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Cell type-specific transcriptional programs in
mouse prefrontal cortex during adolescence
and addiction
Aritra Bhattacherjee1,2,3,5, Mohamed Nadhir Djekidel 1,2,3,5, Renchao Chen1,2,3,5, Wenqiang Chen 1,2,3,5,

Luis M. Tuesta1,2,3 & Yi Zhang 1,2,3,4

Coordinated activity-induced transcriptional changes across multiple neuron subtypes of the

prefrontal cortex (PFC) play a pivotal role in encoding and regulating major cognitive

behaviors. Yet, the specific transcriptional programs in each neuron subtype remain

unknown. Using single-cell RNA sequencing (scRNA-seq), here we comprehensively classify

all unique cell subtypes in the PFC. We analyze transcriptional dynamics of each cell subtype

under a naturally adaptive and an induced condition. Adaptive changes during adolescence

(between P21 and P60), a highly dynamic phase of postnatal neuroplasticity, profoundly

impacted transcription in each neuron subtype, including cell type-specific regulation of

genes implicated in major neuropsychiatric disorders. On the other hand, an induced plas-

ticity evoked by chronic cocaine addiction resulted in progressive transcriptional changes in

multiple neuron subtypes and became most pronounced upon prolonged drug withdrawal.

Our findings lay a foundation for understanding cell type-specific postnatal transcriptional

dynamics under normal PFC function and in neuropsychiatric disease states.
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Interactions with the natural and social environment drive
animal behavior, and thereby support survival. Such interac-
tions are largely adaptive, adjusting not only with the con-

tinuously changing environment, but also progressively
throughout the postnatal development of an organism. As the site
of origin of executive function, the prefrontal cortex (PFC) is a
major brain region regulating behavior1. The PFC encodes and
regulates the highest cognitive functions (such as learning,
memory, judgment, decision-making, emotion, risk assessment or
social behavior) through dynamic integration of sensory-stimulus-
driven inputs from multiple brain regions2. A myriad of neuronal
cell types of the PFC participate in this process. To sustain this
dynamic experience-dependent neuroplasticity, the PFC, unlike
any other brain region, continues to develop significantly during
postnatal life, and retains a certain degree of plasticity lifelong3.

Neural activity can induce widespread transcriptional changes
in neurons4, which in turn can encrypt structural and/or func-
tional changes in them4. This is a principal basis of experience-
dependent neuroplasticity that elicits stable long-term neural
circuit changes. Stimulus-driven plasticity in PFC proceeds
through early life experiences to shape the behavioral circuits of
an organism. However, profound sensory experiences even in
later life can significantly impact circuits, which in turn can
recondition behavior5,6. Dysfunctions of both the early and later
life events have been associated with various cognitive and psy-
chiatric disorders. For example, several genetic aberrations can
affect early life PFC development leading to psychiatric disorders
such as schizophrenia, bipolar disorder, chronic depression,
mania, or personality disorders7. On the other hand, major
emotional or psychological episodes like chronic stress, trauma,
drug addiction can alter brain function and behavior even much
later in life5,6. However, the cellular mechanisms underlying these
dysfunctions are largely unknown.

Deciphering the coordinated transcriptional programs across
the various neuron subtypes of PFC during adaptive (taking place
normally through postnatal development) or induced (initiated
by major later life events) plasticity is at the heart of under-
standing both the biology and pathology of cognitive behavior.
However, the profound cellular heterogeneity of the PFC has
hindered the study of cell-type-specific transcriptional dynamics.
To overcome this technical barrier, we performed single cell RNA
sequencing (scRNA-seq) to classify all neuron subtypes in mouse
PFC. We then analyzed transcriptional dynamics in each of the
neuron subtypes between adolescence8,9 (P21) and adulthood
(P60) in mouse, a critical postnatal period believed to be asso-
ciated with greatly increased neuroplasticity, and manifestation of
most neuropsychiatric disorders7,10. In parallel, to understand
transcriptional changes during induced plasticity in the mature
brain, we analyzed volitional drug-intake using the cocaine intra-
venous self-administration (IVSA) model11, a gold standard in
addiction studies.

Using the two models (adolescence and drug addiction), we
uncovered transcriptional dynamics in each neuron subtype
associated with adaptive and challenge-induced neuroplasticity,
highlighting distinct and conserved mechanisms. Comparative
analysis of the transcriptional dynamics of various neu-
ropsychiatric disease-relevant genes in PFC neuron subtypes
revealed cellular/neural bases of these disorders. Collectively, our
study establishes a foundation for understanding postnatal tran-
scriptional dynamics in PFC and its relationship to the various
cognitive and psychiatric disorders.

Results
Cellular composition of PFC. To understand the cellular het-
erogeneity of PFC, we sought to classify the cell types based on

their transcriptome. To this end, the PFC was dissected from
acute coronal brain sections of P60 mice (Fig. 1a). We isolated the
region that is broadly accepted as the PFC which predominantly
encompass the anterior cingulate, prelimbic and infralimbic areas.
After the tissue was enzymatically dissociated into single cell
suspension, the cells were captured with the 10X Chromium
platform (10X Genomics, CA), and used to construct cDNA
libraries for sequencing (Fig. 1a).

We sequenced a total of 29,864 single cells from 12
independent biological samples (Supplementary Fig. 1a, Supple-
mentary Data1). We first filtered out cells with potential double
droplets (characterized with an unusually high number of
detected genes) and unhealthy cells that generally have high
mitochondrial mRNA loads (>10%) (see methods). We found
that different cell types express different number of genes,
particularly between neuronal and non-neuronal cells (Supple-
mentary Fig. 1b). Thus, we applied a slightly different criteria to
filter out low quality neuronal and non-neuronal cells (<800
genes for non-neuronal and <1500 genes for neuronal cells
detected per cell) (refer to Methods). In the end, we obtained
9195 high quality non-neuronal (median UMI: 3764; median
1658 genes/cell) and 15,627 neuronal (median UMI: 13,194;
median 3914 genes/cell) cells (Supplementary Fig. 1c), which can
be separated into 8 major cell clusters (Fig. 1b). Importantly,
each of the 8 major cell clusters can be detected in each of
the 12 samples (Supplementary Fig. 1d). Based on the expression
of cell type-specific markers, the non-neuronal cells were
clustered as: astrocytes (Gja1+), oligodendrocyte (Aspa+), newly
formed oligodendrocytes (Bmp4+), oligodendrocyte precursors
(Pdgfra+), microglia (C1qa+) and endothelial cells (Flt1+)
(Fig. 1c, d). The neurons express Snap25 and can be divided
into excitatory (Slc17a7+) and inhibitory (Gad2+) neurons (Fig.
1c, d). The excitatory neurons form the largest (52.3%) cell class
in the PFC, while the inhibitory neurons comprise a smaller
portion (4.3%) of the total populations, consistent with the
general excitatory/inhibitory ratio reported in most cortical areas
(Supplementary Data 2).

Molecularly distinct neuronal subtypes in the PFC. Neurons of
the cortex are diverse, and have been classified by one or com-
binations of different criteria such as morphology, electrical
properties, anatomical location and histological features12.
Despite apparent similarity, distinct functional subpopulations
are believed to exist within the same neuron types classified by
above approaches. Since the structure, function or behavior of a
cell must have an impression on its gene expression, a cell’s
transcriptome can be a unifying basis for its classification. Indeed,
we found that excitatory and inhibitory neurons of the PFC
exhibit great transcriptional differences, forming distinct cell
subtypes.

Excitatory neurons are the largest cell population in the PFC
and are comprised of subtypes projecting to intra-cortical or
long-distance targets. A broad “low resolution” classification of
excitatory neurons revealed 13 transcriptionally distinct clusters
or subtypes (hereon referred as Exc-1, 2,..13) (Fig. 2a,
Supplementary Fig. 2a). Each subtype can be identified by unique
expression of one or combination of 3–4 markers (Fig. 2b).
Unique markers projected on t-SNE plots showed selective
expression in respective neuron populations (Supplementary Fig.
2b). RNA in situ hybridization confirmed the presence of
transcriptionally and anatomically distinctive neuron subtypes
revealed by scRNA-seq (Supplementary Fig. 2c). Multi-channel
single molecule fluorescence in situ hybridization (smFISH)
further confirmed the presence of very distinct non-overlapping
neuron populations. Co-staining for unique markers detected the
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Exc-10 (Pou3f1+) and Exc-12 (Tshz2+) neurons adjacently within
the same layer, while Exc-13 (Foxp2+) neuron cluster was
detected mainly in a deeper layer (Fig. 2c).

