorted
population relative to the input population—an enrichment score
(Fig. 1b). The color channels are normalized by the measured
spectral properties of the parental red and blue proteins and are
combined to produce a single quantitative phenotype–y—that
reports fluorescence brightness (Fig. 1b, c, “Methods”, and Sup-
plementary Fig. 2). This measure integrates various underlying
biophysical properties—extinction coefficient, quantum yield,
protein expression—and is therefore a rich phenotype for char-
acterizing epistatic effects of mutations, even though other
properties such as maturation half-time and some detailed
spectral properties are not explicitly considered here.

Global non-linearities are expected due to the experimental
process and were minimized in a mechanistically unbiased
manner using the procedure of linear-nonlinear optimization21–23,
permitting the assessment of relevant epistatic interactions
between mutations (see “Methods” and Supplementary Fig. 6
for robustness of the main conclusions to this process). The
bottom line is a quantitative assignment of phenotypes for all
8192 variants in a form in which independence of mutational
effects for reasons other than the internal cooperativities of amino
acids and the single threshold selection for brightness corre-
sponds to additivity in y (see Supplementary Fig. 13 for additional
discussion on detection limits). The fact that the parental
genotypes are brightly fluorescent but many of the intermediates
are not (Fig. 1c) is a first indication that we can expect substantial
epistasis between mutations linking the two.

From phenotypes to epistasis. From the full dataset of pheno-
types, we computed the complete hierarchy—1-way, 2-way, 3-way,
4-way, etc.—of epistatic interactions between the thirteen mutated
positions. Mathematically, epistasis is a transform (Ω) in which
phenotypes (�y) of individual variants are represented as context-
dependent effects of the underlying mutations (�ω, Fig. 2a)14,15:

�ω ¼ Ω�y ð1Þ
For N positions with a single substitution at each position, �y is a
vector of 2N phenotypic measurements in binary order (here, 213)
and �ω is a vector of 2N corresponding epistatic interactions. A first-
order epistatic term (ω1) is the phenotypic effect of a single
mutation, a second order epistatic term (ω2) is the degree to which
a single mutation effect is different in the background of second
mutation, and a third-order epistasis (ω3) is the degree to which
the second order epistasis is different in the background of a third
mutation. Higher-order terms follow the same principle, such that
an nth order epistatic term is the degree to which an n–1 order
term depends on the context of yet another mutation, comprising
a hierarchy of possible couplings between mutations. A key point
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is that �ω and �y contain exactly the same information, but simply
differ in its organization; �y represents the phenotypes of individual
variants while �ω represents the non-additive interactions between
the mutations.

A few examples help to explain the concept of epistasis. If we
take the variant L63M/S168G/A174L/N207K as an arbitrary
reference state (yref= 0.85, blue fluorescence) the data show that
introducing the mutation Y197R results in reduced brightness
(y= 0.28) (Fig. 2a). The difference in these two values defines a
first-order epistasis (ω1= yY197R–yref=−0.57). However, in the
background of F143S, the effect of Y197R is entirely different; it
shows increased brightness (ω1|F143S=+ 0.49), with conversion to
red fluorescence. This indicates a large second order epistatic
term (ω2= ω1|F143S–ω1= 1.06, Fig. 2b), meaning that the effect of
Y197R is context-dependent on F143S. This second order term is
itself dependent on other mutations. For example, in the
background of V45A, the second order epistasis between Y197R
and F143S nearly vanishes (ω2|V45A=−0.01), indicating a large
third-order epistasis (ω3= ω2|V45A–ω2=−1.07, Fig. 2c). These
findings show that Y197R, F143S, and V45A work as a
cooperative unit whose contribution to phenotype cannot be
broken down into a simple, additive contribution of the
underlying mutational effects. Instead, prediction of phenotypes
involving these mutations requires knowledge of their individual
effects and epistatic interactions at all orders.

In the examples discussed above, the effects of mutations are
computed relative to a single reference genotype—the back-
ground in which the mutations are made. But, why should we
restrict the definition of epistasis in the local mutational
neighborhood of an arbitrarily chosen reference sequence? A

more general analysis would be to compute each epistatic term as
an average over all possible genetic backgrounds. For example,
the effect of Y197R (the first-order epistasis ω1) can be computed
not just with respect to a single reference (Fig. 2c), but as the
average of its phenotypic effect in the background of every one of
the other 2N–1 genotypes. Similarly, one can define background
averaged pairwise, three-way, and higher-order epistatic terms in
which each term is averaged over all remaining genotypes. This
view of epistasis is a global one, indicating the contribution of
amino acids and interactions to protein function averaged over
the full sequence space of variants14,15,24–26. We show the
profound distinction of single-reference and background aver-
aged epistasis below.

