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Changes in gene expression predictably shift and
switch genetic interactions
Xianghua Li 1, Jasna Lalić1, Pablo Baeza-Centurion 1, Riddhiman Dhar 1 & Ben Lehner 1,2,3

Non-additive interactions between mutations occur extensively and also change across

conditions, making genetic prediction a difficult challenge. To better understand the plasticity

of genetic interactions (epistasis), we combine mutations in a single protein performing a

single function (a transcriptional repressor inhibiting a target gene). Even in this minimal

system, genetic interactions switch from positive (suppressive) to negative (enhancing) as

the expression of the gene changes. These seemingly complicated changes can be predicted

using a mathematical model that propagates the effects of mutations on protein folding to the

cellular phenotype. More generally, changes in gene expression should be expected

to alter the effects of mutations and how they interact whenever the relationship between

expression and a phenotype is nonlinear, which is the case for most genes. These results

have important implications for understanding genotype-phenotype maps and illustrate how

changes in genetic interactions can often—but not always—be predicted by hierarchical

mechanistic models.
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To interpret personal genomes, make accurate genetic pre-
dictions and understand evolution we need to be able to
predict the effects of mutations and also to understand how

they combine (interact). Large-scale projects1 and deep muta-
genesis2–9 have revealed that mutations frequently interact non-
additively, which makes accurate genetic prediction a difficult
challenge10.

Non-additive genetic (epistatic) interactions between gene
deletions and loss-of-function alleles have been mapped genome-
wide in budding yeast, revealing that both pairwise1 and higher
order11,12 epistasis are widespread. Similarly, epistasis is fre-
quent when combining all possible pairs of mutations between
two different proteins2, between natural genetic variants13,14

and between mutations selected during adaptation to new
environments15,16. Systematic mutagenesis of individual pro-
teins4–9 and RNAs3,17,18 has also revealed widespread epistasis
within individual macromolecules.

Comparisons across species19–22, conditions23,24, time25 and
cell types26,27, have repeatedly found that genetic interactions are
plastic, changing in different cells and conditions. This plasticity
has important implications for both evolution and genetic disease.
For example, a synthetic lethal genetic interaction between a
cancer-causing mutation and a drug or gene inhibition that will
kill one cell often proves ineffective in other cells that carry the
same driver mutation27.

Why do both the effects of mutations and genetic interactions
change across conditions, cell types and species? Comparing
between any two cell types, environmental conditions or species,
there are typically thousands of molecular differences such as
changes in gene expression, making this a difficult question
to answer. We reasoned that one way to address this question
would be to ask it in a minimal system in which we could
quantify the effects of mutations and how mutations interact and
then test how these effects and interactions change in response to
a simple perturbation of the cellular state: a change in the
expression of the mutated gene.

There is a rich theoretical literature on how both biochemistry
and regulatory networks can generate many of the classic statis-
tical phenomena of genetics28–30, including interactions between
mutations29,31,32. For example, the thermodynamics of protein
folding31 and molecular interactions2 result in non-linear rela-
tionships between changes in free energy and the activity of
individual molecules and complexes. Similarly, regulatory systems
often have steep sigmoidal dose-response functions because
of cooperativity, molecular titration and feedback30,33. The
kinetic coupling of enzymes can also generate non-linear

expression–fitness functions34. Thus, pioneering theoretical
work has shown that many mechanistic aspects of molecular
biology are expected to produce non-additive genetic interactions
between mutations32.

The phage lambda repressor (CI) is one of the best char-
acterized proteins, serving as a paradigm for both gene regula-
tion35 and quantitative biology36–39. The detailed and
quantitative understanding of how this protein functions makes it
an ideal system in which to address our question of how muta-
tional effects and the interactions between mutations change
when a system is perturbed. Previously, it was shown that both
the direction of mutational effects and genetic interactions
between two mutations in a promoter targetd by CI can change
depending upon whether the repressor is expressed or not.
Modelling suggested that the cause of this is mutations pleio-
tropically affecting binding of both the repressor and RNA
polymerase37.

Here we show that, even in this minimal system, the effects of
individual mutations and the interactions between mutations in a
protein change extensively when the expression level of the
protein is altered. Indeed we show that even a simple perturbation
can result in the interactions between mutations changing in
direction, flipping between positive (suppressive) and negative
(enhancing) epistasis. We show that these seemingly complicated
changes can be both understood and predicted using a mathe-
matical model that propagates the effects of mutations on protein
folding to the cellular phenotype. More generally, we show that
changes in gene expression will alter the effects of mutations and
how they interact whenever the relationship between expression
and a phenotype is nonlinear. Given that this is the case for most
genes, shifts and switches in the interactions between mutations
should be widely expected when the expression level of a gene
changes.

Results
Mutagenesis of the lambda repressor at two expression levels.
We used doped oligonucleotide synthesis to introduce random
mutations into the 59-amino acid helix-turn-helix DNA-binding
domain of CI, and quantified the ability of each genotype to
repress expression of a fluorescent protein (GFP) from the PR
(Promoter R) target promoter by fluorescence-activated cell
sorting into near neutral (Output1) and partially detrimental
(Output2) bins and deep sequencing (Fig. 1a–c, Supplementary
Fig. 1). From the sequencing read counts, we calculated enrich-
ment scores for each variant in each bin. We then estimated the
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GFP expression using the enrichment scores from both bins
(Fig. 1c, Supplementary Fig. 1, see Methods). CI was expressed at
a level similar to that observed in phage lysogens35 (see Methods).
We quantified both the effects of single mutants and the genetic
interactions between pairs of mutations. We then repeated the
experiment expressing CI at a higher expression level and re-
quantified the mutation effects and genetic interactions. The
effects of wild type, 18 single and four double mutants when
measured individually were highly correlated with their effects
quantified in the pooled assay by deep sequencing at both
expression levels (Fig. 1d, rho= 0.87, P < 2e-16, n= 46; rho=
0.82 and rho= 0.71, respectively, for low and high CI expression
conditions, n= 23, see also Supplementary Fig. 2).

At both expression levels, the single (Fig. 2a, n= 351) and
double amino acid-change mutants (Fig. 2b, n= 468) had a
bimodal distribution of target gene expression levels, with the low
and high modes centred on the phenotypes observed for
synonymous and premature stop codon-containing genotypes,
respectively (Fig. 2a, b). These bimodal distributions of muta-
tional effects are consistent with observations for many different
proteins2,5–8,40–42, as is the shifted distribution of double mutant
phenotypes towards higher expression of the target gene (i.e.
reduced activity2,8) (Fig. 2a, b). Also consistent with previous
deep mutagenesis datasets6–8,43, mutations in the core residues of
the protein were more detrimental (reduced repression of the
target gene) than mutations in solvent-exposed residues (Fig. 2c,

Supplementary Fig. 3). Mutations in residues contacting DNA
were also more detrimental than mutations in solvent-exposed
residues (Fig. 2c, Supplementary Fig. 3). As expected, mutations
to less similar amino acids were also more detrimental, as were
mutations predicted to reduce the free energy of protein folding
or DNA-binding (Supplementary Fig. 3c–f). Mutations to less
hydrophobic amino acids were detrimental in the core and
mutations that introduced a negative charge were detrimental at
positions that contact DNA (Supplementary Fig. 2g–j).

Mutational effects in CI change non-linearly. Comparing the
expression of the target gene when the same single (Fig. 2d) or
double (Fig. 2e) mutant genotypes were expressed at high and low
levels revealed a nonlinear relationship, with four main classes of
genotypes: (1) genotypes with little effect at either high or low
expression (~42% of single mutants), (2) genotypes having little
effect at high expression but detrimental effects at low expression
(~26% of single mutants), (3) genotypes that are partially detri-
mental at high expression but behave similarly to null alleles at
low expression (~5% of single mutants) and (4) genotypes that
behave similarly to null alleles at both expression levels (~20% of
single mutants); 7% of mutants, including mutations partially
detrimental at both expression levels, did not fall into any of these
four classes. This unmasking of detrimental mutation effects at
low expression levels has been previously observed for mutations
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in a region of yeast Hsp9041 and also for human disease-causing
variants44.

Changing expression alters how mutations in CI interact. We
quantified epistasis between pairs of mutations as the difference
between the observed and expected phenotypes based on a log
additive model45. A positive epistatic interaction means that
repression of the target gene by the double mutant is greater than
expected and a negative interaction means that it is less than
expected (Fig. 2f). The distribution of epistasis scores differed
between the two expression levels of the protein, with more
strong positive and negative interactions at high expression
(Fig. 2g, two-sample Kolmogorov–Smirnov Test P= 4.1e-8, D=
0.19, n= 468). Furthermore, epistasis scores of the same pairs of
mutations at the two protein expression levels correlated only
weakly (Fig. 2h, rho= 0.15, P= 0.001, n= 468). Plotting epistasis
against the expected double mutational effects revealed systematic
trends in the data (Supplementary Fig. 4). As expected, double
mutants with high expected target gene expression tended to
interact positively at both low and high expression. On the other
hand, double mutants with intermediate expected outcomes had
stronger negative interactions at low expression, and double
mutants with low expected target gene expression had stronger
negative interactions at high expression (Supplementary Fig. 4).

A mathematical model predicts changes in epistasis. What
accounts for these systematic patterns of epistasis and also their

dependence on expression level? To address this, we turned to a
previously published quantitative model of repression of the PR
promoter by CI36 (Supplementary Fig. 5a). Briefly, the model
describes the probability of CI repressing the expression of the
target gene as a function of CI concentration (Fig. 3a, c). We first
mapped each single mutant’s effect from the target gene expression
level to the concentration of active CI. We then extended this model
to include the effects of mutations on the folding of CI and esti-
mated changes in the free energy of folding for each single mutant
(see Methods). To predict the CI concentration and the resulting
expression of the GFP target gene for each double mutant, we
summed the change in free energy for each single mutant and then
mapped the total free energy to a change in protein folding and
concentration, which was in turn mapped to altered repression of
the target gene (Supplementary Fig. 5b, c). We compared the
behaviour of the full model (Fig. 3b–e) to that of models that only
considered protein folding (Supplementary Fig. 5d) or repression of
the target gene by CI (Supplementary Fig. 5e).