Cortical excitatory neurons show remarkable laminar organi-
zation into histologically distinct layers which is tightly coupled to
their projection, connections and function13. The PFC is
comprised of 4 layers (L) L1, L2/3, L5, and L6 (but does not
contain a L4). To detect the layer identity of the 13 excitatory
neuron subtypes, we overlaid the expression of unique layer
marker genes on the excitatory subpopulations (Supplementary
Fig. 2d). For example, Cux2 or Calb1 represent L2/3 identity, Etv1
is L5, while Syt6 is in L6 (Supplementary Fig. 2e). The L1 is
sparsely populated, containing few inhibitory neurons, not only
in PFC, but throughout the entire cortex14. The comparative
analysis revealed layer identity of each neuron subtype including
several closely related subtypes in each layer e.g., L5-1, L5-2, and
L5-3 within L5 (Fig. 2d, see the table in Supplementary Fig. 2d for
a layer-cluster relationship). Multi-channel RNA-smFISH
revealed that the distinct non-overlapping Pou3f1+ (Exc-10)
and Tshz2+ (Exc-12) neurons both express Etv-1, revealing their
L5 identity (Fig. 2e). Previous studies have demonstrated that

different PFC layers are involved in different neuronal func-
tions13. For example, L2/3 are largely involved in intra-cortical
(cortico-cortical) regulations, while L5 sends long distance
projections outside cortex and L6 receives subcortical inputs
(e.g., from thalamus) and projects to superficial layers13. Thus,
layer properties confer further identity to each subtype, which
provides a foundation for understanding cell cluster-specific
function.

Like most other cortical areas, the inhibitory neurons are
present in much lower numbers in the PFC, only accounting for
4.3% of the total PFC cells (at a ratio of 1:12 with excitatory
neurons). Unlike excitatory neurons, inhibitory neurons do not
show distinct laminar organization, although some types may be
differentially enriched within particular cortical layers. Classifica-
tion revealed 12 clusters (referred as Inhib-1, 2,..12), highlighting
functional diversity and specialization (Fig. 2f, Supplementary
Fig. 3a). As expected, the major known inhibitory neuron
populations like Sst+, Pavlb+ and Vip+ were detected (Fig. 2g,
Supplementary Fig. 3b) and could also be confirmed from RNA-
FISH (Supplementary Fig. 3c). Developmentally, Sst+and Pavlb+

originate from the medial ganglionic eminence (MGE), while the
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Vip+ originate from the caudal ganglionic eminence (CGE)15.
Based on the expression of combinational markers, these major
inhibitory neuron populations can be further classified (Fig. 2g).
For example, the Sst population can be further classified into two
broad subtypes based on the expression of Stim2 and Cul4a or

otherwise B3gat2, Cartpt, and Kcnmb4 (Fig. 2g). By co-staining
for Cartpt (cocaine- and amphetamine-regulated transcript)
and Sst using smFISH, we confirmed the Sst+/Cartpt+ and
Sst+/Cartpt− cells belonging to distinct cell subtypes (Fig. 2h).
Likewise, markers like Reln alone can discriminate subtypes
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within more than one of the major inhibitory neurons, such as
Inhib-2 (Sst+/Reln+) vs Inhib-1 (Sst+/Reln−), or Inhib-10
(Vip+/Reln+) vs. Inhib-9 (Vip+/Reln−) (Fig. 2g). Projection of
Reln, Sst or Vip expression on the inhibitory t-SNE clearly
showed overlap on the expression of these markers in certain
inhibitory neurons (Supplementary Fig. 3b). Indeed, broad
expression of Reln in coronal sections within PFC can be
confirmed from RNA-FISH (Supplementary Fig. 3c). Such
transcriptional diversity of specific neuron subtypes may reflect
functional specialization.

Importantly, we detected at least four distinct inhibitory
subpopulations i.e., Inhib-3 (Meis2+ or Pbx3+), Inhib-7, 8
(Tnnt1+, with or without Id3+) and Inhib-12 (Slc35e2+,
Cacna1i+), which do not belong to any of the principle Pvalb,
Sst or Vip populations, and are likely the remaining non-MGE
origin cells (arising from CGE and/or POA)14–16 (Fig. 2g,
Supplementary Figs. 3b, 3c). The rare Pbx3+ neurons could be
clearly detected using smFISH (Fig. 2h). Some non-inhibitory
neuron populations also appear to express Meis2 (Supplementary
Fig. 3c), making Pbx3 a more selective marker. While divergent
inhibitory neuron populations have been reported in other
cortical regions based on different marker combinations14, we
detect the distinct populations in PFC and define characteristic
regional markers for their identification.

In summary, using scRNA-seq, we revealed the comprehensive
neuronal subtypes comprising the anatomically defined PFC
region and their corresponding cortical layer identity. This finally
also provides us the basis for understanding neuron subtype-
specific transcriptional programs regulating PFC function.

PFC transcriptional features are different from VISp or ALM.
To further elucidate unique transcriptional features of the PFC, we
compared excitatory neuronal clusters of the PFC to those of other
cortical regions, the primary visual cortex (VISp) and anterolateral
motor cortex (ALM). To enable a better comparison, we first
performed a “higher resolution” clustering of the PFC excitatory
neurons, which identified 26 distinct subtypes (Fig. 3a), a number
comparable to the excitatory neuron subtypes of VISp and ALM
reported by Tasic et al.14. Unique markers could be detected for
each of the 26 subtypes (Fig. 3b) that showed specific enrichment
on the t-SNE plots (Supplementary Fig. 4a) and could be validated
histologically from RNA-FISH (Supplementary Fig. 4b).

To identify transcriptionally similar excitatory neuron subtypes
between these regions, we calculated similarity of PFC with VISp
and ALM, respectively, in the aligned canonical correlation space
(CCA)17 to limit the batch effect, followed by a neighbor voting
strategy as implemented by the MetaNeighbor method18. This
generated a similarity map of the different neuron subtypes.
Similar neuron subtypes ‘grouped’ together with PFC versus VISp
(G1-G16, green blocks on top heat map Fig. 3c) and ALM (G1-
G13, green blocks on bottom heat map Fig. 3c). While most
excitatory neuron subtypes of PFC have corresponding cell
clusters in VISp or ALM group together, clusters that are unique
to PFC do exist. For example, PFC-9 (G13) or PFC6,15,16,17

(G11) showed no similarity to any VISp subpopulations, although
they grouped with L5-IT projection cells in the ALM (Fig. 3c:
PFC labeled in blue, VISp red and ALM purple). Rspo2, a
common marker for the G11 members, showed distinctly
enriched expression in PFC, but no appreciable signal in VISp
(Fig S4c). Similarly, PFC clusters 7 and 14 (G7) showed no
similarity to the ALM subpopulations but resembled the L6IT-5
(Fig. 3c, Supplementary Data 3). Accordingly, Nnat, a selective
marker for G7 is seen enriched in PFC but depleted in ALM
(Supplementary Fig. 4d). Likewise, there were some unique
clusters in both VISp and ALM that corresponded to no cluster of
the PFC, for example, CR1of ALM, and L6IT-2 and L5PT-1 of
VISp (Fig. 3c, Supplementary Data 3)14.

We next compared gene expression between neurons of PFC
vs. VISp or ALM within each similar group. We found that
despite the close resemblance, significant transcriptional differ-
ences still exist among the clusters that share the same group. We
found many genes (273–555) are differentially expressed between
PFC and VISp or PFC and ALM (FC > 2, q-value < 0.05,
likelihood test for zero-inflated data, Bonferroni corrected)
(Supplementary Fig. 4e), further highlighting the transcriptional
distinction of the excitatory neurons of the PFC. These results
indicate that PFC has neuron populations that are transcription-
ally distinct from its closest (ALM), as well as farthest (VISp)
neighbors, which may explain unique functions of the PFC
compared to the other cortical regions.

Considering the marked differences, especially between VISp
and PFC, we further asked whether the G11 neurons (Fig. 3c) of
the PFC exclusively express genes that are functionally relevant
only in that area. Comparison of all VISp neurons with G11
revealed that upto 30 molecules are highly expressed in G11 of
PFC but depleted across all VISp (Supplementary Data 3). These
are predominated by receptors, ion-channels, transporters etc.
Interestingly, G11 of PFC showed enrichment of molecules like
Scn7a, a voltage gated sodium channel (implicated in epilepsy) or
Cacna1i, a low voltage calcium channel (implicated in schizo-
phrenia) that are uniquely relevant to cognitive function as
opposed to visual processing (Supplementary Data 3).

Overall, these analyses revealed that PFC neurons have very
distinct transcriptional properties relative to other cortical
regions, which may underlie their unique functional abilities for
dynamic integration of varied convergent signals, or their
sustained postnatal neuroplasticity/adaptability.

Cell type-specific transcriptional changes during adolescence.
Adolescence marks one of the most dynamic phases of
experience-dependent plasticity in the PFC8. Mice are weaned
from maternal care at P21 and begin exploring the environment
on their own, and are considered as adult at P60. To characterize
the transcriptional changes associated with this period, we per-
formed scRNA-seq of P21 mouse PFC. Following the same fil-
tering criteria of P60 PFC, we obtained 10,646 high quality
(median of 2808 genes and 7384 UMI per-cell) mouse P21
PFC cells.