The distribution of epistasis. We computed the background-
averaged epistasis for the dataset of brightness phenotypes.
Analysis of error propagation provides a rigorous basis for
establishing the statistical significance of epistatic terms as a
function of order (Supplementary Fig. 5 and “Methods”). At a
significance threshold of P < 0.01, we identify 260 background
averaged epistatic terms. These 260 terms are distributed as a
function of order in a unimodal shape with a peak at 3rd–4th
order, and include interactions up to the 7th order within the set
of 13 mutated positions (Fig. 2e). The distribution is similar for
both background averaged and single-reference forms of epistasis,
and independent trials of the experiment demonstrates the
robustness of determining the significant epistatic terms (Sup-
plementary Fig. 7). Structurally, the epistatic terms involve not
just residues in the local environment of the chromophore, but
also includes positions (e.g., 45) located at a considerable distance
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Fig. 1 Combinatorial mutagenesis and data collection. a mTagBFP2 (left) and mKate2 (right) are blue and red variants, respectively, of the Entacmaea
quadricolor fluorescent protein eqFP61118 that differ by 13 amino acid substitutions (12 shown; the 13th is at position 231, at the C-terminal end of the
molecule and is not shown in the crystal structure). This defines a total sequence space linking the two of 213= 8192 variants. b A schematic of the
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channels (see “Methods” for details). The phenotype is computed such that the independent action of mutations outside of the selection threshold
corresponds to additivity. c The distribution of phenotypes for all 8192 variants; the dashed line corresponds to the detection threshold for fluorescence
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at the opposite edge of the β-barrel (Fig. 2d). Indeed, the V45A
mutation has the remarkable property of displaying a small effect
on its own (ω1=−0.08), but having much larger epistatic effects,
for example, in modulating the pairwise coupling between Y197R
and F143S (ω3=−0.29).

In summary, the data indicate a broad range of high-order
epistatic interactions between amino acid mutations that link the
blue and red variants of the eqFP611 protein.

Sparsity and prediction of phenotypes. At first glance, the
finding of significant epistatic terms up to the seventh order
would seem to pose an insurmountable practical challenge to the
goal of relating genotype to phenotype in proteins. No studies are
likely to make such measurements in general, and the scale of
experimentation grows exponentially with protein size. However,
the data also suggest the possibility of great sparsity in the
number of significant epistatic terms, a finding that if confirmed,
can open up practical approaches. For example, the 260 sig-
nificant epistatic terms identified here represent only a small
fraction of the 8192 possible terms. How much information is
encoded in just these terms? To study this, we used the inverse of
the operation described in Eq. 1 to reconstruct the phenotypic
measurements (ŷ) from any selected subset of background-
averaged epistatic terms (�ωsig):

ŷ ¼ Ω�1�ωsig; ð2Þ

A comparison of ŷ, the reconstructed phenotypes, with y, the
measured phenotypes, indicates the extent to which the epistasis

terms included in �ωsig capture the total information contained in
all 8192 terms.

For �ωsig comprising all 260 statistically significant background-
averaged epistatic terms, a plot of reconstructed phenotypes (ŷ)
against actual phenotypes (�y) shows a goodness of fit coefficient
(R2) of 0.98 (Fig. 3a and “Methods”), demonstrating nearly
perfect agreement. This finding means (1) that the experimentally
resolvable epistatic terms in fact suffice to represent all
phenotypes, and (2) that epistasis is sparse, with only 260 out
of 8192 terms (3.2%) capturing close to all of the total
information content. An analysis of the contribution of each
mutated position to epistasis shows that 11 of the 13 total
positions contribute to at least some of the 260 significant terms
(Table 1). Thus, sparsity is not a trivial consequence of the
irrelevance of many sequence positions. Instead, it says that
mutations that contribute to phenotype are involved in much
fewer epistatic interactions than theoretically possible.

How sparse is epistasis? To examine this, we calculated the
goodness of fit between phenotypic data and prediction as a
function of the number of included epistatic terms in �ωsig,
ordered by the size of their contribution to the explanatory power
(Fig. 3b). The result demonstrates that background-averaged
epistasis is remarkably sparse. Just the top 48 or 81 terms suffice
to achieve an R2= 0.94 or 0.96, respectively (Fig. 3c, d),
indicating that <1% of epistatic terms are enough to specify
phenotypes with good accuracy. Interestingly, retaining only
epistatic terms up to the second-yields weaker predictive power
(R2= 0.87) despite including nearly double the number of terms
(compare Fig. 3c, d with 3e). Thus, phenotypes can be
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range of high-order interactions between amino acids, including terms up to the seventh order

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-12130-8

4 NATURE COMMUNICATIONS |         (2019) 10:4213 | https://doi.org/10.1038/s41467-019-12130-8 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


represented by a very small number of background-averaged
epistatic terms, but these range from low to high order.