Both the full model and the transcription regulation-only
model correctly predict the shape of the relationship between
mutational effects at low and high expression (Fig. 3e, n= 819).
However, only the full model provides good prediction of the
phenotypes of double mutants from the phenotypes of the single
mutants (Fig. 3f). The full model (Fig. 3g, h), but not the folding-
only or regulation-only models (Supplementary Fig. 6), also
captures the systematic trends in how mutations combine at both
low and high expression.
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The cause of expression-dependent epistasis. Inspection of the
model reveals that it is the nonlinear S-shaped relationship46

between protein concentration and target gene repression that
causes the concentration-dependence of both mutational effects
and genetic interactions (Fig. 3d, i). Each mutation has a fixed
effect on the free energy of protein folding (Fig. 3b). When
combining two mutations, the changes in free energy are summed
and so alter the fraction of folded protein according to the
nonlinear relationship in Fig. 3b. However, because the rela-
tionship between protein concentration and target gene expres-
sion follows a nonlinear S-shaped curve, the same change in
protein concentration can lead to a different change in target gene
expression depending upon the starting protein concentration
(Fig. 3b–d). The S-shaped relationship between protein con-
centration and target gene expression therefore transforms the
concentration-independent effects of mutations on protein fold-
ing (Fig. 3b) into concentration-dependent changes in target gene
expression (Fig. 3c, d), resulting in concentration-dependent
epistasis (Fig. 3i–k, Supplementary Fig. 7).

Changes in gene expression reverse the sign of epistasis.
Comparing how mutations combine at different expression levels
in the full model revealed that changes in expression not only
alter the magnitude of genetic interactions but can also switch
their direction of interaction (between positive and negative
interactions, Fig. 4a, b). Re-analysis of the experimental data
validated this prediction, with mutations in the regime predicted
by the model switching from positive to negative epistasis as the
expression level increased (Fig. 4c, Supplementary Fig. 8). In
other words, genetic interactions that are suppressive at one
expression level can become enhancing at another expression
level (Fig. 4d, e). It is worth noting that these changes are

different from sign epistasis which refers to the mutational effects
themselves switching from positive to negative in different genetic
backgrounds47. We did not observe sign epistasis in our experi-
ment or model. Our model and data therefore show that changes
in expression can alter both the strength and the type of epistasis
between mutations.

Changes in gene expression alter epistasis for many genes. To
what extent should we expect these conclusions to apply to other
genes? Mutational effects and genetic interactions will be
expression-level dependent whenever the relationship between
expression and a phenotype is nonlinear. Such nonlinear
expression-fitness functions are indeed very common in biology,
because of the abundance of cooperation, competition, and
feedback, with nonlinear functions used to model almost all
aspects of cell biology48. Moreover, the relationship between
expression level and fitness (growth rate) has been systematically
quantified for 81 yeast genes and, for all genes sensitive to a
change in expression in the tested conditions, the expression-
fitness function was nonlinear, with the three most frequent
expression-fitness functions being a concave increase in fitness as
expression increases, a concave decrease, or a concave peaked
function49.

We quantified epistasis and its sensitivity to concentration
changes in these three common expression-fitness functions of
yeast genes49. For many yeast genes, fitness increases as a concave
function as their expression is increased from zero to a fitness
plateau close to the wild-type expression level (Fig. 5a). For these
genes, epistasis changes in magnitude but not sign as the
expression level changes (Fig. 5c, e, g, Supplementary Fig. 9).
Similar results are seen for genes where fitness decreases as a
concave function as expression is increased (Supplementary Fig. 9).
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Multiple genes in yeast have a peaked expression-fitness land-
scape49. For these genes epistasis can change substantially and also
switch in direction as the expression level changes because of the
non-monotonic relationship between the free energy of protein
folding and fitness (Fig. 5b, d, f, h).

Ambiguous genetic predictions. Finally, analysing how muta-
tions combine in genes with different expression-fitness functions
we realised that for some genes accurate predictions for how
mutations combine will never be possible from two fitness mea-
surements alone, even with a perfect mechanistic model. Speci-
fically, when there is a non-monotonic relationship between the
expression level and a phenotype, the same observed phenotype
for a single mutant can map to two or more different free energies
of protein folding, leading to multiple possible double mutant
phenotype predictions for each mutation pair (Fig. 6, Supple-
mentary Fig. 10). For these genes, even a perfect mechanistic
model is therefore insufficient to predict how mutations of pre-
cisely measured effects combine to alter a phenotype. In such
cases it will always be necessary to make additional measurements
—for example of intermediate phenotypes, such as protein con-
centrations—to predict how two mutations will combine to alter a
phenotype.

Discussion
Non-additive interactions between mutations complicate
genotype-phenotype maps and so make genetic prediction a
difficult challenge. Further, the interactions between mutations

can also change across conditions, for example between different
types of cancer26,27. Using the very well-characterised minimal
system of the lambda repressor, we found that a change in
expression altered both the effects of individual mutations and
how these mutations combined. Moreover, we found that changes
in expression altered both the strength and the type of interac-
tions between mutations, with interactions switching from posi-
tive (suppressive) to negative (enhancing) at different expression
levels.

In our analyses we only considered the effects of mutations that
alter the free energy of protein folding. Altered protein stability is
likely to be the most common effect of amino acid changing
mutations31. However, subsets of mutations will have additional
effects, for example altering the affinity and kinetics of molecular
interactions. In future work it will be important to study how
mutations with different molecular effects interact with each
other, as well as with mutations that affect stability and with
changes in expression. Our model also makes the assumption that
the effects of mutations on protein stability are independent of
the expression level but this may sometimes not be the case, for
example because of chaperone titration50 or interactions with
other molecules2,51. Concentration-dependent changes in the
effects of mutations on protein stability will lead to further shifts
in mutational effects and genetic interactions as a gene’s
expression changes.

Although our experimental work focussed on the lambda
repressor, by analysing other common expression-fitness func-
tions, we have shown that our conclusions are likely to apply to
many genes. Indeed changes in expression will transform the
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effects of mutations and their interactions whenever the rela-
tionship between expression and a phenotype is nonlinear. In
yeast, where expression-fitness functions have been systematically
quantified49, this is normally the case: for most genes the growth
rate of the organism does not depend in a linear way on the gene’s
expression level. For many genes, therefore, changes in expression
alone will drive changes in mutational effects and genetic inter-
actions. Thus we should expect that genetic interactions will
change extensively across conditions and cell types in an animal,
as well as between individuals in a population and between dif-
ferent species. Analyses of genetic interactions across
conditions23,24,52, time25, cell types26,27, and species19–22 are
highly consistent with this.

Changes in genetic interactions are relevant to both agri-
culture53 and human genetic disease. For example, vari-
able epistasis may contribute to the tissue-specificity of human
disease mutations as well as the cancer type-specificity of inter-
actions between cancer driver mutations26. Moreover, the success
of synthetic lethal strategies to specifically kill target cells depends
on the stability of these interactions. Many examples now exist of
synthetic lethal gene perturbations that are effective in one cancer
or cell type but ineffective in other cell types, and the most suc-
cessful targets will be interactions that are very stable across
individuals and perturbations26,27. Furthermore, the plasticity of
epistasis caused by changes in expression level suggests that the
accessible and most likely evolutionary paths will change over
time as the expression level of a gene is altered.

Importantly, we found that the seemingly complicated shifts
and switches in genetic interactions as the expression level of
the lambda repressor changed could be understood and pre-
dicted using a hierarchical mechanistic model that propagates
the effects of mutations on the free energy of protein folding to
the cellular phenotype. Considering just the effects of mutations
on protein folding or just how the repressor regulates gene
expression could not account for the changes in interactions.
We envisage that such multi-step models that propagate the
effects of mutations on protein stability to higher-level phe-
notypes may prove generally useful for genetic prediction and
for understanding how mutations combine to alter phenotypes,
including in human disease. Together with additional work54,
this highlights the importance of multi-scale models in biology.
In particular, although there are many models for how bio-
chemical parameters influence higher-level cellular and organ
phenotypes, these models rarely connect to genetic variation.
Deep mutagenesis of additional biological processes, including
those with more complex dynamical behaviour, will provide a
more complete view of how mutations impact on phenotypes
and fitness.

Finally, although we found that a hierarchical model provided
accurate genetic prediction for the lambda repressor, we also
realised that there are cases where such a mechanistic model will
fail to accurately predict how mutations combine to alter phe-
notypes. Specifically, when there is a non-monotonic relationship
between the concentration of a protein and a phenotype, it is
sometimes not possible to predict how two mutations will com-
bine, even with a detailed mechanistic model. This is because
some phenotypes map to two or more possible changes in protein
concentration and so to multiple changes in the free energy of
protein folding. Without additional measurements it is not pos-
sible to tell which of the underlying changes is causing the phe-
notype. This results in multiple possible outcomes when
mutations of known phenotypic effect are combined. In these
cases, additional measurements such as of intermediate pheno-
types such as protein concentrations will always be required for
accurate genetic prediction.

Methods
Microbe strain and growth conditions. E.coli BW27783 MK01 strain (kindly
provided by the M.Isalan lab), modified to homogenously express arabinose-
induced genes55 was used to express the mutant library. A single colony of the E.
coli BW27783 MK01 strain was picked from Luria-Bertani (LB) agar plate, grown
overnight at LB liquid medium supplemented with chloramphenicol to 14 μg/
per ml concentration at 37 °C. The 500 μl overnight growth media with cells mixed
with 500 μl of 50% glycerol were stored at −80 °C freezer. For experiments, cells
were always grown at 37 °C in LB liquid medium supplemented with appropriate
antibiotics. For specific experimental growth conditions, please refer to the method
details in the following section.