Fig. 2 PFC contains distinct excitatory and inhibitory neuron subtypes. a t-SNE plot showing that excitatory neurons of PFC can be broadly classified into 13
unique subtypes based on their transcriptome. b Violin plot showing expression of specific markers for each of the 13 excitatory neuron clusters or
subtypes. c Multi-channel FISH detecting distinct excitatory neuron types within the same cortical layer (Pou3f1 and Tshz2 in L5) or across different layers
(Foxp2 in L6). d Assigning excitatory neurons to respective cortical layers by projecting expression of layer-specific markers onto the t-SNE plot.
e Identification of two distinct cell types (Pou3f1+ and Tshz2+) in L5 that commonly express L5 marker Etv1. f t-SNE plot showing classification of PFC
inhibitory neurons into 12 distinct subtypes based on their transcriptome. g Violin plot showing distinct markers for each of the 12 different subtypes of
inhibitory neurons. h Multi-channel FISH detecting subtypes within a known inhibitory neuron subpopulation (Cartpt+, arrow, and Cartpt−, arrowhead
within Sst neurons: enlarged view of single cells in box area shown in side panel) and a rare neuron subtypes (Pbx3+: inset is an enlarged view of single cell)
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To detect similar populations and identify corresponding cell
clusters between the 10,646 P21 cells and the 11, 886 P60 PFC
cells, we aligned the two scRNA-seq data sets in t-SNE by cross-
correlation analysis (CCA)17 (Fig. 4a). Using bootstrapped
correlation, all clusters identified in the adult PFC are detected
in the P21 PFC (Fig. 4b, see methods), consistent with prior

knowledge that formation and migration of different cell types in
cortex is complete by this time19.

Comparison of gene expression in PFC of P21 with that of P60
mouse revealed dramatic changes across all cell subtypes
(Supplementary Data 4). With a cutoff of 0.05 FDR and at least
50% change, expression (negative binomial generalized linear
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model, Bonferroni corrected) of a minimum of 338 genes (Exc-1)
and maximum of 1080 genes (Exc-8) were altered across the
excitatory clusters (Fig. 4c). A significant number of genes were
both up and down regulated in each cluster (Fig. 4c). Among the
excitatory neurons, clusters Exc-4, Exc-6, Exc-8, and Exc-13
showed maximum transcriptional changes (Fig. 4c, d). To
validate the scRNA-seq results, we performed smFISH which
confirmed the cell type-specific transcriptional changes. For
example, Marcksl1 is greatly downregulated in P60 in Exc-12 and
Exc-13 that are respectively marked by Tshz2 and Foxp2
(Supplementary Fig. 5a–c); Ptgds is upregulated in P60 in Exc-
12 marked by Tshz2 (Supplementary Fig. 5d); and Hspa1a is
upregulated in P60 in Exc-10 and Exc-13 that are respectively
marked by Pou3f1 and Foxp2 (Supplementary Fig. 5e, f).

Notably, Exc-4 (Calb1+/Cux2+) and Exc-6 (Calb1−/Cux2+)
belong to the superficial layer L2/3. On the other hand, cluster
Exc-8 and Exc-13 belong to L5 and L6, respectively (Supplemen-
tary Fig. 2d-table). Therefore, while transcription is significantly
altered in all excitatory neurons, different subtypes in each layer
are impacted to a different degree (Fig. 4c, d, Supplementary
Fig. 6a).

Using the same cutoffs, differentially expressed genes, ranging
from 6 (Inhib-3) to 117 (Inhib-7), were also detected across
inhibitory neurons (Fig. 4c, d). The low abundance of inhibitory
neurons can limit statistical power, resulting in a lower overall
number of differential genes detected. However, a cut off of 1.5-
fold change would incorporate most relevant genes (Fig. 4c, d).
Interestingly, even the non-neuronal cells undergo robust changes
in transcription, with the highest impact on endothelial cells with
879 genes affected (Fig. 4c). In addition, as many as 646 genes in
mature oligodendrocytes, 288 genes in microglia, 268 genes in
astrocytes, 209 genes in newly formed oligodendrocytes, and 53
genes in oligodendrocyte precursor were affected (Fig. 4c).

To explore how these transcriptional changes may affect the
function of the various cell types, we performed a functional
enrichment analysis on the differentially expressed genes. We
found that within each cell subtype, transcriptional changes
impacted different functional categories of molecules including
enzymes, transcription factors, translation regulators, ion chan-
nels, GPCRs, cytokines, transporters, kinases, and phosphatases
(Supplementary Fig. 6b). Interestingly, across cell types, the
highest percentage of affected genes comprised enzymes (~50%),
followed by transcription factors (~12–13%) and transporters
(Supplementary Fig. 6b).

To further characterize the functional pathways affected by
differential gene expression (p-value < 0.05, right-tailed Fisher
exact test), we focused on excitatory neurons, the largest and most
diverse cell type in PFC, and performed analysis using IPA
(Ingenuity Pathway Analysis, Qiagen Bioinformatics). Pro-
nounced impacts were detected on pathways related to actin
cytoskeleton, membrane signaling, adhesion and tight junctions
(Fig. 4e). Across all excitatory clusters, Rho signaling (affecting
Rho GTPases, kinases etc.)20 was one of the most strongly
affected. In addition, ephrin, integrin, semaphoring, Rac, and

various growth factor signaling pathways which can impact
synapse and axon growth were also strongly affected in certain
cell clusters (Fig. 4e)20–23. Cumulatively, these pathways facilitate
functions like membrane protrusion, ruffling, adherence, and
neurite/dendrite growth that are pivotal for structural changes in
synapses, dendrites and axons: implying extensive structural
plasticity (or modifications) in most excitatory populations20–24.
Widespread activation of ubiquitination or sumoylation, accom-
panied by CREB, PKA, cAMP or calcium signaling factors in
several clusters is consistent with high transcriptional activity
(Fig. 4e)25–27. Also, metabolic processes, like oxygen consump-
tion and mitochondrial function are broadly modulated to keep
pace with both development and plasticity, consistent with prior
reports in neurodevelopment28 (Fig. 4e). Not surprisingly, all
these functions together contribute to long term potentiation or
synaptic plasticity in many neuron subtypes (Fig. 4e), consistent
with the hypothesis of increased neuroplasticity during
adolescence.

Besides the widely regulated pathways, some pathways are
selectively enriched in specific clusters. For example, corticotro-
phin releasing hormone signaling (known to alter pyramidal
neuron excitability29, Exc-1,2,6,7,8) dopamine receptor signaling
(Exc-7,8), glutamate receptor signaling (Exc-4,5,7,8,9),
CXCR4 signaling (Exc-1 to 9, 13) or IGF-1 signaling (Exc-
2,3,6,8,13) selectively impacted only the relevant clusters (Fig. 4e).

Collectively, our comparative transcriptome analysis suggests
that selective transcriptional programs operate in each PFC cell
subtype during adolescence, driving some broad and some highly
specific pathways that facilitate the adaptive transition of the PFC,
which likely contribute to proper behavioral programing.

Changes in epigenetic factors during adolescence. Widespread
change in transcription is often associated with broad chromatin
and epigenetic regulations. Of the 720 known epigenetic mod-
ulators30, we found that expression of many genes involved in
histone modifications is altered when compared between P21 and
P60 PFC (Fig. 4f: shows some prominent examples). For example,
within the excitatory neurons, between 4 (in Exc-10) to 50 (in
Exc-8) epigenetic regulators were significantly altered in the
various subtypes, with most subtypes having 20–30 epigenetic
regulators changed (Supplementary Data 5).

The altered histone modifiers can regulate gene expression
either positively or negatively. For example, Prmt1, a histone
arginine methylase associated with gene activation31, is upregu-
lated in most excitatory neuron subtypes; while Yeats4 and
Ube2d3 involved in histone acetylation and ubiquitylation,
respectively, are downregulated across most excitatory neuron
subtypes (Fig. 4f). While others like Arid4a, Hdac8, and Ube2h
are only altered in a specific neuron subtypes (Fig. 4f).