In contrast, sparse encoding of phenotypes is not evident with
the single-reference form of epistasis (Fig. 3f). Taking a particular
genotype as a reference for mutational effects, the predictive
power of phenotypes based on significant terms is negligible
(Fig. 3f, R2=−0.04 for the parental blue genotype), and
reasonable values for R2 are only achieved by inclusion of all
terms up the 11th order (Supplementary Fig. 8). This indicates
essentially no information compression by this approach to
epistasis. However, the fact that epistasis is sparse in at least one
representation (with background averaging) exposes an impor-
tant finding—the quantity of information linking genotype to
phenotype is fundamentally low relative to theoretical limits.

Practically learning epistasis—an experimental approach.
Background-averaged epistasis provides an efficient, low-
dimensional representation of protein phenotype, but this

observation does not itself provide a practical solution to iden-
tifying the relevant terms. The problem is that background-
averaging (at any epistatic order) requires complete knowledge of
phenotypes for all combinations of mutants, an impossible pro-
position in general. So, how do the findings reported above help
us to practically learn the relevant epistatic terms? A path forward
comes from the finding of sparsity in epistasis. In the field of
signal processing, the theory of compressed sensing (CS) states
that if a signal displays sparsity in some representation, it is
possible to accurately reconstruct the signal from just a limited
number of random measurements by employing an optimization
procedure that enforces the sparsity in that representation27. For
proteins, this implies that we should be able to learn the relevant
epistatic architecture sampling just a small subset of randomly
chosen mutant phenotypes.

To test this, we developed a simple implementation of the CS
algorithm (see “Methods”, and used it to learn the top
background-averaged epistatic terms from sparse sampling of
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Fig. 3 Sparsity in background-averaged (but not single-reference) epistasis. a reconstruction of all phenotypes from the 260 significant background
averaged epistatic terms displays excellent agreement with measured data (goodness-of-fit R2= 0.98, see “Methods”). b A plot of goodness-of-fit against
number of included epistatic terms arranged by degree of contribution, indicating extraordinary sparsity in information content. Colors show the order of
epistasis. c, d Consistent with sparsity, reconstruction of phenotypes with the top 81 (c) or top 48 (d) terms shows good agreement with measured data.
e Reconstruction with only second order terms shows poorer agreement with data despite larger number of included terms, indicating the relevance of
higher-order epistasis. f Single-reference epistasis shows no predictive power in reconstructing phenotypes, indicating lack of sparsity in this form of
epistasis. Noise analysis for single reference epistasis for different genotypes as a reference yields highly variable numbers of significant terms. The plot
shows the reconstruction for the parental blue genotype, for which we recover a mere 31 significant terms. Phenotypic reconstruction is poor and exhibits
discrete levels due to the low number of epistatic terms

Table 1 Significant epistatic contributions for mutated positions

Position: 1 2 3 4 5 6 7 8 9 10 11 12 13

mTagBFP2 residue: D20 V45 L63 T127 F143 N158 S168 A172 A174 Y197 N206 N207 K231
Epistatic terms: 44 129 125 88 138 137 63 36 109 124 0 52 0
Frequency (out
of 260):

0.16 0.46 0.45 0.32 0.49 0.49 0.23 0.13 0.39 0.44 0 0.19 0

For each of the 13 mutated positions (mTagBFP2 numbering indicated, PDB 3M24), the table shows the number and frequency of contributions made to the 260 statistically significant epistatic terms.
The data show that all but two positions contribute to the pattern of epistasis that underlies the path of variation from the blue to red FP variant.
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the phenotype data. In the CS algorithm, epistatic terms (�ω, Eq. 1)
are computationally estimated under two mathematical con-
straints: (1) that they optimally reproduce the randomly selected
subset of the data, and (2) that the sum of all epistatic terms (the
so-called L1-norm of the epistasis vector) is minimized, the
condition that imposes sparsity (see “Methods”). Using this
approach, we find that in fact, phenotypes from just a small
fraction (~6–11%) of mutants suffice to accurately estimate the
top background averaged epistatic terms computed from using
data for all mutants (Fig. 4a, b). Not surprisingly, epistatic terms
obtained from the L1 minimization can then be used (using Eq. 2)
to predict the phenotypes of all variants with excellent accuracy
(Fig. 4c, d). A scan over the number of mutants used for
prediction shows that the top epistatic terms are asymptotically
well-estimated from very modest samplings of mutants (Fig. 4e,
and see Supplementary Fig. 9 for less sparse datasets). Note that
this procedure does not simply amount to systematically
sampling the low-order mutants; instead, the key is to sparsely
sample over the space of all mutant combinations—a prescription
for experiment design that is apparently best-suited for systems
with sparse, high-order epistatic constraints.