Mutant oligonucleotide library synthesis and amplification. A 250-nucleotide-
long oligonucleotide library was synthesized by TriLink BioTechnologies. Library
oligonucleotides contain a 177-nucleotide-long sequence of the CI Helix-Turn-
Helix domain (52th–210th nucleotide bases, based on CI ORF GeneID:3827059),
doped at each position with 0.4% of each of the three non-reference nucleotides.
The doped region is flanked by invariant sequences corresponding to the wild type
sequences of immediate upstream (36 nucleotide bases) and downstream (37
nucleotide bases) of the doped region and used as constant overhang regions for
the PCR primers to bind. The designed oligonucleotide sequence is:

5′- CCATTAACACAAGAGCAGCTTGAGGACGCACGTCGCcttaaagcaattta
tgaaaaaaagaaaaatgaacttggcttatcccaggaatctgtcgcagacaagatggggatggggcagtcaggcgttggtg
ctttatttaatggcatcaatgcattaaatgcttataacgccgcattgcttgcaaaaattctcaaagttagcgttgaagaatt-
tAGCCCTTCAATCGCCAGAGAAATCTACGAGATGTATG 3′-

Upper case indicates the constant regions and lower case the doped sequence.
The doped library was dissolved in 500 μl MilliQ water as a stock solution, and

10 μl of the stock solution was further diluted in 500 μl of MilliQ water as a
working solution. The working solution oligonucleotide concentration was
estimated to be 390 ng per μl based on NanoDrop (Thermofisher Scientific)
measurement of ssDNA concentration. Next, the working solution ‘doped’ library
was further diluted by a factor of 100, and a total of about 40 ng was used as the
template to synthesize the complementary strand as well as to be amplified.
Polymerase chain reaction (PCR) was performed using Phusion high fidelity PCR
kit (Thermo Scientific) with primers that bind to the constant regions of the doped
library oligonucleotide (Supplementary Table 1). Each 50 μl PCR reaction consisted
of 10 μl of the doped library oligonucleotide as the template, 10 μl of 5X Phusion
HF reaction buffer, 1 μl of 10 mM dNTP (NEB), 2.5 μl of 10 μM forward and
reverse primers each, 0.5 μl of Phusion polymerase and 12.5 μl MilliQ. PCR
reactions followed the manufacturer’s instruction for a standard protocol. Eighteen
PCR cycles were performed to minimize incorporation of PCR errors to the library.
PCRs were performed with annealing temperature at 55 °C and extension at 72 °C
for 30 s. The fragment with the correct size (230 nucleotide bases) was visualized
and retrieved using the 2% size-select E-gel purification system (Invitrogen). To
achieve optimal ligation efficiency, the size-selected PCR fragment was further
purified with the MiniElute PCR purification kit (QIAGEN) to remove excess salt.
The Gibson assembly (GA) system was used to ligate the PCR fragments to the
modified plasmid backbone (see below) following the standard GA protocol.

Plasmid constructs. The CI open reading frame (GeneID:3827059) was cloned
into the bacterial expression vector pBADM-11 (obtained from CRG biomolecular
screening & protein technologies unit), between the arabinose-inducible promoter
pBAD and three stop codons in all three reading frames (tagttaagtga), followed by
the strong synthetic bidirectional terminator L3S2P2156. The PR promoter (that
overlaps with OR3, OR2 and OR1 repressor binding sites) followed by the RBS-
GFP (LVA) ORF57 was cloned downstream of the L3S2P21 terminator. Three stop
codons in all three reading frames (tagttaagtga) were cloned immediately down-
stream of the GFP ORF and upstream of the pBADM-11 intrinsic rrnB_T2
terminator.

The two plasmid constructs (pCIPR plasmids) used in our experiments—the
construct expressing CI to a high concentration (pCIPR-High) and the construct
expressing CI to a low concentration (pCIPR-Low)—differed in the DNA
sequences between the predicted strongest ribosome binding sequence (RBS) and
the ATG start codon of the CI gene. In pCIPR-High, the start codon is immediately
after the RBS. In pCIPR-Low the start codon is 82 nucleotides downstream of
the RBS.

The pCIPR-High and pCIPR-Low plasmids were linearized by removing the
coding region of the CI helix-turn-helix motif (HTH) domain that contains the
doped sequence. The doped oligonucleotide library and the linearized plasmids
were assembled using the GA system (master mix provided by CRG biomolecular
screening & protein technologies unit) following the standard protocol. The
assembly reactions were dialysed using 0.025μm VSWP membrane filters (Merk
Millipore Ltd) and electroporated into the high efficiency commercial NEB10β
competent cells (NEB, C3020K). After recovery in 500 μl Super Optimal broth with
Catabolite repression (SOC) culture media at 37 °C for one hour, an aliquot of the
cells was plated on Luria-Bertani (LB) agar plate with 100 μg/ml ampicillin to
examine the transformation efficiency, and the rest was diluted 1 in 200 in fresh
Luria-Bertani (LB) broth with 100 μg per ml ampicillin for overnight growth.
About 780,000 independent transformant colonies were obtained for the mutant
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plasmid library construction. Plasmids were purified using the Qiagen Midiprep kit
(cat.12143) and the purified plasmids were then used as the mutant plasmid library.

Making highly efficient electro-competent cells. We chose the E.coli BW27783
MK01 strain (kindly provided by the Isalan lab)55, modified to homogenously
express arabinose-induced genes, to express the mutant library. A single
chloramphenicol-resistant colony of was picked into 4 ml LB medium with 2.8 μl of
20 mg per ml chloramphenicol and let grow for 3.5 h at 37 °C. In all, 2 ml of this
pre-culture bacterial media was then diluted into 250 ml of pre-warmed 2 ×Ty
media with 175 μl 20 mg per ml chloramphenicol for 2 h and 10 min and ensured
that the OD600 did not exceed 0.6. The culture was cooled down on ice for 5
minutes, divided into four 50 ml falcon tubes and centrifuged at a speed of 17.8×g
for 5 min at 4 °C. The cell pellets were suspended in 50 ml cold Milli-Q water in
each of the four falcon tubes and then centrifuged again at a speed of 17.8×g for 5
min at 4 °C. After that, the cell pellets were suspended in 50 ml cold Milli-Q water
in two falcon tubes, and the centrifugation step was repeated as before. A final wash
of cell pellets was performed in cold 10% glycerol. After centrifuging for 7 min at 4
°C and 17.8×g, the supernatant was shaken away and the cells were re-suspended in
their own juice.

Sorting cells based on CI mutants’ phenotypes. In all, 0.5 μl of 200 ng per μl
pCIPR plasmids were transformed into 25 μl electrocompetent cells made on the
same day, inside a 0.1cm-gap cuvette (Bio-Rad) using the Gene Pulser XcellTM

electroporation system (Bio-Rad), with the pre-set protocol for E.coli transforma-
tion. Cells were recovered in SOC culture media at 37 °C for 1 h, and an aliquot of
the cells was plated on LB agar plate with 100 μg per ml ampicillin to examine the
transformation efficiency. One transformation with this step produced millions of
transformants without creating a bottleneck. Cells were grown overnight in 25 ml
LB medium with 100 μg per ml ampicillin. An aliquot of the overnight culture was
diluted 1 in 100 into LB media containing 100 μg per ml ampicillin, 0.4% glucose
and 0.2% arabinose and grown at 37 °C for 2.5 h to reach an OD600 of about 0.7.
The bacteria culture was further diluted 1 in 5 with fresh medium (same com-
position) and the cells grown for another hour, after which the OD600 was about
0.9. As a control for no CI induction (no repression of the target gene GFP), cells
were grown in the LB medium without arabinose but with glucose. All experiments
included cells with plasmids containing the wild type CI genotype (positive con-
trol) and cells containing an empty pBADM-11 plasmid (to quantify cell auto-
fluorescence) in addition to the cells carrying the mutant library. After the
induction of CI expression, cells were immediately diluted 1 in 500 into Phosphate
buffered saline (PBS) and put on ice before FACS.

Sorting was performed at the CRG FACS core facility. A FACSAria II SORP
sorter along with the FACSDiva Version 6.1.2 software was used to sort the cells.
Bacterial cells were selected based on side scatter (SSC) and forward scatter (FSC),
and gate selection was based on FITC-A fluorescence filter for GFP
(Supplementary Fig. 11a). Cells were sorted into three gates: the near neutral gate
was defined as including 90% of the matching wild type population. The
completely detrimental gate included 90% of non-repressed high GFP population
(no CI induction). The intermediate population between the two populations
mentioned above (about 3~4% of all the library population was in this gate) was
also collected (Supplementary Fig. 12b). Purity of sorting was examined by passing
the sorted cells through the FACS again immediately after sorting, and recording
the population proportions belonging to the sorted gate. At least 30 million cells
were sorted per biological replicate. Cells from the completely detrimental gate
were not further processed for deep sequencing, for the following two reasons: (1)
Variants from the detrimental gate were expected to be enriched with insertions or
deletions, and stop codons that we do not want in our analysis; (2) amino acid
substitutions that are completely detrimental (therefore enriched in the completely
detrimental gate) can be deduced based on variants’ frequency in the input, near
neutral fraction, and intermediate fraction, thus we decided not to sequence the
most detrimental gate fraction to be cost-effective.

Sorted cells were kept on ice in PBS in 15 ml falcon tube each. They were
centrifuged at 17.8×g at 4 °C for 30 min. The supernatant was removed carefully,
and the plasmid-prep was performed directly form the cell pellets. Plasmids from
the sorted cells (together with the unsorted input cells) were extracted immediately
with the QIAprep Spin Miniprep kit (QIAGEN). The mutagenized region was
amplified using barcoded PCR primers (Supplementary Table 1) for 25 cycles using
hot start Phusion polymerase (Thermo Scientific) in 50 μl reactions, following the
manufacturer instruction. PCR products were purified using the E-gel 2% size-
select system (Invitrogen) to remove smaller fragments. In order to produce three
full biological replicates, the procedure described up to this—from transformation
of the mutation plasmid library to cell sorting and plasmid extraction—was
performed three times on three different days (Supplementary Fig. 11c).

Concentration of each purified PCR product was measured on NanoDrop
(Thermofisher Scientific). Equimolar quantities of three independent
amplifications of the input library (Input) and equimolar quantities of three output
replicates from near neutral population (Output1) were pooled together in one
Eppendorf tube (Sample1). Equimolar quantities of three output replicates from
intermediate population (Output2) were pooled together as a separate sample in a
different Eppendorf tube (Sample2). The two samples were sent to EMBL
Genomics Core Facility where two PCR-free sequencing libraries were prepared

and sequenced on Illumina HiSeq2000 platform. The PCR-free sequencing library
Sample1 was run on two lane of an Illumina HiSeq 2500 for each CI concentration
experiment. The PCR-free sequencing library Sample2 was multiplexed with other
samples to about 10% of one lane loading, considering the small size of the cell
population.

Verification of mutational effects. 22 genotypes (Supplementary Fig. 2c, d and
Supplementary Table 2) were selected based on their enrichment scores at both CI
concentrations for re-testing in order to cover a wide phenotypic space. In this
reference set, we included all mutation types including synonymous, nonsense,
missense and also some double mutations. Individual genotypes were constructed
using the NEB Q5 site-directed mutagenesis kit (NEB cat. E0554S) with the wild
type pCIPR-High and pCIPR-Low plasmids as templates. After verifying the
sequences by Sanger sequencing, we picked four colonies from each genotype to
examine their target gene GFP expression levels (Supplementary Fig. 2c, d). The
experiment was performed in one batch on the same day so that the results from
this experiment could be used as a confirmation set to which other FACS
experiment sets can be mapped. LSR Fortesta florescence analyser was used at the
CRG FACS Core facility.