We realized that many of these altered genes are members of
the 68 known epigenetic regulatory complexes30, which have
well-defined roles in transcription activation or repression. We
identified the complexes to which these genes belong and

Fig. 4Widespread transcriptional changes in PFC cell types between P21 and P60 mice. a t-SNE plot showing the distribution of the merged cells from P60
(purple) and P21 (light-blue) PFC cells after alignment using correlation analysis (CCA). b t-SNE plot showing the cell-type assignment and proportion of
the cell-types in the P60 (left) and P21 (right) PFC cells. c Number of genes dynamically changed in excitatory neurons, inhibitory neurons and non-
neuronal cells. Red: upregulated genes; Blue: downregulated genes. d Representative volcano plots showing altered gene expression in the indicated
clusters (cutoff: FC > 1.5 and q-value < 0.05). e Heatmap showing the -log10(p-value) (right-tailed Fisher exact test) of the functional pathways impacted in
excitatory neuron subtypes based on gene expression changes between P21 and P60. f Gene names and functional categories of epigenetic modifiers up-
regulated (red) and down-regulated (blue) in each PFC excitatory neuron subtypes between P21 and P60 (cutoff: FC > 1.5 and q-value < 0.05; numbers
1–13 on left axis indicate the clusters). The differential gene expression p-values were calculated using the negative binomial generalized linear model and
the q-values were derived using the Bonferroni method
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estimated the number of up- or down-regulated genes associated
with each complex (Supplementary Fig. 6c). The major complexes
identified include Chd8, NuRD, NuA4 or PRC2 (with one or
more regulated members) (Supplementary Fig. 6c). For example,
Hspa1a32, a member of the CHD8 complex is upregulated in
almost all excitatory neurons except Exc-5, 9, and 11 (Fig. 4f).
Transcriptional regulation by Chd8 has been associated with
neuronal function. Dysfunction of this complex has been
associated with autism33, and H4K16 acetylation by this complex
is associated with brain aging34. When queried for Chd8 direct
targets based on ChIP-seq results35, we found multiple Chd8
targets are indeed regulated selectively in the different clusters
(Exc-1, 2, 3, 4, 8, 13) (Supplementary Fig. 6d, Supplementary
Data 5). Likewise, downregulation ofMbd3 (Fig. 4f), a component
of the NuRD complex (Supplementary Fig. 6c), can prevent
deacetylation to promote transcription36. Conversely, Yeats4 of
NuA4 complex is downregulated across all excitatory neurons
(Fig. 4f, Supplementary Fig. 6c), indicating repression37. Simi-
larly, increased Ezh1 (of PRC2) (Fig. 4f) can promote repression
by increasing H3K27 methylation, which has been associated with
important neuronal functions38,39.

Therefore, consistent with the large number of genes both up-
and down-regulated (Supplementary Fig. 6a), we detected
changes in both activating and repressive epigenetic regulators
in each neuron subtype. Dnmat3a is widely downregulated across
excitatory subtypes, and Tet1 involved in DNA demethylation is
also downregulated in several clusters (Exc-4,5,7,8,12,13) (Fig. 4f).
This is consistent with prior reports that DNA methylation events
in cortex occur earlier in development40. It reinstates that
epigenetic regulation during adolescence is likely achieved mainly
through histone modifications as opposed to DNA methylation.

Selective expression of neuropsychiatric disease genes. Many
neuropsychiatric disorders have been linked to genetic mutations
and impaired gene expression7. The PFC is believed to play a
central role in the pathophysiology of several neuropsychiatric
disorders, including schizophrenia, bipolar disorder, psychosis,
mania, depression or suicidal tendencies. Since initial manifes-
tation of these disorders frequently occur during adolescence,
transcriptional plasticity during this period is believed to play a
key role in disease pathogenesis10. Genome wide association
studies (GWAS) have revealed candidate genes whose mutations
have been associated with these disorders41. However, the cellular
and molecular mechanisms underlying their involvement remain
largely unknown.

To understand the cellular mechanism, we asked whether these
disease-relevant candidate genes exhibit cell type-specific expres-
sion in the PFC. To this end, we analyzed 12 neuropsychiatric
disorders that have been directly or indirectly linked to PFC
function. The disorders include schizophrenia, bipolar disorder,
epilepsy, depression, personality disorder, obsessive compulsive
disorder (OCD), autism, ADHD, alcoholism, suicide risk, mania,
and dementia-Alzheimer disorder. The GWAS candidate genes
were derived from the EMBL GWAS catalog (https://www.ebi.ac.
uk/gwas/), and only those with reported exonic mutations were
included in the analysis.

Using the transcriptomic data from the P60 mouse, we
calculated expression enrichment across all the PFC cell clusters
and identified that several disease-relevant genes (GWAS
candidates) exhibit highly selective or enriched expression in
specific cell types or subtypes of the PFC (Supplementary Data 6).
For example, selective expression of schizophrenia candidates
Sl17a6 and Lypd6 can be clearly visualized on the global PFC t-
SNE (Fig. 5a, top 2 panels; cluster identity: Supplementary Fig.
8a), as well as on the excitatory and inhibitory t-SNE plots (Fig.

5a-left column, bottom 2 panels). Expression of Sl17a6 and Lypd6
in PFC can be verified from RNA in situ hybridization of coronal
brain sections (Fig. 5a-right column, bottom 2 panels). Similarly,
many schizophrenia-relevant genes exhibit selective expression in
distinct neuronal and non-neuronal subtypes (Fig. 5c-top). In
addition, we found that some schizophrenia-relevant genes are
broadly expressed in a particular cell type. For example, Tbxas1 is
expressed in all microglia, while Kif5c is expressed in all neurons
(Fig. 5a, Supplementary Fig. 7). Furthermore, some other
schizophrenia-relevant genes are expressed across all cell types
(Supplementary Fig. 7, Supplementary Data 6). These broadly
expressed genes often comprise enzymes, metabolic or cytoskeletal
regulators essential for general cellular functions. Similar expres-
sion patterns on genes relevant to bipolar disorder, another
leading PFC-related neuropsychiatric condition, can also be
observed (Fig. 5b, c-bottom, Supplementary Fig. 7). Likewise,
specific enrichment/expression patterns of GWAS candidates can
be detected in every PFC-related disorder, with depression
presented as yet another examples (Supplementary Fig. 8a, b).
Similar results for each of the 12 disorders can be browsed in full
details in our PFC explorer (https://www.zhanglab.tch.harvard.
edu/neuro-group/PFCExplorer) (Supplementary Data 6). With
the exception of Epilepsy and OCD, for all other tested disorders
at least 25% of the GWAS candidate genes exhibit enriched
expression in a particular cell subtype or cell type (i.e., neuron,
astrocyte etc.) (Supplementary Fig. 8c).

To identify the most relevant cell cluster affected in a particular
disorder, we calculated the percentage of the GWAS candidate
genes expressed in each cell cluster in a particular disorder (Fig.
5d). For example, in schizophrenia, we found that excitatory
neurons are highly affected, with Exc-9 and 11 as the most
relevant cells as these cell clusters express the highest number of
schizophrenia relevant genes (Fig. 5d). This analysis allowed us to
identify the most relevant (frequently affected) cell type(s) for
each disorder (Fig. 5d).

However, in the context of transcriptional regulation, one of
the most important questions is whether expression of a GWAS
candidate gene is regulated during adolescence, the time of onset
of many neuropsychiatric disorders. To this end, we compared
the expression of all GWAS candidates in each PFC cell subtype
between P21 and P60 mice. We found that many candidate genes
undergo significant change in expression during this period. For
each disorder, the relative impact of these changes in different cell
subtypes is best illustrated by projecting the number of candidate
genes impacted in each subtype on the global PFC t-SNE.
Accordingly, projection on the global t-SNE (Supplementary Fig.
8a) shows that for schizophrenia, Exc-13 accounts for the
maximum number of differential GWAS candidate genes among
the neurons, and the endothelial cells account for the maximum
of the non-neuronal cells (Fig. 5e). Conversely, for bipolar
disorder Exc-8 accounts for the most candidates (followed by
Exc-13), while endothelial cells for the non-neuronal cells
(Fig. 5e). Likewise, the cell type-specific differentially regulated
GWAS can be identified in each of the 12 disorders we studied
(Supplementary Fig. 8d). Remarkably, 26–36% of all GWAS
candidates are dynamically regulated during adolescence for each
disorder (Supplementary Fig. 8d). This analysis also highlights the
subtypes that have the most differentially expressed GWAS
candidate genes, hinting its importance in the disease biology.
The analysis also reveals that many candidates in non-neuronal
cells are also regulated during adolescence (Supplementary
Fig. 8d).

The observation that GWAS candidate genes exhibit cell
subtype-specific transcriptional dynamics has immediate and
profound translational implications. For example, schizophrenia
and bipolar disorder, two major PFC-related disorders, share
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highly similar behavioral features and are often difficult to
diagnose or treat differentially42. With our approach, many
relevant genes exhibit cell type-specific expression for each disease,
providing higher specificity for both diagnosis and treatment. For
example, genes like Adamts16, Myo18b, Astn2, and Erbb2 exhibit
cell cluster-specific or enriched expression (Fig. 5c) and are only

associated with bipolar, while some other genes, like Zfp804a and
Zfpm2, are associated with both. Furthermore, across all disorders,
better prognosis can be achieved based not only on cell type-
enriched expression of the GWAS candidate, but also its
differential regulation. Such approach can help in understanding
disease mechanisms and cell type-specific treatments.
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Cocaine induced cell-type specific transcriptional changes.
While disruption of adaptive neuroplasticity in adolescence can
evoke various neuropsychiatric disorders, induced plasticity
under psychological, emotional or stressful conditions like PTSD,
depression, social isolation or drug addiction is believed to
elicit significant cellular re-adaptations in PFC leading to long
term behavioral changes5. Therefore, decoding gene expression
programs associated with induced plasticity is another key
component in understanding transcriptional plasticity that
modulate PFC function. Psychological crises associated with
induced plasticity are more common in adult life and present
major social and clinical challenges. To address this question, we
chose cocaine self-administration11, a well-established drug
addiction model.