In applying this approach for proteins in general, it will be
important to understand how the sampling of mutations—the
size of the experiment—scales with the number of sequence
positions undergoing variation—the size of the problem. Since
the latter grows exponentially, it seems likely that the degree of
sparsity will be an even greater productive constraint for larger
problems.

Practically learning epistasis—a statistical approach. A com-
pletely distinct approach for learning the epistatic architecture is
suggested by analyzing the statistics of amino acid frequencies in
an ensemble of functional sequences. The general idea is that the
functional constraints on and between mutated positions should
be reflected in the frequencies and correlations of amino acids in
sequences that satisfy a threshold of functional selection—a sta-
tistical analog of epistatic interactions. To examine this, we used
the current data to mimic a collection of functional sequences
from the evolutionary record: we constructed a multiple sequence
alignment of FP variants with brightness at or above the minimal
value of the parental genotypes (mKate2, y > 0.73, n=
2032 sequences), and computed the statistics of amino acid
occurrence and correlations at those positions. Representing the
two amino acids x at each position i with −1 and +1 respectively,
we find that the average value over all n functional sequences

xni
� �

n

� �
and the joint expectation between pairs of positions i

and j xni x
n
j

D E
n

� �
closely approximate the background averaged

first-order and pairwise epistatic terms determined experimen-
tally (up to a known scaling factor; Fig. 5a, b, “Methods”, and
ref. 28). This relationship holds even with sub-sampling func-
tional sequences included in the alignment (Supplementary
Fig. 10). From these alignment-derived epistasis terms, it is again
possible to quantitatively predict the phenotypes determined
(Fig. 5c) to an extent that approaches what is possible by just
limiting epistasis to the second order (Fig. 3e).

This result demonstrates a key conceptual link between
epistasis averaged over genetic backgrounds and statistical
correlations averaged over sequences displaying function above
a threshold, a condition analogous to the process of natural
selection. This connection is the fundamental premise of
coevolution-based methods that use amino acid correlations in
multiple sequence alignments to estimate structural29–31 or
functional32–36 couplings between residues in proteins. Though
these methods have provided important insights37–41, our

findings provide clear evidence that accurate phenotype predic-
tion will generally require knowledge of higher-order epistatic
terms as well. Such information is not formally included in
current coevolution methods, but may be accessible if alignments
are deep enough or the problem of epistasis in full proteins is
sparse enough.

Functional connectivity of the sequence space. How does the
pattern of epistasis control the topology of the functional
sequence space linking the blue and red variants of eqFP611?
Indeed, the existence of severe forms of epistasis (e.g., sign epis-
tasis or reciprocal sign epistasis4, in which intermediates along an
evolutionary trajectory can fall below the selection threshold) can
limit or even abrogate the existence of single-step (or “con-
nected”) paths between functional genotypes42. Thus, the study of
the structure and connectivity of the space of functional geno-
types is important for understanding the relationship of epistasis
to evolvability. In our dataset, nearly 50% of the statistically
significant pairwise epistatic interactions represent cases of sign
or reciprocal-sign epistasis (Supplementary Fig. 11), indicating
that functional connectivity of the space linking the parental
variants of eqFP611 is hardly guaranteed.

Figure 6a shows the network of all functionally connected 13-
step paths—the “solution space”—between the blue and red
parental variants (y > 0.73, the value of the red parent, and see
Supplementary Fig. 12). The genotypes are colored according to
fluorescence and edges represent single mutations between
them. The data show (1) that the sequence space linking the
parental genotypes is in fact fully connected at the functional
threshold defined by these genotypes, (2) that solution space is
shaped like a dumbbell, with two densities of functionally bright
sequences near to the parental genotypes connected by a narrow
neck, and (3) that the color switches at the neck. The shape of
the network reflects the pattern of epistasis. For example, the
narrowest part of the solution space occurs in the middle where
the number of potential combinatorial mutants is the largest
(Fig. 6b), indicating severe epistatic constraints on mutational
paths at these steps with regard to retaining brightness along the
path (Supplementary Fig. 12D).

Though we focus on single quantity—brightness—as a
quantitative phenotype in this work, it is also informative that
the fluorescence color switches at the narrow neck. The blue and
red spectral states arise from chemically distinct chromophores
that are auto-catalytically generated upon folding from amino
acids at positions 63–6543,44. Interestingly, the data show that
L63M—the only chromophore mutation—is necessary but
insufficient on its own to produce the red chromophore. Instead,
red fluorescence requires several specifically-ordered mutational
steps after L63M, another indication of epistasis in the path
between the blue and red parental variants.