GFP signal and the shape information of 10,000 cells per biological replicate
were recorded, and the.FCS files from the recordings were analyzed using the
FlowCore package in R. Cells were filtered based on SSC and FSC, and the first
3000 cell recordings were discarded to avoid cross-well contamination. The mean
output GFP signal (in AU, arbitrary units) from about 5000 cells in each biological
replicate of individual variant was calculated after the filtering process. The mean
GFP signal and standard error of the mean for each variant were obtained from
each biological replicate.

In order to verify estimated GFP expression levels converted from the
enrichment scores based on the reference set of 22 genotypes (see below Data
analysis section), we selected 9 additional genotypes (Supplementary Fig. 2,
Supplementary Table 3) after mapping the enrichment scores to the target gene
GFP expression levels. The experiment procedure was the same for the 22
genotypes mentioned above.

Quantification of CI protein expression. The relative amount of CI protein at the
two expression levels was quantified by tagging CI with GFP at its C-terminus with
the flexible linker amino acid sequence GSAGSAAGSGEF58. The PR-GFP
sequences were removed from the original pCIPR-High and pCIPR-Low plasmids
to make plasmids pCIGFP-High and pCIGFP-low. Fluorescence from CI-induced
cells was analysed using a LSR Fortesta florescence analyser at the CRG FACS Core
facility (Supplementary Fig. 12a). In the same experiment, GFP calibration beads
(CloneTech) were used to calibrate and obtain exact molecule numbers based on
the GFP signal (Supplementary Fig. 12b, c). For quantification, mean GFP signals
and standard errors of were calculated from four biological replicates.

From sequencing data to target gene expression. Our data analysis pipeline
consists of three main parts: (1) Filtering. (2) Mapping enrichment scores to the
target gene (GFP) expression levels. (3) Correcting for the batch effects (Supple-
mentary Fig. 11c) and the detection limits set by the experiment. The processed
final datasets for the analysis were organised both on nucleotide level and amino
acid level. Even though our conclusions were mainly based on amino-acid level
mutational effects, the dataset with nucleotide-level mutational effects was needed
as reference.

The analyses from sequencing data to GFP expression level were all performed
on the nucleotide-level, and the amino-acid level mutational effects were examined
based on the processed nucleotide-level datasets. Whenever involving combining
replicates (at the level of enrichment scores, predicted GFP singles at the nucleotide
level and at amino acid level), the random error model was used.

From Illumina sequencing reads to variant counts. To extract variant counts
from the raw sequencing data, we adapted the pipeline developed by our group in a
previously published project59. Specifically, the raw sequencing data was demul-
tiplexed with the SABRE software [https://github.com/najoshi/sabre] and paired
reads were merged with the PEAR software60 with parameters set not to allow any
mismatches in the overlap regions. Reverse complementation of merged sequences
was performed when necessary with the fastx_reverse_complement tool [http://
hannonlab.cshl.edu/fastx_toolkit/]. Then the primer sequences were trimmed using
the seqtk tool [https://github.com/lh3/seqtk]. Finally, the number of occurrences of
each variant was counted with fastx_collapser [http://hannonlab.cshl.edu/
fastx_toolkit/] and a custom python script59.

Calculating enrichment scores and filtering. Variants up to 2-Hamming-
distance nucleotide changes from the wild type sequence with at least 100 read
counts in all three input replicates were selected for further analysis (Supple-
mentary Figure 13a,b). The 100 read count threshold included all the 1-Hamming-
distance nucleotide changes (n= 531) but only about 11% (n= 10,862 for low
expression dataset) and 7% (n= 3686 for high expression dataset) of all the 2-
Hamming-distance nucleotide changes observed. This restriction was necessary to
obtain the confident variant counts. The threshold was chosen based on the logic
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that each bacterial cell be expected to carry hundreds of plasmid copies (pUC
replication origin). Considering experimental steps of plasmid extraction and PCR
amplifications until obtaining read counts from Illumina sequencing, we reasoned
that variants observed less than 100 read counts were likely to be from too few cells,
resulting in unreliable enrichment scores for the following steps.

Enrichment scores for each variant v from each experimental replicate i (REPi),
for each sorted cell output j (Oj with O1 as near neutral fraction and O2 as partially
detrimental fraction) were calculated as follows:

Sv;Oj;REPi ¼ log2
Cv;Oj;REPi þ 0:5

Cwt;Oj;REPi þ 0:5

 !
� log2

Cv;input;REPi þ 0:5

Cwt;input;REPi þ 0:5

 !
ð1Þ

With C as sequencing read counts, v as variant, wt as wild type. A pseudo count
of 0.5 was added to avoid log 0. Poisson-based error for each variant for each
replicate for each output (SEv,Oj,REPi) was also calculated using the formula below:

SEv;Oj;repi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
Cv;input;REPi þ 0:5

þ 1
Cwt;input;REPi þ 0:5

þ 1
Cv;Oj;REPi þ 0:5

þ 1
Cwt;Oj;REPi þ 0:5

s
ð2Þ

In order to merge scores over replicates for each output and for each variant,
and to be able to filter variants based on the standard errors of the mean, a
random-effect error model as proposed by Rubin et al. for this type of data
analysis61 was used.

The details are as follows:
For the first iteration, for each output, an initial error cSE2

v;Oj;1 for each variant
was calculated based on its standard deviation from the unweighted mean.

Ŝv;Oj;1 ¼
Pn¼3

i¼1 Sv;Oj;REPi
3

ð3Þ

cSE2
v;Oj;1 ¼

1
n� 1

´
X3
i¼1

Sv;Oj;REPi � Ŝv;Oj;1
� �2

ð4Þ

The initial weighted mean enrichment score for each output was calculated as
the follows:

Ŝv;Oj;1 ¼
P3

i¼1 Sv;Oj;REPi ´ cSE2
v;Oj;1 þ SE2

v;Oj;REPi

� ��1
� �
P3

i¼1
cSE2

v;Oj;1 þ SE2
v;Oj;REPi

� ��1
ð5Þ

For each iteration k, the standard error was calculated as follows:

cSE2
v;Oj;kþ1 ¼cSEv;Oj;k ´

P3
i¼1

cSE2
v;Oj;k þ SE2

v;Oj;REPi

� ��2
´ Sv;Oj;REPi � Ŝv;Oj;k
� �2

P3
i¼1

cSE2
v;Oj;k þ SE2

v;Oj;REPi

� ��1
�
P3

i¼1
bSE2

v;Oj;kþSE2
v;Oj;REPi

� ��2

P3

i¼1
bSE2

v;Oj;kþSE2
v;Oj;REPi

� ��1

ð6Þ
After 50 iterations (k= 50), the final mean enrichment score and standard error

for each variant for each output were calculated as shown in Eqs. (7) and (8),
respectively.

Ŝv;Oj ¼
P3

i¼1 Sv;Oj;REPi ´ cSE2
v;Oj;50 þ SE2

v;Oj;REPi

� ��1
� �
P3

i¼1
cSE2

v;Oj;50 þ SE2
v;ROj;EPi

� ��1
ð7Þ

cSEv;Oj ¼ X3
i¼1

cSE2
v;Oj;50 þ SE2

v;Oj;REPi

� ��1
 !�0:5

ð8Þ

In order to estimate the overall errors of enrichment scores for each variant and
to filter only the confident data for the following data analysis, the estimated errors

from Output1 (cSEv;o1) and Output2 (cSEv;o2) were combined with the following
formula:

cSEv;o1þo2 ¼ cSE2
v;o1 þcSE2

v;o2

� �0:5 ð9Þ

Variants with cSEv;o1þo2>1 were removed for downstream analyses (Supplementary
Fig. 13c, d).

Mapping enrichment scores to GFP signal. In order to calculate GFP signals
from enrichment scores, we first examined the relationships between GFP signals
and enrichment scores from individually assayed confirmation data set (Supple-
mentary Table 2). As designed by the experiment, the smaller enrichment score
from the Output1 Sv,o1 was, the higher GFP signal (more detrimental) of a variant
was (Supplementary Fig. 14a). Enrichment scores from the Output2 Sv,o2 (the
intermediate fraction) did not relate monotonically to the mean GFP signal,
because variants enriched in Output2 (Sv,o2) were depleted for both strongly det-
rimental and near neutral variants (Supplementary Fig. 14b).

To examine the possibility of predicting GFP signals with a linear combination
of the two enrichment scores for each replicate from each expression level
experiment, we built linear models to predict the mean GFP signals with Sv,o1,REPi
and Sv,o2,REPi with the confirmation dataset. The calculated GFP signal from the
mean enrichment scores predicted the individual variants’ GFP signals well
(Supplementary Fig. 14f). However, the predictions were not completely linearly
related with the observed GFP signals.

In order to improve the GFP signal predictions based on the enrichment scores,
for each biological replicate, we transformed each Sv,o2,REPi to Sv,o2,trans, REPi based
on its relationship with Sv,o1,REPi such that variants predicted to be detrimental by
Sv,o1,REPi would have higher Sv,o2,trans, REPi and variants predicted to be near neutral
by Sv,o1,REPi would have lower Sv,o2,trans, REPi (Supplementary Fig. 14d, e).