To this end, C57BL/6 mice at P60 were implanted with
intrajugular catheter connected to a pump to enable intravenous
self-administration (IVSA). Mice were trained initially with food
reward and then to intravenously self-administer cocaine by lever
pressing (Fig. 6a). The experimental groups consisted of saline
and cocaine IVSA (See Methods for details). The mice showed the
expected behavioral patterns in IVSA reaching a steady level of
cocaine acquisition at the maintenance phase (Fig. 6b). Animals
were put on maintenance for 15 days and then cocaine was
withdrawn. PFCs were then harvested from cohorts at the end of
15-day maintenance, at 48 h and 15-days withdrawal, respec-
tively, for scRNA-seq (Fig. 6a). Comparable cell numbers and
data quality were obtained from both saline (11,886 cells) and
cocaine (12,936 cells) groups (Supplementary Figure 9a, b).
Similar cell composition and cell clusters could also be detected in
both saline and cocaine groups enabling comparative analysis of
differential gene expression (Fig. 6c).

Unlike global adaptations that may occur in all cells of a
neuron subtype during development, induced plasticity should
mainly impact neurons within the circuits that respond to the
specific stimulus. Thus to measure differential gene expression,
we adopted the recently developed SC2P method which accesses
transcriptional regulation in terms of phase transition and
magnitude tuning (rather than the classical ‘up or down’
phenomenon) to identify only the treatment-responsive cells43.

A broad impact of cocaine on transcription was observed
across PFC, but with selective impacts on different cell
populations at different stages (Supplementary Data 7). During
the maintenance phase, the PFC exhibited an overall subtle
change in transcription. About 10 or less genes were altered per
excitatory neuron subtype (with no change in Exc-8, 10, 11)
except Exc-6 where more than 40 genes changed (Fig. 6d). The
affected neurons, including Exc-6, were mainly of L2/3
(Supplementary Fig. 9c).

However, prominent impact was observed upon drug with-
drawal. Effect was smaller at 48 h, but became more pronounced
at 15 day with all excitatory subtypes impacted to some degrees.
At 48 h, all subtypes except Exc-11 showed gene expression
changes. Exc-1, 8 and 13 were the most strongly induced, while
Exc-6 maintained induction (Fig. 6d). At 15 day drug withdrawal,

the number of genes affected increased in every single subtype
with Exc-2, 6, 7, and 8 showing the greatest effects. Curiously, the
number of altered genes reduced between 48 h and 15-day
withdrawal in Exc-1. Overall, excitatory neurons located in
deeper cortical layers (L5, L6) were affected more during
withdrawal, especially between 48 h and 15-day (Supplementary
Fig. 9c).

The orders of engagement and degrees of response of each cell
subtype likely predict their primary, secondary or tertiary role in
behavioral adaptation in addiction. Furthermore, it likely
indicates that neural regulation (transcriptional) during main-
tenance is largely operated by the basal ganglia, and only
withdrawal induces greater cortical involvement. Notably,
progressive engagement of the deeper PFC layers (L5-6) upon
withdrawal might explain psychomotor aspects of drug with-
drawal and would be consistent with symptoms seen in
humans44.

We also find that transcriptional changes induced by cocaine in
PFC are cell type specific. A low overlap of commonly affected
genes among the different cell subtypes indicates that expression
of distinct genes is impacted in individual cell types (Fig. 6e). The
effects are most prominent at the 15-day withdrawal time point
(Fig. 6e).

A very subtle impact of this IVSA regimen can be observed in
few inhibitory neuron subtypes (Supplementary Fig. 9d).
However, these observations are limited by the low abundance
of the inhibitory cell populations and are consequently difficult to
interpret. A limited impact on non-neuronal populations was also
observed, with the endothelial cells most affected, followed by
oligodendrocytes. Interestingly, contrary to neurons, non-
neurons were impacted most strongly at 48 h time point and
subdued at 15-day in general (Supplementary Fig. 9d).

Since excitatory neurons exhibit the most significant changes
during IVSA, particularly at 15-day of drug withdrawal, we
performed pathway analysis to identify the cellular functions
affected by the transcriptional changes (Fig. 6f). A greater impact
was observed on some subtypes, such as Exc-2, 6, 7, 8, and 10, as
indicated by more enriched pathways impacted and/or higher
significance (Fig. 6f). Exc-6 and Exc-2 are of L2/3 while Exc-8, 7,
and 10 are L5 (Fig. 2a, d). Key neuronal functions like axon
guidance, gap junction signaling and vesicular trafficking
(clathrin mediated endocytosis) are all affected in these five
excitatory neuron clusters that can impact structural as well as
electrical properties (through gap junction) of synapses. Addi-
tional pathways that can support plasticity are also affected in
subtypes Exc-7 and 8 (example: ephrin, integrin, Rac, Gastrin/
Cck and ultimately, even synaptic LTP), suggesting their greater
involvement (Fig. 6f).

However, the most significantly affected pathways across all
these excitatory populations were oxidative phosphorylation,
mitochondrial function and sirtuin signaling (Fig. 6f). Oxidative
phosphorylation is pivotal in fueling pre- and post-synaptic
processing45, whose alteration impacts mitochondrial function,
which in turn affects the sirtuin pathway46. These results suggest

Fig. 5 Expression of many GWAS candidates is enriched in specific clusters and dynamically changed during adolescence. a t-SNE plot showing examples
of some cell type- and subtype-specific expression of GWAS candidate genes in schizophrenia. Top-panel shows the gene expression enrichment of four
representative candidates on the global t-SNE plot. The bottom panels show zoomed t-SNE of excitatory and inhibitory clusters, respectively, and Allen
Brain ISH images showing the specific gene expression. b Similar representations for bipolar disorder as shown for schizophrenia in a. c Heatmap showing
GWAS candidate disease-relevant genes with cell subtype-specific expression. The blue color indicates no enrichment, the orange color indicates gene
enrichment. Schizophrenia and Bipolar disorders are shown as examples. d Circular heatmap showing the percent of enriched subtype- and cell type-
specific GWAS candidate genes in each of the 12 PFC-relevant diseases. Each disease is scaled individually, bright red: high enrichment, dark blue:
depletion. e t-SNE-plot indicating the number of differentially expressed schizophrenia and bipolar GWAS candidates per cluster (shown in distinct colors)
between P21 and P60 in each cell subtypes
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that neuroadaptations associated with addiction induces a strong
metabolic and bio-energetic shift in the affected neuron
populations. This is a fundamental difference from adaptive
neuroplasticity of adolescence, where structural changes in
neurons/synapses appear to play a more predominant role in

neuroadaptation with altered oxidative phosphorylation, although
affected, play a secondary role (Fig. 4e).

Interestingly, we found that the most strongly impacted
subtypes in pathway analysis, Exc-5, 7, and 8, also express D1
dopamine receptor (Drd1) (Supplementary Fig. 9e), and therefore
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can directly respond to dopamine. Drd1is also expressed by Exc-
12 and 13 (Supplementary Fig. 9e) which are moderately
impacted (enrich oxidative phosphorylation or mitochondrial
function pathways). Thus, it is likely that one or more of these
PFC neuron subtypes (5 out of 13 excitatory) respond to
dopamine released from midbrain projections and participate in
reward processing in conjunction with regions like the VTA and
NAc. Collectively, our data suggest that the impact of cocaine in
PFC is highly cell subtype-specific and temporally regulated. Our
data also suggest that adaptive and induced neuroplasticity may
involve distinct mechanisms of transcriptional adaptations across
different cell types of the PFC.

Data Visualization. Data presented in this manuscript can be
visualized and browsed at the following website: https://www.
zhanglab.tch.harvard.edu/neuro-group/PFCExplorer

Discussion
In this study, using scRNA-seq, we revealed the identity of the
many discrete cell types in mouse PFC and defined their unique
transcriptional features. We demonstrated how widespread
transcriptional adaptations occur in each cell type in early post-
natal life during spontaneous experience-dependent plasticity, as
well as in later life under a compulsive cocaine addiction condi-
tions. Comparative transcriptome analysis revealed critical
insights into the functional implications of these transcriptional
adaptations, potential epigenetic mechanisms underlying the
changes, and how disruption of the process may contribute to
major neuropsychiatric disorders.