Overall, the connectivity of the solution space between the
blue and red variants shows that the existence of high-order
epistatic terms can nevertheless be consistent with evolution
through stepwise variation and selection. The effect of epistasis
is in specifying the topology of the solution space and in
restricting the number of available paths. For example, at the
specified brightness threshold, only 1.36 × 105 out of 6.23 × 109

paths between the blue and red parental genotypes (or, ~0.002%)
are functionally connected. Single-step connectivity is an
advantageous feature for phenotypic evolution through a process
of random variation and selection2. Thus, connectivity of the
solution space represents a possible example of a constraint on
protein sequences that arises from not just from the requirement
to fold and function, but from the dynamics of the evolutionary
process40,45,46.
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Discussion
Defining the pattern of epistasis between amino acids is essential
for understanding the basic design of proteins. Given the vast
theoretical complexity of epistatic interactions between amino
acids, it is essential to carry out model experimental studies as a
basis for developing practical strategies. Here, we describe a
protocol for barcoded combinatorial mutant protein library
construction, which, coupled with quantitative high-throughput
phenotyping, enables a systematic analysis of high-order epistasis.
The data enable a deep quantitative analysis of the extent, pattern,
and combinatorial complexity of amino acid interactions within a
protein.

For the mutational space linking red and blue variants of the
eqFP611 fluorescent protein (a total of 213 genotypes), we find
evidence for many statistically significant high-order epistatic
interactions. These findings pose a great challenge for under-
standing proteins in general; no typical experimental workflows
collect the kind of data required to analyze high-order epistasis
and in any case, the number of experiments grows

unmanageably with the number of sequence variations. But,
with background-averaging, we find that epistasis is also pro-
foundly sparse, inspiring the use of powerful analytic tools for
defining the epistatic architecture through sparse data collec-
tion. Indeed, we show that it is possible to computationally
deduce the relevant epistatic terms from sampling only a small
fraction of total variants that make up the full mutational
landscape. These epistatic terms can then be used to predict the
phenotype of all variants. Most strategies for studying proteins
have focused on low-order mutagenesis47–51, but the data
presented here suggest that a different experimental approach—
limited sampling of combinations of mutations, and sparse
reconstruction to deduce the relevant epistatic terms. Combi-
natorial studies of RNA mutations have been performed52, and
recently53 using the theoretical analysis we presented in ref. 14.
Although RNA and proteins use a different chemical alphabet,
leading to a different type of physical interactions, initial results
show that sparsity may be a basic organizing principle in
functional RNA as well.
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Interestingly, second order background-averaged epistatic
terms are also well approximated by the statistical correlations
between amino acids in an alignment of functional protein
sequences, providing support for yet another approach. Current
alignment-based methods for deducing amino acid couplings in
proteins either rely on analysis of conserved, collective correla-
tions between positions32,34 or on inference of direct pairwise
interactions through inverse methods in statistical physics29,31,54.
The data presented here provide a critical benchmark for these
approaches, defining the minimal epistatic terms that must
be estimated in order to successfully relate genotype to pheno-
type. The sparsity of epistasis may also provide a productive
constraint for developing an improved theoretical framework for
using statistical coevolution to quantitatively predict protein
phenotypes.

It is important to point out that this work represents a focused
study of high-order epistasis in a limited number of positions in
one model system. Its findings will need to be extended theore-
tically and tested for generality. Additionally, observable traits
will exhibit overall nonlinearities, for example, due to a limited
linear range of the measurement or to a saturating organismal
fitness21–23,55. It is therefore crucial for any study on epistasis to
define the quantity for which the analysis is performed. Here we
sought to minimize trivial non-linearities using a mechanistically
unbiased linear-nonlinear optimization21,22 (“Methods”), hence
defining our dataset. Further analysis focusing on the potential
effect of the lower detection limit in our FACS-seq assay—based
on data reconstruction without assigning explicit numeric values
to data points below that limit—suggests that the major epistatic
contributions are imposed by data within the linear regime of the

assay (Supplementary Fig. 13). Whether this holds true in other
cases should be carefully monitored.

The data collected here represent a starting point for guiding
the next developments, and most importantly, demonstrates the
existence and application of sparsity in epistasis to make practical
solutions possible.

Knowledge about the type and extent of epistasis, informs us
on the number of viable evolutionary trajectories, and hence on
both on the potential42,56 and repeatability3,57,58 of natural evo-
lution. In directed evolution efforts, improved predictive power
for unobserved phenotypes may help select evolvable initial
templates—with a high fraction of active genotypes in their
mutational neighborhood—, potentially in combination with
computational protein design algorithms used to identify tem-
plates that can bind specific molecules59–61.