The logic behind this transformation was as follows: 1) A potentially beneficial
mutation was expected to be enriched in Output1 and depleted in Output2 (Sv,o1,
REPi > 0 and Sv,o2,REPi < 0). We kept the Output2 score as it was. 2) An
intermediately detrimental mutation was expected to be enriched in Output2 (Sv,o2,
REPi > 0) regardless of its enrichment score in Output1. We kept its enrichment
score in Output2 as it was as well. 3) A very detrimental mutation was expected to
be depleted both in Output1 and Output2 (Sv,o1,REPi < 0 and Sv,o2,REPi < 0). In order
to distinguish Sv,o2,REPi of these variants from that of potentially beneficial
mutations (the first case, where Sv,o2,REPi is also smaller than 0), we transformed Sv,
o2,REPi to a positive value and bigger than the intermediately detrimental variants’
Sv,o2,REPi. This way, a transformed Sv,o2,trans, REPi was expected to be bigger for more
detrimental mutations (Supplementary Figure 14c). To avoid influence by extreme
outliers, 95th quartiles (Q) were used as thresholds for detrimental mutations (Sv,o1,
REPi <Q(Swt_syn,o1,REPi, 0.95)) and as an approximate for the maximum Sv,o2,REPi
before transformation. To summarize, the equation follows:

Sv;o2trans ;REPi ¼

if Sv;o1;REPi<Q SWT syn;o1;REPi; 0:95
� �

&Sv;o2;REPi<0
� �

;

Q So2;REPi; 0:95
� �

þ abs Sv;o2;REPi
� �

;

else;

Sv;o2;REPi

8>>>>>><>>>>>>:
ð10Þ

A linear model was built again to predict the mean GFP signals for each
expression level experiment with the mean enrichment scores Ŝv;o1 and Ŝv02trans using
the confirmation dataset. Inverse of the variance was used as weights. This linear
model improved the prediction of GFP signal in the low CI expression dataset
(Supplementary Fig. 14g). For the high expression dataset, the Ŝv;o2trans coefficient
was not significant (Supplementary Table 4, Supplementary Fig. 14g) and including
the Sv,o2_trans,REPi did not improve logged GFP signal (as an output of mutational
effects, denoted O) Ov,REPi predictions (note R2 and the median RMSD did not
change in the predictions for high expression dataset, Supplementary Figure 14g).
Therefore, we set Sv,o2_trans,REPi= 0 when calculating signals and the errors for the
high CI expression dataset in the following equations to avoid inflating the errors of
the estimation (refer to Eq. (12)).

Ov;REPi ¼ log2 GFPv;REPi
� �

¼ αþ β � Sv;o1;REPi þ γ � Sv;o2trans ;REPi ð11Þ
Ov,REPi above is the output GFP signal in log scale for each variant in each of the

three biological replicates i and the coefficients α, β, γ (Supplementary Table 4)
derived from the linear model trained with the confirmation dataset.

A measurement error for the log GFP signal (OEv,REPi) for each variant v in
each replicate i and for each CI concentration (high and low) was calculated with
the following formula:

OEv;REPi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 � SE2

v;o1;REPi þ γ2 � SE2
v;o2trans ;REPi

þ2 � β � γ � cov Sv;o1;REPi; Sv;o2trans ;REPi
� �

þβE2 � S2v;o1;REPi þ γE2 � S2v;o2trans ;REPi þ αE2

vuuuuuut ð12Þ

Where βE2, γE2, αE2 are squares of the standard errors of the estimated α, β and γ
coefficients respectively, and cov(Sv,o1,REPi, Sv,o2,trans,REPi) is the covariance between
Sv,o1 and Sv,o2,trans for each replicate (Supplementary Table 5).

Correcting technical biases. Each biological replicate from FACS sorting on
different days had different ranges of GFP expression levels (GFP index, Supple-
mentary Fig. 11c) and these biases were reflected on the estimated Ov,REPi (Sup-
plementary Fig. 15a, b). In order to correct these technical biases, one replicate
from each CI concentration experiment was set as reference, and the other repli-
cates were linearly mapped to the same range as the reference replicate (i.e.,
replicate 2 as the reference).

Ov;REP1 2 ¼ α1þ β1 � Ov;REP1 ð13Þ

Ov;REP3 2 ¼ α3þ β3 � Ov;REP3 ð14Þ
In the function above, the coefficients α1 and β1 derived from mapping the line

defined by replicate 1 wild type Owt,REP1 and weighted means of the nonsense
mutations’ Ônon;REP1 to the line defined by replicate 2 wild type Owt,REP2 and

weighted means of the nonsense mutations’ Ônon;REP3 (Supplementary Table 6,
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Fig. 15a–c).

β1 ¼ Ônon;REP2 � Owt;REP2

Ônon;REP1 � Owt;REP1

ð15Þ

α1 ¼ Ônon;REP1 ´Owt;REP2 � Ônon;REP2 ´Owt;REP1

Ônon;REP1 � Owt;REP1

ð16Þ

The same equations as (15) and (16) applies to coefficients α3 and β3 to map
replicate 3 to replicate 2 by only substituting replicate 1 with replicate 3.

The mean GFP signals Ôv and standard errors of the mean dOEvover biological
replicates were calculated using random-effect error model for combining
enrichment scores over the biological replicates.

Calculating mutational effects at amino acid level. In order to examine muta-
tional effects at the amino acid level, the processed data at the nucleotide level was
converted to the amino acid level.

First, for each replicate, weighted mean GFP signals of all the nucleotide
variants encoding the same amino acid variants were calculated. The inverse of the
GFP signal errors of the nucleotide variants were given as weights. Errors from
each nucleotide variants were propagated as the error of the GFP signals for each
amino acid variant in each replicate.

Then, mean GFP signals Ôv and the standard errors of the mean dOEv over
biological replicates at amino acid level were calculated based on the random-effect
error model as for combining enrichment scores and nucleotide level GFP signals
over replicates.

Rescaling the mean GFP signals to the detection limits. In the FACS experi-
ments, the detection limit for the lowest GFP signal was equal to the auto-
fluorescence of the bacterial cells not expressing GFP. The auto-fluorescence of the
bacterial cells was not distinguishable from the cells that repressed the target gene
GFP expression completely (CI WT high expression) (Supplementary Fig. 11c).
The theoretical maximum GFP expression level was equal to that of bacterial cells
expressing the target GFP without any repressor.

However, some variants’ estimated GFP signals from the bulk sequencing data
exceeded the GFP signal range defined by theoretical maximum and minimum
GFP. These GFP signals outside the theoretical limits were not likely to be real and
they could potentially bias our analysis.

In order to correct this problem, estimated GFP signals from the enrichment
scores were rescaled to abide to the theoretical maximum and minimum GFP
ranges. The lower GFP detection limit was determined by the lower limit of 95%
confidence interval from the mean CI WT high expression GFP level. The upper
GFP detection limit was determined by the 95th percentile of the weighted mean
GFP signals of all nonsense mutations at low expression level of CI. The 95th

percentile (or confidence interval) rather than the mean WT or nonsense GFP
signals were selected as detection limits, so that the modes of the mutational effects
would not shift after rescaling.

This GFP detection range [4.5,12.8] was first divided into 1000 evenly spaced
bins (Ok). Then, given the observed mean GFP signal and the standard error of a
variant, the probability of the true mean GFP signal of the variant falling into each
bin was calculated as follows:

prv;k ¼
e �0:5 ´ bOv�Ok

� �
= bOEv� �2

dOEv ´ 2 ´ π0:5 ð17Þ

Finally, the mean GFP signal of a variant was calculated based on the weighted
mean of the GFP signals from each bin with the weights given as the probability of
the true mean falling into each bin k (prv,k), as shown below:

Ôv;rescaled ¼
Pðprv;k ´OkÞPðprv;kÞ

ð18Þ

The Ôv;rescaled (Supplementary Fig. 15d) was used as the mean GFP signal for

each variant in the following analysis, denoted as cOv replacing the value before

transformation, and the standard error dOEvwas kept the same as before rescaling.

Folding energy, binding energy and structural analysis. Folding energy pre-
diction and structural analysis were performed based on the 3.909 Å x-ray structure
(PDB 3BDN) of CI dimer bound to an operator site OL1.

To estimate the mutational effects on folding energies and binding energies of
CI protein, we used FoldX4 software62. First, BuildModel command was used to
build a structural model from each single mutation in our experiment. Then, the
AnalyzeComplex command (with the complexWithDNA option set to true) was
used to obtain the absolute energies of protein-DNA complex (ΔGCI-OL,FoldX) as
well as the protein itself (ΔGF,FoldX) for each mutation. Binding energy of CI to
DNA (ΔGB,FoldX) was calculated as energy difference between the protein-DNA
complex and the protein by itself for each mutation. ΔΔG for folding (ΔGF,FoldX)
and binding energies (ΔGB,FoldX) for each variant were calculated by subtracting

folding and binding energies of wild type CI respectively.

ΔΔGF;foldX ¼ ΔGF;FoldX � ΔGwt;F;FoldX ð19Þ

ΔΔGB;FoldX ¼ ðΔGCI�OL;FoldX � ΔGF;FoldXÞ � ðΔGwt;CI�OL;FoldX � ΔGwt;F;FoldXÞ
ð20Þ

Analyses were repeated with PDB structure 1LMB (1 Å x-ray structure of CI N-
terminal domain bound to OL1) and with 3BDN structure bound to OR1 instead
of OL1 (by mutating OL1 sequence to OR1 based on PDB 3BDN structure).
FoldX4 returned the same ΔΔG with these analyses; therefore, only results using
PDB 3BDN as a template were shown.

3D structures were visualized and analysed using PyMOL (v1.7.6.0). Amino
acid positions were classified as core residues if the ratio between solvent-exposed
area and the total area fell within the first quartile of the obtained data based on a
PyMOL script (get_area, [https://pymolwiki.org/index.php/Get_Area]) with
parameters dot_density set as 4 and dot_solvent set as 1. Positions were classified as
DNA-contacting when the differences in the solvent-exposed area without DNA
and with DNA were greater than 0.1 Å2.

Other features tested. 562 amino acid indices taken from the AAindex database
[https://www.genome.jp/aaindex/]63 together with BLOSUM62 matrix scores
[ftp://ftp.ncbi.nih.gov/blast/matrices/], structural information, and FoldX predicted
energy values were examined. The top features that correlated with the mutational
effects of CI protein were: (1) the hydrophobicity index64; (2) the number of
negative charges introduced by a mutation65; (3) the amino acid substitution
matrix BLOSUM6266; (4) changes in the protein folding energy; (5) changes in the
protein-DNA binding energy predicted by FoldX62 together with the structural
features of mutations (i.e., at the core, interface with DNA or at the solvent-
exposed positions).

Mathematical model. Our aim was to build a mathematical model that captures
the most important features of the system that apply to all mutations. The model
propagates the effects of mutations on the folding of the lambda repressor to
changes in expression of the target gene through the well-described regulatory
model of the PR promoter. The model makes the following assumptions: (1)
Mutations change the free energy of protein folding so altering the fraction of
folded protein; (2) the fraction of folded protein is independent of the protein
concentration; (3) changes in protein folding free energy are additive for all
mutations. In reality, all of these assumptions may be violated for some mutations.
For example, some mutations will also affect the binding affinity of the lambda
repressor to the DNA operator sites or alter transcription or translation. Others
may result in protein aggregation. Moreover, the fraction of folded protein may not
be independent of concentration, for example at very high expression levels
because of chaperone titration. Finally combining mutations in structurally con-
tacting or indirectly energetically-coupled residues may result in non-additive
changes in free energy. However, our aim was to test whether the simplest possible
model of the system captured the overall changes in mutation effects and changes
in the strength and sign of genetic interactions as the expression level changed. We
of course acknowledge that some mutations will not meet these assumptions and
these exceptions likely contribute to some of the unexplained variance in our data.