The PFC displays rich cellular heterogeneity. As expected in
cerebral cortex, we identified 8 broad cell types in PFC (including
the excitatory neurons, inhibitory neurons and the different non-
neuronal populations) (Fig. 1). The excitatory neurons could be
broadly classified into 13 clusters, which could be further sepa-
rated into 26 clusters with higher resolution. When compared
with ALM and VISp, the PFC neuron subtypes exhibit highly
distinct transcriptional properties. Compared to the excitatory
neurons of VISp and ALM, the PFC has 5 (PFC9, 15, 16, 17) and
2 (PFC7 and 14) unique neuron subtypes respectively (Fig. 3c),
which can be identified using distinctive markers (like Nnat or
Rspo2) (Supplementary Fig. 4c, d). Even between the similar cell
clusters in VISp and ALM, several hundred genes are still dif-
ferentially expressed in PFC. Based on prior studies that
demonstrated prominent transcriptional differences between the
two geometric poles of the cortex (i.e., anterior and posterior)47, a
difference between PFC and VISp may be expected. However, the
ALM, which is anatomically adjacent to the PFC, still exhibited
marked differences in transcriptional features. Thus, in the cortex,
in addition to the anatomic location, function and/or network
connectivity appear to play an important role in deciding the
transcriptional fate of an excitatory neuron.

For inhibitory neurons, which are far less abundant, broad
clustering detected 12 distinct subtypes. Prior studies indicate that
inhibitory neurons show uniform molecular features even
between distant cortical areas14. In general, our results are

consistent with these observations. In addition to detecting the
most abundant subtypes (eg. Sst, Pvalb or Vip)14, we have
detected and identified distinctive or combinatorial markers for at
least four less abundant subtypes (Inhib-3, 7, 8, and 12) (Fig. 2g,
Supplementary Figs. 3b, c). Further characterization of these
distinct subtypes in future may reveal more PFC-specific func-
tional (or pathological) features.

Psychiatric disorders are complex, poorly understood and
mostly incurable7. Often, they are even difficult to definitively
diagnose. Genome wide association studies (GWAS) have linked
these disorders to a group of genes41. However, a causal rela-
tionship between a gene function and a disorder, as well as the
underlying mechanism is difficult to establish. Furthermore, it is
also unrealistic to perform transgenic animal-based studies on the
large number of associated genes without building strong
hypotheses. We demonstrate in this study that with the power of
single cell analysis, the cellular basis/target of each GWAS
mutation can be determined. Cell type- or neuron subtype-
specific expression pattern of a disease-relevant gene can be
determined by performing scRNA-seq of brain samples collected
from animal models and postmortem human. A patient with a
particular disorder can be diagnosed based on the specific disease-
related mutation identified by sequencing of genomic DNA iso-
lated from blood sample or oral swab. Thus, with knowledge of
the cellular basis of pathogenesis, understanding of the disease
mechanisms/manifestation, progress and targeted cell-type spe-
cific therapy can be developed/executed. This can be a remarkable
step forward in heterogeneous tissues such as brain where distinct
neighboring cell types can have discrete functions.

Our integrative analyses have allowed us to: (a) identify
disease-relevant cell types for a disorder; (b) identify unique
dysfunctions in individual cohorts (due to impact on very specific
subtypes); (c) deduce a potential functional basis of a disorder
(such as excitatory/inhibitory balance48,49, lack of myelination50

etc.) based on the cells affected. This will contribute not only to
our understanding of disease mechanisms, but also design of
more specific therapeutic strategy.

For some conditions, such as schizophrenia, bipolar disorder or
autism, strong influence on excitatory or inhibitory neurons were
observed; while for some other disorders (eg. bipolar or Alzhei-
mer’s), non-neuronal cells have equal or even greater contribu-
tion (Fig. 5d). It is now appreciated that many psychiatric
disorders may emerge from dysfunctions of non-neuronal cells,
which cause disruptions of major support systems like myelina-
tion or blood-brain barrier. More research in this area is essential
in future for better mechanistic understanding.

Adolescence is known to be a major landmark of postnatal PFC
maturation. Many psychiatric disorders associated with genetic
defects surface during adolescence10. Yet which type of cells in
PFC exhibit transcriptional dynamics during this period, and by
what means, have remained unknown. Interestingly, we find that
every PFC cell type undergoes substantial transcriptional changes
during this period. While excitatory neurons show more wide-
spread changes than inhibitory neurons, the lower abundance of
the later underpowering the differential gene expression analysis
cannot be fully omitted as a possibility. Although we could

Fig. 6 Chronic cocaine IVSA induces transcriptional changes in multiple PFC cell types. a Schematic diagram showing the IVSA experimental setting and
workflow. Created with BioRender.com. b Reward earnt by lever pressing in IVSA mice (saline and cocaine groups) through acquisition and maintenance of
a 15-day period. c t-SNE-plot showing the uniform distribution of cocaine and saline samples in the different cell-types. d Dot-plot showing the number of
differentially expressed genes between cocaine and saline in each excitatory neuron subtypes at each time point (cutoff: FC > 1.5 and SC2P model phase2
FDR < 0.05, empirical Bayes statistic, limma package). e Heatmap showing the percent of commonly differentially expressed genes between the different
clusters. Clusters tend to show cluster-specific differentially expressed genes with the highest overlap observed around 30% during the 15-day withdrawal.
f Heatmap showing the -log10(p-value) of the pathways enriched for differentially expressed genes in the different clusters at the 15-day withdrawal
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generate 26 “high resolution” clusters for excitatory neurons, we
performed gene expression analyses using the 13 “low resolution”
clusters for a better power and higher accuracy to determine
differential transcription.

Transcriptional changes affecting multiple common signaling
pathways (like Rho, Rac, integrin, ephrin etc.) across most exci-
tatory neuron subtypes during adolescence strongly implicate
widespread structural plasticity (of axons, dendrites and synap-
ses) during this stage (Fig. 4e). However, many cells also undergo
modulation of specific pathways characteristic of their own sub-
type. For example, Exc-7 and 8 undergo modulation of dopamine
receptor signaling (Fig. 4e). Indeed, both subtypes show Drd1
expression and undergo strong transcriptional modulation in
subsequent cocaine IVSA experiment (Supplementary Fig. 9e).
These findings align with preexisting notion that exposure to
addictive substances during adolescence can impair PFC
maturation, and open doors for more precise mechanistic and
therapeutic studies51.

Similarly, based on transcriptional modulation of key GWAS
candidates, target cell subtypes can be identified for mechanistic
or therapeutic studies in various neuropsychiatric disorders. For
example, Exc-13 records highest number of altered GWAS can-
didate genes in schizophrenia (Fig. 5e), and many genes like
Hs3tst5 (<−4 fold), Kif5c (<−2 fold) or Wwox (>1.5 fold) are
regulated in this subtype during adolescence, suggesting a vul-
nerable neuron subtype in schizophrenia pathogenesis.

Less is known about cell type-specific regulation of the neu-
ronal epigenome in later postnatal life. Interestingly, we find that
the widespread gene regulation is accompanied by differential
expression of several histone modifying enzymes or enzyme-
complex members in PFC (Fig. 4f, Supplementary Fig. 6c). Each
subtype regulates a combination of these (few common and many
unique), with both activators and repressors. Therefore, it is
plausible that cell-type specific combinations of locus-specific
regulators modulate broad transcriptional changes in each sub-
type. Prior studies show that cortical DNA methylation takes
place during postnatal 1–4 weeks40. Thus, while histone modifiers
are clearly predominant regulators, a marginal role of DNA
methylation in some of the initial impact of P21→P60 cannot be
fully ruled out.

Although occurring much later in life, transcriptional changes
from cocaine-induced plasticity is still significant and impacts
multiple neuron subtypes. Interestingly, the impact is negligible
during maintenance and dramatically increases during prolonged
drug withdrawal. This implies that acquisition of reward possibly
has a greater impact on basal forebrain structures of the reward
circuit like the nucleus accumbens, and a craving response upon
withdrawal greatly engages the PFC. Although never studied at
single cell resolution, prior human studies have predicted such
possibilities52. Importantly, our study provides evidence that
PFC, unlike other brain regions, retains significant plasticity
much later in life, and cell type-specific transcriptional responses
can adapt to stimuli such as cocaine withdrawal.

At the maximum impact upon 15-day withdrawal, we detected
strong response in some excitatory subtypes such as Exc-6, 7, 8,
and 13 (Fig. 6d). Interestingly, some of them (Exc-7, 8, and 13)
express dopamine receptor Drd1 (Supplementary Fig. 9e) and
may be directly responsive to dopamine released by VTA neurons
projecting to PFC. The selective role of these subtypes is further
supported by the fact that some other Drd1 expressing subtypes
(eg. Exc-5 or 12) do not show a strong response to cocaine. While
further study is needed to demonstrate functional involvement of
the specific subtypes, the findings support the existence of specific
neuron subtypes in PFC that contribute to the process of drug
addiction. Further characterization of these specific neuron
populations in future will help not only in understanding the

mechanisms, but also in developing targeted therapies for drug
addiction.