The identification of highly-epistatic regions14 may guide tar-
geted mutagenesis approaches: focusing mutations to epistatic
regions may open up adaptive trajectories that otherwise are
statistically too unlikely. Furthermore, mapping of higher-order
epistasis can identify cooperative units that serve as recombina-
tion fragments in knowledge-based DNA shuffling efforts, in a
fashion analogous to SCHEMA13,62,63, but without the need for
three-dimensional protein structural data. Relevant to all the
above applications is the ability to rapidly assess a system’s
complexity by explorative, not necessarily exhaustive, combina-
torial mutagenesis. This, in turn, provides an estimate for the
number of phenotypic measurements that is necessary for an
acceptably accurate parametrization of the system, and therefore
directly informs our choice for an adequately high-throughput
experimental assay.

The current work focused on epistasis between amino acid
substitutions in proteins, but its conceptual framework is also
well-suited to quantify interactions among genes64–67 in cellular
pathways—which in fact is closer to the original definition of
epistasis68,69. Data acquired in combinatorial mutant screens70 or
combinatorial knockout experiments71 would provide the basis to
empirically tackle the high-dimensional nature of complex
genetic diseases72,73.

Eventually, what controls the prevalence, distribution, and
spatial architecture of epistasis in proteins? Why should it be
sparse? Part of the explanation comes from physical considera-
tions; for example, the forces that bind atoms mostly act locally in
protein structures, a property that requires long-range epistatic
terms to be built up from the coupling of local interactions.
However, the finding that the blue and red variants of eqFP611
are connected by single-step mutations suggests the possibility of
other constraints as well: if evolution is facilitated by the stepwise
functional connectivity of genotypes, then it is clear that any
pattern of internal epistasis that is inconsistent with such con-
nectivity will be less fit under varying selective conditions. The
practical analysis of epistasis is the starting point for testing such
ideas, and this work provides a path towards that goal.

Methods
Combinatorial library construction. The combinatorial library of 213 FP variants
was constructed by an iterative synthesis protocol in which mutant combinations
and an associated barcode are co-assembled in a derivative of the pRD007 plas-
mid74 (Supplementary Fig. 1). Briefly, 34 DNA segments were synthesized (500 bp
gBlocks, IDT Inc), each comprising a portion of the FP coding sequence, a 5′
barcode encoding the identity of mutations within this region, and three restriction
sites in between (a Type II site flanked by two non-palindromic Type IIs sites).
Sequences were optimized to avoid AGA and AGG codons, which are rare in E.
coli. Barcodes are designed to have Hamming distance of at least two between each
other, with each segment barcode comprising three bases plus a parity base (which
represents the numeric sum of the three bases modulo four). The Type IIs sites
permit scarless in-frame joining of segments by cutting outside of the recognition
sequence and the Type II sites increases cloning efficiency by elimination of uncut
or back-ligated species. Each segment encodes one to three mutated positions, with

Mutational step

mTagBFP2 mKate2

0

–1

–2

1 2 3 4 5 6 7 8 9 10 11 12 130

Lo
g(

fr
ac

tio
n 

fu
nc

)
a

b
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mKate2. a A graph of all genotypes comprising a set of sequences
connected by single-step variation, as a function of mutational step from
mTagBFP2 to mKate2. The brightness threshold for selection of genotypes
is at the level of the mKate2. Thus, the sequence space linking the two
parental genotypes is fully connected through single mutations without loss
of parental function, and the shape of the solution space involves a thin
neck near the middle. b The fraction of connected genotypes at each step of
mutation reinforces the notion that the space is most constrained at the
thin neck, a consequence of severe epistatic constraints at the
intermediate steps
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the most 5′ segment of the FP gene including an IPTG-inducible promoter from
pTrc99A75 and a random 12 base pair “uniqueness” barcode that uniquely labels
each individual clone. The FP genes are constructed iteratively 3′ to 5′, where at
each step, one segment is ligated into the host vector, transformed into Escherichia
coli DH5α76, grown overnight, and the resulting plasmid library isolated to serve
the host vector for the next round. In this process, combinations of mutants and
associated segment barcodes are assembled together. A key technique is the
alternating use of two sets of type IIS and Type II restriction endonucleases
(Supplementary Fig. 1). After complete assembly, the library is transformed into E.
coliMC106177 (AVB100, Avidity Inc), at low DNA concentration (5 ng DNA total)
to suppress multiple transformants (typical library size of 5 × 106) and bottlenecked
to 1 × 106 individual transformants to ensure high enough multiplicity of
uniqueness barcodes. Strain MC1061 was chosen for robust growth and to avoid
issues that arise with regular cloning strains, such as filamentation, which would
increase noise in the per cell fluorescence brightness determination. Sequences
for all construction segments and plasmids are provided in Supplementary Data 1
and 2.