Regulatory interaction model of the CI-repressor system. Ackers’ 8-
configuration model36 was used to predict the relationship between the total
amount of CI protein and the expression levels of its repressed gene. As in our
experiment, the CI regulatory interaction system in Ackers’ model involves three
operators (OR1, OR2 and OR3), resulting in eight possible configuration states
(CS) in which the CI dimer can bind to the operators (Supplementary Table 7).
Based on the model, each configuration state causes the downstream promoter to
be in either an ON or OFF state (Supplementary Fig. 5a). Only two configuration
states fail to repress expression of the target gene: when the CI dimer is not bound
to any operators (CS1) and when CI dimer is only bound to OR3 (CS2). The
probability of repressing the target gene expression is the sum of the probabilities
of the six remaining configuration states that result in the OFF state of the pro-
moter. The likelihood of each configuration state is a function of the binding
energies and the free CI protein dimer concentration when the number of OR
binding sites is fixed. In Ackers’ model, the number of OR sites is equivalent to that
found in an average lysogen (bacteria that carries the phage genes integrated in its
genome) with the ORs integrated into its genome36.

The probability that each of the eight configuration state (fCSi) to occur is:

fCSi ¼
e�ΔGCSi=RT ´ CI2½ �NiP
i e

�ΔGCSi=RT ´ CI2½ �Ni ð21Þ

Where ΔGCSi is the total free energy of lambda repressor dimers in the respective
configuration i; the exponent Ni is the total number of the lambda repressor dimers
in the corresponding configuration i; [CI2] is the free dimer concentration; R is the
gas constant (R= 1.98 × 10−3 kcal per M) and T is the absolute temperature
(310.15 kelvin).

The probability of repression (Ps) is the sum of the probabilities of the
configurations in which promoter PR is repressed (

P
i¼ 3:8f g fCSi). To calculate Ps as
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a function of the free dimer CI concentration [CI2] based on the equation (19) and
Table S6, we obtain the following equation:

Ps ¼ 1� fCS1 � fCS2 ¼ 1� e�ΔGCS1=RT ´ CI2½ �0þe�ΔGCS2=RT ´ CI2½ �1P8
i¼1 e�ΔGCSi=RT ´ CI2½ �Ni� � ð22Þ

The target gene expression level (GFP) is modelled to be proportional to the
binding probability of the RNA polymerase, which is given by one minus the
probability of repression by CI (Ps) (Eq. (23)).

GFP / PRNA�pol ¼ 1� Ps ð23Þ
Despite its simplicity, this model has been shown to be predictive of the gene

expression levels67. Because bacterial cells displayed auto-fluorescence (GFPauto),
this auto-fluorescence signal from bacteria needed to be considered when
measuring the effects of mutations on GFP levels. Therefore, by rewriting the Eq.
(23) by taking into account the auto-fluorescence of the cells, the probability of
GFP repression can be shown as in the Eq. (24).

Ps ¼ 1� GFP� GFPauto

GFPmax � GFPauto
ð24Þ

Both Eqs. (24) and (22) show the probability of repressing the target gene, with
Eq. (24) as a function of the GFP signal and Eq. (22) as a function of the free CI
dimer concentration. By combining Eq. (24) with Eq. (22), we obtain an equation
that describes the relationship between the free CI dimer concentration [CI2] and
the GFP signal as shown in the following equation:

1� Ps ¼
GFP� GFPauto

GFPmax � GFPauto
¼ e�ΔGCS2=RT ´ CI2½ � þ 1P8

i¼1 e�ΔGCSi=RT ´ CI2½ �Ni� � ð25Þ

By rewriting the Eq. (25), we can show the GFP signal as a function of free CI
dimer concentration:

GFP ¼ GFPmax � GFPautoð Þ ´ e�ΔGCS2=RT ´ CI2½ � þ 1
� �� �

e�ΔGCS8=RT ´ CI2½ �3
þP7

i¼5 e
�ΔGCSi=RT ´ CI2½ �2

þP4
i¼2 e

�ΔGCSi=RT ´ CI2½ � þ 1

þ GFPauto
ð26Þ

The Eq. (26) allows us to calculate the GFP signal for each variant from a
known free CI dimer concentration. In order to calculate [CI2] from Eq. (26),
uniroot function was used with R script to find a unique root of Eq. (26) that was
within the range of 10−40 and 10−3 M.

Next, the relationship between the total CI concentration [CIT] and the free
dimer concentration [CI2] was evaluated, in order to model the relationship
between the GFP signal and total CI concentration. This is because the total protein
concentration in the cells but not the free dimer concentration of the protein is the
one that can be experimentally measured and manipulated. The total lambda
repressor concentration in the cell [CIT] is the sum of the free monomer
concentration [CI] plus two times the concentrations of the free dimer [CI2] plus
two times the concentration of the dimers bound to operators [OR]. Compared to
the original Ackers’ model, in our experimental system, each bacterial cell was
expected to carry up to hundreds of folds more operator sites, the same fold
changes in CI protein coding region and the target gene. Given the same fold
changes in all the functional blocks in this model, we simply kept the same
parameters from original model and mapped our experimental system to the
original model system.

CIT½ � ¼ CI½ � þ 2 ´ CI2½ � þ 2 ´ ORtotal½ � ´
X8
i¼1

Ni ´ fCSið Þ ð27Þ

The concentrations of free monomer [CI] and free dimer [CI2] follow the
equilibrium:

CI2½ �!Ka ´ CI½ �2 ð28Þ
By combining the Eqs. (27) and (28), we can describe the relationships between

[CIT] and [CI2] as follows:

CIT½ � ¼ CI2½ �=Kað Þ0:5þ2 ´ CI2½ � þ 2 ´ ORtotal½ � ´
X8
i¼1

Ni ´ fCSið Þ ð29Þ

By further substituting
P8
i¼1

Ni ´ fCSið Þ from the Eq. (29) with the Eq. (21), we

obtain the following equation:

CIT½ � ¼K0:5
a ´ CI2½ �0:5þ2 ´ CI2½ �

þ 2 ´ OR½ � ´ P4
i¼2 e

�ΔGCSi=RT þ 2 ´
P7

i¼5 e
�ΔGCSi=RT þ 3 ´ e�ΔGCS8=RT

� �P4
i¼2 e

�ΔGCSi=RT ´ CI2½ � þP7
i¼5 e

�ΔGCSi=RT ´ CI2½ �2þe�ΔGCS8=RT ´ CI2½ �3
ð30Þ

The equation allows us to calculate [CIT] from [CI2]. [CI2] can be calculated by
finding the unique root from the Eq. (26) from the known GFP signal. Given the
complexities of both Eqs. (26) and (30), the calculations were performed in two
steps according to the two equations. For the following process, for ease of

reference, we denote the process of calculating total protein [CIT] for each variant
from its target GFP signals f′Ackers:

½CIT� ¼ f ′AckersðGFPÞ ð31Þ
The reverse process to calculate GFP signals from the total protein [CIT]

involves two steps: (1) inversing Eq. (30) to calculate the corresponding [CI2]; (2)
calculating GFP with Eq. (26) with [CI2] from the previous step.

Inversing and finding the exact root of Eq. (30) is mathematically impossible.
Therefore, an approximate solution was found based on a local polynomial
regression (loess function with R, span parameter 0.3) describing the relationship
between [CI2] and [CIT] based on Eq. (30) (Supplementary Fig. 16a).

Based on Eq. (26), GFP signal was calculated by inputting [CI2] from the
previous step. We denote the process as fAckers, which is the inverse of Eq. (31) for
the ease of future reference.

GFP ¼ fAckersð½CIT�Þ ð32Þ
The parameters were kept as they were originally used in the model by Ackers36

(Supplementary Table 8) that were experimentally determined.
Two additional parameters (GFPmax and GFPauto) were specific to our

experiment and not described in the original model by Ackers. For modelling, the
maximum GFP signal GFPmax was defined as the weighted mean GFP signals of all
single nonsense mutations with weights given as the inverse of the variance
(3470.67 AU, or 11.76 AU in log2 scale) based on the CI low expression dataset.
The minimum GFP signal GFPauto, corresponding to the cellular auto-fluorescence
GFP signal, was found through parameter search as follows. To start with, two
constraints for GFPauto were considered: first, based on the regulatory interaction
model, repression of the target gene expression can never reach 100% even though
it can infinitely approach this level.

In other words, the GFPauto cannot be set to be the same as the GFP signal
from the wild type protein at high expression. Second, GFPauto should allow the
calculated ratio of wild type [CIT] between high and low expression levels based
on Eq. (29) f′Ackers to agree with experimentally quantified ratio (15:1, see protein
quantification section, Supplementary Fig. 12). We performed the parameter
search for GFPauto that allowed the ratio of calculated wild type [CIT] at two
expression levels to be 15:1 based on the model calculation as shown below:

CIT;wt;High

h i
CIT;wt;Low
h i ¼

f ′Ackers GFPwt;High

� �
f ′Ackers GFPwt;Low

� � ¼ 15 ð33Þ

GFPauto was estimated to be 23.24 AU (4.54 AU in log2 scale) to meet the
condition set by Eq. (33).

Estimating the functional protein concentration. An estimate of wild type CI
protein concentration [CIT,wt] in each of the two experiments can be obtained by
inputting GFPwt,High and GFPwt,Low values into f′Ackers function. The same way, the
total protein concentration of a variant [CIT,v] can be derived for each experiment
with the f′Ackers function. Differences between [CIT,v] and [CIT,wt] were assigned to
differences in their functional protein fraction rather than changes in the total
expressed protein amount. This is based on the assumption that the mutations with
one or two amino acid alterations affected GFP levels mostly through changing the
fractions of natively folded protein (fN).

In order to calculate the fraction of correctly folded protein for each variant (fN,
v), knowledge of the total expressed protein concentration [CIE] for each
experiment was needed. Based on the calculated [CIT,wt] at both low and high
expression levels and the information that the fraction folded of the wild type
protein is 0.9913 (see the next section), the total expressed protein concentration in
the cell can be calculated by dividing the concentration of functional wild type CI
protein by 0.9913 (Supplementary Table 9).