Notably, transcriptional changes associated with adolescence
showed distinct functional differences relative to that induced by
cocaine. While adolescence broadly invoked structural plasticity
of axons and synapses, cocaine predominantly altered metabolic
parameters to support synaptic potentiation (Figs. 4e, 6f). How-
ever, despite such differences, some common subtypes (like Exc-8
or 13) were strongly induced in both events. This may imply that
there are fundamental differences of mechanisms/response
underlying naturally adaptive and externally induced plasticity.
However, the age difference between the two models (adoles-
cence- P21 and cocaine starting at P60), which can naturally
impact the basal adaptability/plasticity of the brain may also have
some contribution towards the difference. That cocaine alters
oxidative phosphorylation and other metabolic parameters in
PFC has been observed in prior human studies53, we reveal that
this function is altered only in specific cell types. However, it
should be noted that upregulation of pathways like sirtuin sig-
naling, mitochondrial function and oxidative phosphorylation
also contribute to neuronal stress. This can in turn cause exci-
totoxicity and deterioration of neural health and excitability that
eventually resulting in a long-term deleterious effects of drug
addiction.

Collectively, these cocaine-taking associated transcriptome
changes provide supporting evidence that cocaine-taking does
have an impact on the transcriptome of the adult PFC and that
the impact could be variable across different neuron sub-types.
Importantly, this paradigm demonstrates the degree of tran-
scriptional adaptability that different neuron subtypes retain even
in the adult PFC. However, it must be noted that there are many
factors modulating drug self-administration54, and further studies
are needed for a complete understanding of neural mechanisms
underlying the pathogenesis of voluntary drug taking.

While transcriptional changes are inevitable for the con-
tinuously adapting PFC neurons, it is essential to relate these
adaptations to functional implications. Several genes altered in
both paradigms (adolescence and cocaine-taking) bear strong
testimony to functional implications and thus are worth to be
explored further in the future. For example, Marcksl1, whose
expression is dynamically regulated during adolescence (Supple-
mentary Fig. 5a–c), is highly expressed in P21 when key functions
involving this gene, such as cytoskeletal regulation, protein kinase
C signaling or calmodulin signaling55, are on the rise. While there
are limited studies on the role of this protein in CNS neurons,
strong functional implications emerge from this correlation.
Similarly, Ptgds upregulated at P60 (Supplementary Fig. 5d), is
believed to have neurotrophic function56 and high frontal lobe
expression57, yet little understanding of its specific function,
particularly within this time window, is available.

On the other hand, several altered genes in P21-P60 that were
detected in GWAS for example, Ddn58, Slc17a659 or Penk60 imply
direct association with major neuronal functions. Similarly, sev-
eral genes implicated in cocaine withdrawal for example, Nrgn61,
Cck62 or Rab3a63 (which also change in more than one cluster)
have widely known neuronal function. Knockout mouse models
of these genes exhibit characteristic neurological functional defi-
cits (Rab3a63, Penk64 or Cck65). Thus, our current study shed
light on the potential cellular mechanisms of the neurological
defects.

In summary, our study presents a comprehensive account of the
widespread transcriptional dynamics in the postnatal PFC. It
documents cell type-specific transcriptional adaptations across the
PFC under two crucial conditions: adolescence and drug addic-
tion. Results from this study reveal insights into the cell subtypes
and molecular pathways that likely play an important role in a
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broad range of cognitive and psychiatric disorders related to PFC,
paving the way for not only advanced mechanistic understanding
but also highly targeted therapeutic designs in the future.

Methods
Animals. The animal use and experiments were conducted in compliance with the
institutional IACUC Committee (of the HCCM). All male mice were used in the
current study. For the P21 data collection, 4 mice were used. For the cocaine IVSA,
12 mice were used in each group (saline and cocaine). Each biological replicate was
generated by pooling brain tissue from two mice.

Tissue collection and library preparation. Twelve independent biological repli-
cates were performed, with brains from two mice used in each replicate. For single
cell dissociation, the mice were anesthetized with isoflurane and the brains were
dissected and transferred into ice-cold Hibernate A/B27 medium (60 ml Hibernate
A medium with 1 ml B27 and 0.15 ml Glutamax). The brains were sliced into
0.5 mm slices in ice-cold Hibernate A/B27 medium with brain matrix and the
prefrontal cortex (PFC) was removed from each slice under dissection microscope.
PFC tissues from two mice were pooled and dissociated into single-cell suspension.
Briefly, the tissues were cut into small pieces and incubated in papain solution
(Hibernate A-Ca medium with 2 mg/ml papain and 2X Glutamax) at 30 °C for
35 min with constant agitation. After washing with 5 ml Hibernate A/B27 medium,
the tissues were triturated with fire polished glass Pasteur pipettes in 2 ml Hiber-
nate A/B27 medium to release single cells, which was repeated for another two
times. The 6 ml single-cell suspension was pooled and loaded on a 4-layer OptiPrep
gradient and centrifuged at 800 g for 15 min at 4 °C to remove debris. The cells
were then washed with 5 ml Hibernate A/B27 medium followed by 5 ml DPBS
containing 0.01% BSA. The cells were spun down at 200 g for 3 min and re-
suspended in DPBS containing 0.01% BSA. A 10 μl aliquot was stained with
Trypan Blue and cell number was counted. For single-cell RNA-seq, the cells
suspension was diluted to 300–330 cells/μl and captured with 10X Chromium
platform (10X Genomics, CA). Reverse transcription, cDNA amplification and
library preparation were performed according to the protocol from the
manufacturer.

Preprocessing of single-cell gene expression data. Raw reads were pre-
processed using the cellranger software (v.1.3.1)66. The “cellranger mkfastq”
command was used to demultiplex the different samples and the “cellranger count”
command was used to generate the gene-per-cell expression matrices for each
sample by aligning the reads to the mm9 genome and quantifying expression of the
Ensembl genes (Mus musculus NCBIM37 release 67). In total, 12 single-cell gene
expression matrices corresponding to the 12 biological replicates were generated.

Single cell RNA-seq data was mainly analyzed by R package Seurat (v2.1.0)17.
Briefly, all the expression matrices of the 12 samples were merged into a global
Seurat object using the “MergeSeurat” function. The gene expression profile of each
single cell was then normalized to counts per-million (cpm) and natural log
transformed. As an initial quality control, cells that: have a potential mitochondria
contamination (>10% of their total transcripts from mitochondrial transcriptome)
or likely represent double-droplets (cells expressing more than the 99th percentile
of the number of genes, 4766 genes) were removed. Abnormally high
mitochondrial mRNA is an indication of dead or dying cells. Incorporation of
these cells into the analysis can skew the results and introduce errors in
detection of differentially expressed genes. Accordingly, it becomes a routine QC
practice to filter out these cells in data analysis67,68. Since previous studies have
showed that neuronal cells have a higher number of mRNAs (UMI) and genes
expressed than that of non-neuronal cells69,70, which was confirmed in our dataset
(Supplementary Fig. 1b), we decided to filter cells using ≥800 genes/cell for non-
neuronal cells, and ≥1,500 genes/cells for neuronal cells. We also removed all the
mitochondria genes and ribosomal genes in the analysis. In total, an expression
matrix including 20,718 genes and 27,702 cells was used. After clustering and
manual assessment of double droplets a total of 24,822 cells were retained
(11,886 saline and 12,936 cocaine).

Broad clustering analysis and t-SNE plot generation. To remove any potential
batch effect between saline and cocaine samples, we run the CCA analysis17. Saline
and cocaine cells were first grouped into different Seurat objects. For each object,
genes showing a dispersion (variance/mean expression) larger than two standard
deviation away from the expected dispersion were selected as variable genes using
the Seurat function “FindVariableGenes”. To run the CCA analysis, we selected the
common variable genes between the top 2000 variable genes in saline and cocaine
samples. Next, CCA analysis was performed by calling the functions “RunCCA”
and “AlignSubspace”. The aligned canonical correlation vectors showing a biweight
midcorrelation ≥ 0.15 were selected to generate the t-SNE plots. For broad cell
classification (Fig. 1b), we generated an initial set of 32 clusters using the first 12
aligned canonical correlation vectors by calling the “FindClusters” function.
Clusters were then aggregated into the global families using the expression of
known markers (Fig. 1d).

Generation of the excitatory neuron clusters. The excitatory neurons were
classified using two levels of hierarchy. The first level captures the main canonical
cell types and the second level captures more specific subpopulations. To generate
the canonical cell types, we first generated an initial set of clusters using the
“FindClusters” function with a resolution of 2. Then, we gradually merged similar
clusters until no clusters could be merged using the “ValidateClusters” function.
Briefly, a pair of two clusters were merged into one cluster if: (1) it showed a mean
graph connectivity larger than 90% of all pairwise clusters connectivity in the
constructed Shared Nearest Neighbor (SNN) graph; and (2) if the linear-SVM
classifier has <90% accuracy in segregating between the two clusters using the top
100 genes from the first 5 PCs as features.