Cell sorting. MC1061 cells containing the FP library were grown at 37 °C to an
optical density of 0.8 in LB plus 50 µg/ml kanamycin, induced with 200 μM IPTG
for one hour, and kept at 16 °C overnight. Cells are then washed and resuspended
in deionized sterile water, diluted to ~107/ml, and sorted on a BD FACSAria (UT
Southwestern Medical Center cytometry core) at excitation/emission wavelengths
of 405/455 nm and 532/610 nm. The total sorted population was 6.2 × 107 cells, and
gating thresholds were chosen to recover the top 1% of this population in each
channel, concurrently with forward-scatter gating consistent with live cell size.
Fluorescence gating by threshold yields a graded output because single cells
encoding any particular allele exhibit fluorescence that follows a near log-normal
count distribution (see e.g., ref. 49 and Supplementary Fig. 2). Screening of colonies
on plates yielded no evidence for multi-colored proteins (Supplementary Fig. 3),
justifying stringent sorting thresholds along the observed phenotypic axes. Sorted
cells were recovered in LB medium without antibiotics, grown overnight in LB plus
50 µg/ml kanamycin, and subject to plasmid isolation for deep sequencing.

Sequencing, error correction, and phenotype determination. Samples for
sequencing were prepared by PCR from plasmid libraries before or after selection
using primers that incorporate Illumina adaptor sequences, a barcode specifying
origin (unsorted input or sorted output color channel), and a random stretch of
five nucleotides in the initial 5′ region for phasing and cluster definition. Products
were pooled in a ratio of 10:1:2 representing input, red, and blue output channels,
and paired-end PE-100 sequencing was performed on a single lane of an Illumina
Genome Analyzer IIx (UT Southwestern genomics core). Raw FASTQ files from
the Illumina base-caller were processed with custom scripts in UNIX and MATLAB,
and subjected to stringent quality filtering involving three criteria: 100% correct
reads within a mask around the barcodes, correct specific barcodes, and a Q-score
of at least 30 for each nucleotide in the random “uniqueness” barcode. Primer
sequences and scripts are provided as Supplementary Data 1 and Supplementary
Software 1. Sequencing reads have been deposited in the Sequencing Reads
Archive.

The uniqueness barcode provides a mechanism to correct for mis-sorting events
and unobserved spurious mutations that can introduce errors in assigning
phenotypes. For each allele-specific barcode a we compute input and output counts
for each uniqueness barcode k as N in

a;k and Nout
a;k , and a linear allelic enrichment

Ea ¼
P
k
Nout
a;k =N

in
a;k . Modeling experimental errors as a Poisson-process, we

compute noise on the output counts of a uniqueness barcode as

hnoiseii /
ffiffiffiffiffiffiffiffiffi
Nout
a;k

β

q
/

ffiffiffiffiffiffiffiffiffiffiffiffiffi
EaN

in
a;k

β

q
, calculate the Z scores for the individual uniqueness

bars as

Z ¼ Nout
a;k � EaN

in
a;kffiffiffiffiffiffiffiffiffiffiffiffiffi

EaN
in
a;k

β

q ; ð3Þ

and set the upper and lower boundaries for inclusion in the data per uniqueness
barcode as Lupper ¼ c1Z and Llower ¼ c2Z. Choices of parameters (β = 1/0.35, c1 =
35, and c2 = 15) were based on robustness across color channels and for alleles over
the full range of enrichments Ea (Supplementary Fig. 4). Three rounds of outlier
rejection led to removal of 2% of counts, after which final enrichments were
calculated.

The values for the linear enrichments Ea after correction were then normalized
by the known brightness ratio of 25.0 × 103/32.4 × 103= 0.772 between the red and
the blue parental genotypes19,20 (see also www.fpbase.org), and taking into account
that the red fluorescence is assayed here at wavelengths different from its excitation
and emission peaks, which gives it a lower apparent brightness in our assay by a
factor 0.22 (calculated from the measured spectral data). The expected brightness
ratio for the parental blue and red genotypes becomes 0.772 × 0.222= 0.172, and
enrichment values in the two color channels are normalized to reflect this ratio.
Subsequently, the normalized enrichment values from the red and blue color
channel for each allele a are combined quadratically according to

xa ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEa;blueÞ2 þ ðEa;redÞ2

q
.