The fraction of natively folded protein for a variant v (fN,v) was calculated as the
ratio of [CIT,v] (that is calculated based on f’Ackers (GFPv)) over total expressed CI
[CIE] (as a parameter calculated based on f’Ackers (GFPwt), Table S8):

fN;v ¼
CIT;v
h i
CIE½ �

ð34Þ

Thermodynamics of CI folding model. CI has been shown to follow a two-state
model of protein folding68 that can be described with the following equation:

fN ¼ ffolding ΔGFð Þ ¼ e�
ΔGF
R�T

1þ e�
ΔGF
R�T

ð35Þ

With fN as the fraction of natively folded protein, ΔGF as the total free energy of
the protein folding. R is the gas constant (R= 1.98 × 10–3 kcal per M) and T is the
absolute temperature of our experimental setting (T= 310.15 kelvin, 37 °C).

Rewriting the Eq. (35), we obtain:

ΔGF ¼ f ′folding fNð Þ ¼ �R ´T ´ ln
fN

1� fN

� �
ð36Þ
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The equilibrium between the concentration of unfolded and native CI protein
follows the equation below:

CIU"CIN ð37Þ
Eq. (37) is governed by an equilibrium constant Kfold whose value is known to

be 114 for the wild type CI protein69:

Kfold ¼
½CIN�
½CIU�

¼ fN
1� fN

¼ e�
ΔGF
RT ð38Þ

By solving Eq. (38) with Kfold= 114, we obtain the wild type CI fN= 0.9913
which was used to calculate the total protein concentration in the cells
(Supplementary Table 9), as shown in the previous section.

The folding energy of a double missense mutation (AB) can be predicted by
adding the folding energies of the two single mutations (A and B) that together
make the double mutation (AB).

ΔGF;AB;predict ¼ ΔGF;A þ ΔGF;B � ΔGF;wt ð39Þ

Combining models. To predict GFP signal of a mutation A from ΔGF values of the
mutation, the output of ffolding function was added to fAckers function:

GFPA ¼ fAckers ffolding ΔGF;A

� �
´ ½CIE�

� �
ð40Þ

ΔGF;A ¼ f ′folding
f ′Ackers GFPAð Þ

½CIE�
� �

ð41Þ

Comparing four different sub-models. To evaluate the importance of (a) pro-
tein folding and (b) CI-concentration-dependent repression of the target gene
expression independently as well as in combination, we generated and com-
pared four models (Fig. 3, Supplementary Fig. 5). The four models are based on
four different assumptions. The first model is the log-additive model where
changes in the target gene expression levels are simply additive in the log scale
(Supplementary Fig. 5c). The second model is the full model that incorporates
the effects of mutations both at the level of protein folding and at the level of
regulatory interaction of CI-OR system on the target gene expression (as shown
in Eqs. (39–41), Fig. 3a, Supplementary Fig. 5b, c). The third model is a protein
folding-only model that incorporates the thermodynamics of protein folding
but not the regulatory interaction model (it assumes a linear relationship
between target gene expression and functional CI concentration). Therefore, the
protein folding energies are additive features of this model (Supplementary
Fig. 5b–d). The last model is the regulation-only model that incorporates
the regulatory interaction model but not the thermodynamics of protein
folding (it assumes a linear relationship ΔGF and fN). Therefore, the
functional protein amount is the additive feature of this model (Supplementary
Fig. 5b, c, e).

Depending on the model evaluated, the functions linking the target gene GFP
expression level to [CIT], or [CIT] to ΔGF can be different. The details of each
model are explained below.

Log-additive model. Consistent with extensively used null models where the
effects of mutations are log-additive, this model predicts the log GFP signal of a
double mutation AB relative to the wild type to be the sum of the log GFP signals of
each of the two single mutations relative to the wild type:

log2 GFPAB;predicted
� �

� log2 GFPwtð Þ
¼ log2 GFPAð Þ � log2 GFPwtð Þ� �þ log2 GFPBð Þ � log2 GFPwtð Þ� � ð42Þ

Therefore,

log2 GFPAB;predicted

� �
¼ log2 GFPAð Þ þ log2 GFPBð Þ � log2 GFPwtð Þ ð43Þ

Full model. To predict the GFP expression levels of a double mutation, we first
estimated the ΔGF of the corresponding single mutations using Eq. (41). The ΔGF,

AB of the double mutation was calculated with Eq. (39) and then converted to an
expected GFP signal using Eq. (40).

Folding-only model. This model assumes that the GFP expression levels are lin-
early responsive to the fraction of natively folded protein fN. That is, this model
replaces fAckers with a linear transformation between GFP signal and fN (Supple-
mentary Fig. 5e). At the same time, this model includes the nonlinear relationship
between fN and ΔGF that was introduced by the thermodynamics model of protein
folding. Thus, for a mutation A, the relationship between GFP signal and the
fraction of folded protein fN was given by a modified version of fAckers, which we

call fmodel3.

log2 GFPAð Þ ¼ fmodel3 log2 ½CIT;A�
� �� �

¼ αþ β ´ log2 ½CIT;A�
� �

ð44Þ

log2 ½CIT;A�
� �

¼ f ′model3 log2 GFPAð Þ� � ¼ log2 GFPAð Þ � α

β
ð45Þ

The output of fmodel3 can then be introduced into f′folding (Eqs. 36 and 39).

ΔGF;A ¼ f ′folding
f ′model3 GFPAð Þ

½CIE�
� �

ð46Þ

GFPA ¼ fmodel3 ffolding ΔGF;A

� �
´ ½CIE�

� �
ð47Þ

The α and β parameters from fmodel3 (Eq. (44)) determine the linear relationship
between the functional repressor concentration and GFP expression levels (α is the
intercept and β is the slope). Also, the parameters [CIE,low] and [CIE,high]
(Supplementary Table 9) were kept the same as in the other models.

Comparing the mutational effects at two expression levels based on Eq. (44), we
obtain the following equation:

log2 ½GFPA;high�
� �

� log2 ½GFPA;low �
� �

¼ β ´ log2
½CIT;A;high�
½CIT;A;low�

 !
ð48Þ

The ratio of [CIT,A] at two expression levels was set as the constant 15 (as
defined by wild type protein, see the previous section). Eq. (48) therefore can be re-
written as follows:

log2 GFPA;high

� �
¼ β ´ log2 15ð Þ þ log2 GFPA;low

� �
ð49Þ

By substituting β×log2(15) with a coefficient C, we can rewrite Eq. (49) as
follows:

log2 GFPA;high
� �

¼ C þ log2 GFPA;low

� �
ð50Þ

From Eq. (50), we can see that GFP signal at the two CI expression levels is
linearly related with the fixed slope of one in the log space. Parameter search was
performed to find the coefficient C that best described the observed relationships
between GFP signals at low and high expression levels of CI. In detail, we firstly
sampled a hundred log2(GFPv,low) values ranging between log2(GFPwt,low)= 7.23
and log2(GFPmax)= 11.76. Then, a range of intercept C between −3.3 and −1.3
with the step of 0.03 was used to calculate the corresponding log2(GFPhigh) for each
log2(GFPlow) (Supplementary Figure 16b - d). The value C=−2.07 was selected
that resulted in the smallest sum of the squared distances from the observed data
points to the line defined by simulated relationship between GFP signals at two
expression levels (Supplementary Fig. 16c). Based on C= β × log2(15), we further
calculated β=−0.52.

The coefficient α was calculated by placing the values β and the wild type CI low
expression data [CIE,low] and log2(GFPwt,low) to Eq. (44) and rewritten as below:

α ¼ log2 GFPwt;low
� �

� β ´ log2 fN;WT ´ ½CIE;low �
� �

ð51Þ
With log2(GFPwt,low)= 7.23 as observed in the experiment, β=−0.52 as

calculated above, and the known parameters fN,wt= 0.9913 and [CIE,low]= 5.5 ×
10–8, we obtained α=−17.

To estimate the GFP signals of a double mutations with the folding-only model,
we first estimated the ΔGF,A and ΔGF,B of the corresponding single mutations using
Eq. (46). Double mutants’ ΔGF,AB was calculated using Eq. (39). ΔGF,AB of the
double mutant was then converted to an expected GFP signal using Eq. (47)
(Supplementary Fig. 5b, c).

Regulation-only model. This model assumes that the fN of a protein is linearly
related to its ΔGF. That is, this model replaces ffolding with a linear transformation
between fN and ΔGF. At the same time, this model includes the nonlinear rela-
tionship between fN and GFP expression levels from Ackers’ model.

Because of the assumed linear relationship between fN and ΔGF, the effects of
mutations are additive in fN space making ffolding unnecessary in this model at all
(Supplementary Fig. 5b,c). To estimate the GFP expression levels of a double
mutant with the regulation-only model, we first estimated the functional protein
concentration of the corresponding single mutants using f′Ackers (GFP). The
expected functional protein concentration of the double mutant was then given by
the following equation.

½CIT;AB� ¼ ½CIT;A� þ ½CIT;B� � ½CIT;wt� ð52Þ
The expected GFP signal for this double mutant was calculated using fAckers

([CIT,AB]), as shown in Eq. (32) (Supplementary Fig. 5b, c).

Simulation overview. To test to which extent each model can explain (1) the
double mutational effects given the single mutational effects (2) the relationship
between the mutational effects at the two protein concentrations (3) the pair-wise
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genetic interactions at both protein concentrations, we simulated mutational effects
and their interactions based on each model to compare with our data.

Simulating the mutational effects based on the model. We sampled 100 ΔGF

values equally spaced between −3kcal per mol and 3 kcal per mol, and estimated
their GFP signals at high and low CI concentrations using each of the four sub-
models described above. For a given model, plotting the GFP signals predicted for
the high CI concentration case against the GFP signals predicted for the low CI
concentration case resulted in a curve (or a line) (Fig. 3e).

To test how well each model explained the observed protein concentration-
dependent mutational effects, we used the Princurve package70 in R to calculate the
sum of squared distance from the curve (SSDC) between every experimental data
point and the line or curve described by the model (Supplementary Fig. 16e).

To predict the ΔGF for a specific variant, we first projected each data point in
the log GFP (high CI concentration) vs. log GFP (low CI concentration) scatter plot
to the nearest point in the model curve (line, in the case of folding-only model)
(Supplementary Fig. 16d, e). The projected GFP signal corresponds to a single ΔGF

of each variant based on the model. This correction allowed us to estimate a single
ΔGF using the GFP value for both the high and the low CI concentrations. Finally,
this estimated ΔGF (functional protein concentration [CIT], in the case of
regulation-only model) of a variant was used in the following processes for
predicting double mutational effects and to predict the epistasis patterns.