Identification of cluster markers. The cluster-specific markers were identified by
detecting the differentially expressed genes between the given cluster and the other
clusters. Specifically, the cluster markers were calculated by using a Bonferroni-
corrected negative binomial generalized linear model (FindAllMarkers function of
the Seurat package, test.use= “negbinom”) while controlling for the number of
UMI in each cell, the percent of mitochondrial genes, and sample-to-sample
variation.

Fluorescence in situ hybridization. Mice were trans-cardially perfused with ice-
cold PBS followed by ice-cold 4% PFA. Brains were harvested and incubated
overnight in 4% PFA at 4 °C. Brains were cryopreserved in 30% sucrose solution in
PBS at 4 °C. Sections were cut at 14–20 µm. Multi-channel fluorescence in situ
hybridization was performed using RNA-Scope reagents and protocols (ACD
Bioscience, CA) following manufacturer’s instructions.

Functional enrichment analysis. The functional enrichment analysis was per-
formed using IPA (QIAGEN Inc., https://www.qiagenbioinformatics.com/products/
ingenuitypathway-analysis)71. Analysis was performed for each cluster with a cutoff
of FC > 1.5 and q-value of 0.05 for the regulated genes. Analysis was conducted
under “canonical pathways” and “disease and functions” that annotate all GO
pathways in IPA. A right-tailed Fisher exact test p-value cutoff of at least 0.05 was
applied in reporting any significantly enriched functional pathway. The associated
GO and pathway enrichment plots were generated using the ggplot2 package.

Generation of t-SNE plots and heatmaps. The significant PCs (p-value < 1e-3,
determined by JackStraw method in Seurat package) were used to generate the two-
dimensional t-Distributed Stochastic Neighbor Embedding (2D t-SNE) which
projects the data into a 2D-space. Heatmaps were generated using the R/Bio-
conductor package ComplexHeatmap72 or the pheatmap R package. All the other
plots were generated using the ggplot2 package (Wickham 2009). The circular
heatmap in Fig. 5d was generated by calculating the percent of the cluster- and cell-
type specific GWAS genes in a specific disease to the total number of GWAS genes
to that disease and presented using the circlize package73.

Corresponding cell clusters between PFC, VISp, and ALM. To detect similar cell
sub-types between PFC and the other cortical regions, we compared PFC with VISp
and ALM cell clusters independently. Since the two datasets were sequenced at
different depths, conventional correlation analysis can lead to inconsistent results.
We thus first used canonical correlation analysis (CCA)17 to find a projection space
that maximize the correlation between the two samples so that batch effect can be
removed. We then built a similarity network between the cells using the first 20
aligned canonical correlation vectors. The MetaNeighbour method74 was used to
perform neighbor voting and the degree of similarity between PFC and VISp or
ALM cell subtypes were calculated. If two clusters had a similarity degree ≥90% we
considered them to be similar, and they are clustered together (Fig. 3c). Clusters
that showed <90% similarity to any cell-type from the other cell population were
considered as unique (highlighted in bold and marked by * in Fig. 3c).

Detecting differential gene expression PFC vs. VISp or ALM. As the canonical
correlation analysis (CCA) can only present cells into another projection space that
brings similar cells into near proximity, it does not correct the gene expression
between two datasets. Hence, we tried to find non-batch related differentially
expressed genes between similar cell-types in PFC and the other brain regions.
Each group in Fig. 3c was processed separately. For each group, PFC cells were
merged together and the corresponding cells from the other tissue were merged
together. Then, the ‘multiBatchNorm” function of the scran R/Bioconductor
package75 was used to rescale the datasets to similar sequencing depth. Then,
differential gene expression analysis was performed using a likelihood-ration test76

(Seurat function “FindMarkers” with parameter test.use= “bimod”).

Comparison between PFC cells of P21 and P60 mice. Before assessing the
correspondence between P21 and P60 cells, we first filtered the P21 data set. After
removing low quality cells (<800 detected genes and cells having >10% mito-
chondria transcriptome) and double-droplet cells, a total of 10,646 high quality
cells were obtained from P21 PFC.
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A CCA analysis was performed to align the P21 on top of the P60 cells. To
assign cell identity to the P21 cells, a bootstrapped correlation analysis was
performed. Briefly, the top 100 genes with the highest CC score from each of the
first 20 CC were selected and merged together to get a list of 943 genes. Then, 100
bootstrapped correlations were run. In each iteration, we randomly selected 80% of
the 943 genes and calculated spearman correlation (to limit the bias induced by
different sequencing technologies). Next, each P21 cell was assigned to a cluster in
which it showed >50% similarity probability. Only 9.1% of the P21 cells did not
show a high similarity to the PFC cells. When we checked their distribution in
the t-SNE they showed a random localization in the t-SNE plot indicating that
they couldn’t be faithfully classified due to technical issues rather than representing
new cell-types. The differentially expressed genes between P21 and P60 cells for
each cluster was performed using the “FindMarkers” function from the Seurat
package using a likelihood ratio test and correcting for the number of detected
UMI bias.

Association of GWAS genes to cell clusters. To identify the GWAS candidates
that show a specific enrichment pattern in the different cell subtypes, we first
downloaded a list of GWAS candidate genes and their associated disease from
the NHGRI-EBI GWAS catalog (version 1.0.2)77. We only considered the GWAS
genes that have an exonic mutation and which have been detected by published
studies that pass the NHGRI-EBI GWAS catalog eligibility criteria To detected
GWAS genes that show a specific enrichment pattern, we used the following two
criteria: (i) the genes should show a non-uniform expression along all the
clusters (Shanon-entropy based test, RNentropy package78, p-value < 1e-5), ii)
the cells expressing the gene should be concentrated in subset of clusters and not
scattered along all the clusters in a uniform manner Shanon-entropy based test,
RNentropy package, p-value < 1e-8) The second criteria enables us to detect
potential false-positive genes that broadly expressed by showing a variability in
their expression along the cell-types. To annotate the enriched (1) or non-
enriched (0) clusters for each of the non-uniformly expressed genes, we ranked
the clusters by their increasing expression and the clusters having an average
expression larger than knees value in the plot were selected (kneepointDetection
method, SamSPECTRAL package79). To avoid outlier effect, the mean expres-
sion of each cluster was calculated using cells with an expression value <99th

percentile for each gene.

Detection of genes after cocaine self-administration. To detect the genes
affected by cocaine in each cluster, we used a “Two-phase transcription” model
(SC2P package43), which assumes that cells in a homogeneous population response
non-homogeneously to a stimulus. Thus, for each gene, cells that represent tech-
nical dropouts or lowly expressing cells that might represent random initialization
are classified as Phase-I cells, and cells in which the gene is ‘on’ are considered
Phase-II cells. Differential gene-expression analysis is focused on the marginal
changes in the Phase-II cells as they represent changes induces by cocaine
stimulation.

Protocol for cocaine intravenous self-administration (IVSA). The self-
administration procedures consisted of four procedures, food training, catheter-
ization, re-baseline food training, and cocaine administration.

One day prior to the first food training session, mice were food restricted to about
85% of their baseline body weight. Then the mice were subjected to a food training
for about 1 week, 1-h per day. The food training session allowed the mice to associate
the active level pressing with food reinforcers, i.e., 20-mg food pellets (Bio-Serv, NJ).
Mice were trained in a progressively increased fixed-ratio (FR) from FR= 1 to FR=
5, time out (TO) 20 s.

Once stable level responding was achieved (>30 pellets per session), mice were
subjected to catheterization. Prior to the catheterization, mice were returned to
normal food chow and water ad libitum. Under 1.5% isoflurane and oxygen
anesthesia, the right jugular vein was catheterized. Implanted catheters were
flushed daily with saline solution that contained pre-diluted heparin.

Following catheterization, mice were allowed recovery for >2 days, and
subjected to re-baseline food training (FR= 5, TO= 20 s) again to achieve a stable
food response level (>30 food pellets per session). Once stable food response was
achieved, mice were subjected to cocaine self-administration. During cocaine self-
administration, a 1-h daily administration of cocaine solution was allowed. During
the initial IVSA acquisition session, which lasted for 5 days, 0.3 mg/kg cocaine was
administrated through an automatic pump delivery to the jugular vein (0.03 ml
infusion volume per infusion). Only active lever pressing can result in successful
drug delivery. Successful drug response was deemed as at least 6 infusions
per session. After the initial acquisition session, the mice were subjected to a higher
dosage of cocaine (1.0 mg/kg) for another 10 days.

Mice that experienced the same IVSA procedure serve as a control except that
cocaine was replaced with saline solution.

Data availability
The raw data and the count matrices are available under accession number GEO:
GSE124952.

Code availability
All the codes used in this study are available upon reasonable request.
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