Analysis of epistasis requires elimination of trivial global nonlinearities in the
data that arise from the experimental or analytic process22. The general principle is
that trivial nonlinearities will systematically influence every variant, while
nonlinearities due to intramolecular epistasis are highly specific properties of a few
variants. A logical approach is to find the simplest empirical transform �y ¼ f ð�xÞ
that minimizes the global non-linearity, especially in the most well determined (i.e.,
low-order) terms21. Practically, we maximize R2 between the measured data and
data reconstructed with low order epistatic terms only, which is done by

minimizing f �xð Þ � Ωð Þ�1SΩ
� �

f �xð Þ		 		2
2
=var f �xð Þð Þ, where Ω is the epistasis operator

and S is a matrix which selects only epistatic terms up to order two. This led to
f �xð Þ ¼ �xα with α= 0.44. Upon transformation, the data corresponding to
genotypes with zero brightness are regularized by adding pseudocounts based on
fitting noise present in non-functional genotypes, resulting in the vector of final
brightness phenotypes ð�yÞ for all variants. Supplementary Fig. 6 shows that the
conclusions in this work are robust to these data processing steps. MATLAB scripts
for all data processing steps are provided as Supplementary Software 1. A replicate
experiment was performed starting from the same bottlenecked population, sorted
and sequenced independently (on a MiSeq platform) and analyzed as indicated
above (Supplementary Fig. 7).

Analysis of epistasis. For a single amino acid substitution at each of N positions,
the full space of possible genotypes corresponds to 2N individual variants. With
phenotypes for all variants (�y) in a form where independence corresponds to
additivity of mutation effects, the analysis of epistasis corresponds to a linear
mapping �ω ¼ Ω�y, where �ω is the vector with epistatic terms of all orders (0 to N),
and Ω is the epistasis operator14. For background-averaged epistasis, Ω is a
weighted Walsh-Hadamard transform78, a class of generalized Fourier trans-
forms79, and can be written as Ω=VH where V is a weighting matrix and H is the
Hadamard matrix, both of which can be recursively defined:

Vnþ1 ¼
1
2Vn 0

0 �Vn


 �
and Hnþ1 ¼

Hn Hn

Hn �Hn


 �
;

with V0=H0= 1, and n= {0…N–1}. For standard, single-reference epistasis, Ω=
VXTH, where

Xnþ1 ¼
Xn 0

Xn Xn


 �
;

with X0 ¼ 1. Conceptually, standard epistasis represents a local (Taylor) approx-
imation of the fitness landscape expanded around one reference genotype, while
background-averaged epistasis approximates the landscape in terms of its global
features over the space of all possible genotypes. See ref. 14 for a more extensive
description of the theory.

Functional trajectories and genotypic connectivity. To obtain the number of
functional single-step trajectories, we compute an adjacency matrix between
functional genotypes by binarization of the full genotype adjacency matrix above a
select threshold brightness (for Fig. 6, y= 0.73, the value for the red parental
variant). From the binarized adjacency matrix, the (i,j)-th element of the mth
power of the matrix gives the number of functional m-step trajectories that exist
between genotypes i and j. Summing over the powers of this matrix to any order M
gives all viable trajectories consisting of M or fewer steps in the sequence space.
Conversion of the resulting summed matrix to block-diagonal form produces a
“genotypic connectogram”—a graph that directly reveals the connectivity and
topology of viable genotypes (Supplementary Fig. 12C).

Sparse optimization and phenotype reconstruction. CS is performed by finding
a sparse representation for the data on the basis of a (small) subset of measure-
ments, and subsequent reconstruction the full dataset by inverse transformation
from the sparse representation back to the data domain (see ref. 27 for an excellent
presentation of the theory). Finding the optimal sparse distribution of epistatic
terms is achieved by L1-norm minimization and was performed in this study in
MATLAB using the YALL1 solver, version 1.480. The performance for mutant pre-
diction is scored by the Goodness of Prediction (GoP) parameter 1

1þSSE=SST, where

SSE is the sum of squared errors between reconstruction phenotypes and the
measured values, and SST is the total sum of squares. MATLAB scripts are provided as
Supplementary Software 1.

Alignment epistasis. First-order alignment epistasis is calculated according to

ωaln
i ¼ φi

2N func
tot

Ntot
, where φi is the average value xni

� �
n

� �
of the two states of amino

acid x at position i represented as −1 and +1, over the n functional sequences in
the alignment. N func

tot and Ntot are the number of functional sequences and the total
number of sequences in the combinatorial dataset (see ref. 28 for extended theory).

Second order alignment epistasis is calculated according to ωaln
ij ¼ φij

4N func
tot

Ntot
, where

φij is the joint expectation between pairs of positions i and j xni x
n
j

D E
n

� �
. In the

current dataset we have explicit numbers for N func
tot and Ntot and therefore we can
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numerically compare this with calculated background-averaged epistatic terms
(Fig. 5 and Supplementary Fig. 10).

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
A detailed construction overview for the mutant library, including used DNA fragments
and primers, is part of the Supplementary Information. Raw sequencing reads analyzed
in this study have been deposited in the Sequencing Reads Archive under BioProject
number PRJNA560590. All other data generated or analyzed in this study are included in
this published article (and in its accompanying Supplementary Information).

Code availability
All code used in this study is included as Supplementary Software 1. The computational
scripts will reproduce the figures in the article.
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