Comparing model predicted and observed double mutational effects. The
percentage of variance explained (PVE) for the mean GFP expression levels of the
double mutation was calculated as follows:

PVE ¼ 1� SSres
SSTolal

� �
´ 100 ð53Þ

Where SSres is the residual sum of squares between the model-predicted versus the
observed GFP expression levels and SSTotal is the variance in the observed data.

Predicting pair-wise genetic interactions with each sub-model. Epistasis was
defined as the difference between the GFP expression levels of a double mutant
based on the model (full model, folding-only model and regulation-only model)
and the log-additive model (Eq. (43)), as shown in the equation below (Fig. 2f).

EpistasisModel i ¼ log2 GFPAB;log�additive

� �
� log2 GFPAB;Model i

� �
ð54Þ

For a given double mutant, we first predicted the ΔGF values (full model and the
folding-only model) or fN (regulation-only model) of the corresponding single
mutants, as stated above. We then used each model to convert the double mutant’s
predicted ΔGF or fN value back into the GFP signal. This predicted GFP signal was
compared with the expected GFP signal based on the log-additive null model (Eq.
(43)). The genetic interaction patterns were further compared to the experimental
observation (Fig. 3g–k and Supplementary Figs. 6, 7).

The summary of the modelling mutational effects based on each model was
illustrated as a cartoon in the Supplementary Fig. 5a–c.

Toy models of three protein expression–fitness relationships. Three most
common fitness-protein concentration relationships were modelled based on the
fitness effects of changes in protein concentrations in yeast49.

Fitness increases with lower protein concentration:

ωI ¼
protein½ �

0:1þ ½protein�ð Þ ð55Þ
Fitness with optimal protein concentration:

ωO ¼ 1:2 ´ ½protein�
ð0:1þ ½protein�Þ ´

1
1þ 0:1 ´ ½protein�ð Þ ð56Þ

Fitness decreases with higher protein concentration:

ωD ¼ 1
1þ 0:1 ´ ½protein�Þ ð57Þ

These functions were integrated into the full model (sub-model 2) in place of
fAckers to build three new models linking fitness to changes in protein folding
energy ΔGF. Note that because ffolding was left untouched, all these three new
models assumed a two-state protein folding kinetics as for CI protein. Mutational
effects and pairwise genetic interactions were analysed at two simulated protein
concentrations (high and low) based on these models. For both ‘Increasing’ and
‘Decreasing’ fitness landscapes, the two wild type protein concentrations in each
simulation were selected so that one wild type protein concentration would be
abundant enough to be robust to mutational effects and the other one would be
sensitive to the mutational effects. For the ‘Peaked fitness landscape’, the two
protein concentrations were selected so that the fitness effects would be the same
but the protein expression levels at ‘Low’ would be below the optimal protein
concentration and at ‘High’ would be above the optimal protein concentration.

We evaluated the effects of 50 mutations with ΔΔGF evenly spaced between
−1kcal per mol and +5 kcal per mol in four different wild type proteins with

different protein folding energies: (1) very stable wild type protein (ΔGF,wt=
−3kcal per mol); (2) stable wild type protein (ΔGF,wt=−1.6 kcal per mol); (3)
marginally stable wild type protein (ΔGF,wt=−1kcal per mol); (4) unstable wild
type protein (ΔGF,wt= 0 kcal per mol) (Fig. 5a–h, S7). The effects on fitness of all
the pairwise combinations of mutations were also evaluated assuming that the
effects of mutations are additive in ΔΔGF space.

Epistasis was quantified as the difference between the observed double
mutational effects (calculated by adding the ΔΔGF of the single mutations,) with
the expected effects (calculated by adding up single mutational effects based on the
log-additive null model):

Epistasis ¼ ObservedFitness � ExpectedFitness ð58Þ

Quantification and statistical analysis. Statistical details of experiments includ-
ing the statistical test used, the exact number of the data points, mean values,
standard errors of the mean (s.e.m.), and 95% confidence intervals, p-values can be
found in the figure legends and results. Data with low reproducibility from the
three biological replicates (s.e.m > 1 for the predicted mean GFP) were excluded
from subsequent analyses.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Processed data used for the analysis is available as Supplementary Data 1. Raw Illumina
sequencing data and the processed count data files that support the findings of this study
have been deposited in NCBI’s Gene Expression Omnibus and are accessible through
GEO Series accession number GSE122806 [https://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GSE122806].

Code availability
Scripts are available from GitHub [https://github.com/lehner-lab/concentration_epistasis_CI].

Received: 10 April 2019 Accepted: 29 July 2019

References
1. Costanzo, M. et al. A global genetic interaction network maps a wiring

diagram of cellular function. Science 353, 1420–1420 (2016).
2. Diss, G. & Lehner, B. The genetic landscape of a physical interaction. eLife 7,

e32472 (2018).
3. Domingo, J., Diss, G. & Lehner, B. Pairwise and higher-order genetic

interactions during the evolution of a tRNA. Nature 558, 117–121
(2018).

4. Bank, C., Hietpas, R. T., Jensen, J. D. & Bolon, D. N. A systematic survey of an
intragenic epistatic landscape. Mol. Biol. Evol. 32, 229–238 (2015).

5. Hietpas, R. T., Jensen, J. D. & Bolon, D. N. A. Experimental illumination
of a fitness landscape. Proc. Natl Acad. Sci. USA 108, 7896–7901
(2011).

6. Melamed, D., Young, D. L., Gamble, C. E., Miller, C. R. & Fields, S. Deep
mutational scanning of an RRM domain of the Saccharomyces cerevisiae poly
(A)-binding protein. RNA 19, 1537–1551 (2013).

7. Olson, C. A., Wu, N. C. & Sun, R. A comprehensive biophysical description of
pairwise epistasis throughout an entire protein domain. Curr. Biol. 24,
2643–2651 (2014).

8. Sarkisyan, K. S. et al. Local fitness landscape of the green fluorescent protein.
Nature 533, 397–401 (2016).

9. Fowler, D. M. et al. High-resolution mapping of protein sequence-function
relationships. Nat. Methods 7, 741–746 (2010).

10. Lehner, B. Molecular mechanisms of epistasis within and between genes.
Trends Genet. 27, 323–331 (2011).

11. Dowell, R. D. et al. Genotype to phenotype: a complex problem. Science 328,
469 (2010).

12. Kuzmin, E. et al. Systematic analysis of complex genetic interactions. Science
360, eaao1729 (2018).

13. Brem, R. B., Storey, J. D., Whittle, J. & Kruglyak, L. Genetic interactions
between polymorphisms that affect gene expression in yeast. Nature 436,
701–703 (2005).

14. Taylor, M. B., Phan, J., Lee, J. T., McCadden, M. & Ehrenreich, I. M. Diverse
genetic architectures lead to the same cryptic phenotype in a yeast cross. Nat.
Commun. 7, 11669 (2016).

15. Palmer, A. C. et al. Delayed commitment to evolutionary fate in antibiotic
resistance fitness landscapes. Nat. Commun. 6, 7385 (2015).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-11735-3 ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:3886 | https://doi.org/10.1038/s41467-019-11735-3 | www.nature.com/naturecommunications 13

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE122806
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE122806
https://github.com/lehner-lab/concentration_epistasis_CI
www.nature.com/naturecommunications
www.nature.com/naturecommunications


16. Weinreich, D. M., Delaney, N. F., DePristo, M. A. & Hartl, D. L. Darwinian
evolution can follow only very few mutational paths to fitter proteins. Science
312, 111–114 (2006).

17. Li, C., Qian, W., Maclean, C. J. & Zhang, J. The fitness landscape of a tRNA
gene. Science 352, 837–840 (2016).

18. Puchta, O. et al. Network of epistatic interactions within a yeast snoRNA.
Science 352, 840–844 (2016).

19. Tischler, J., Lehner, B. & Fraser, A. G. Evolutionary plasticity of genetic
interaction networks. Nat. Genet. 40, 390–391 (2008).

20. Frost, A. et al. Functional repurposing revealed by comparing S. pombe and S.
cerevisiae genetic interactions. Cell 149, 1339–1352 (2012).

21. Dixon, S. J. et al. Significant conservation of synthetic lethal genetic interaction
networks between distantly related eukaryotes. Proc. Natl Acad. Sci. USA 105,
16653–16658 (2008).

22. Roguev, A. et al. Conservation and rewiring of functional modules revealed by
an epistasis map in fission yeast. Science 322, 405–410 (2008).

23. Harrison, R., Papp, B., Pál, C., Oliver, S. G. & Delneri, D. Plasticity of genetic
interactions in metabolic networks of yeast. Proc. Natl Acad. Sci. USA. 104,
2307–2312 (2007).

24. Díaz-Mejía, J. J. et al. Mapping DNA damage-dependent genetic interactions
in yeast via party mating and barcode fusion genetics. Mol. Syst. Biol. 14,
e7985 (2018).

25. Heigwer, F. et al. Time-resolved mapping of genetic interactions to model
rewiring of signaling pathways. eLife 7, e40174 (2018).

26. Park, S. & Lehner, B. Cancer type-dependent genetic interactions between
cancer driver alterations indicate plasticity of epistasis across cell types. Mol.
Syst. Biol. 11, 824 (2015).

27. Ashworth, A., Lord, C. J. & Reis-Filho, J. S. Genetic Interactions in cancer
progression and treatment. Cell 145, 30–38 (2011).

28. Gibson, G. Epistasis and pleiotropy as natural properties of transcriptional
regulation. Theor. Popul. Biol. 49, 58–89 (1996).

29. Omholt, S. W., Plahte, E., Øyehaug, L. & Xiang, K. Gene regulatory networks
generating the phenomena of additivity, dominance and epistasis. Genetics
155, 969–980 (2000).

30. Gjuvsland, A. B., Hayes, B. J., Omholt, S. W. & Carlborg, Ö. Statistical
epistasis is a generic feature of gene regulatory networks. Genetics 175,
411–420 (2007).

31. Tokuriki, N. & Tawfik, D. S. Stability effects of mutations and protein
evolvability. Curr. Opin. Struct. Biol. 19, 596–604 (2009).

32. Domingo, J., Baeza-Centurion, P. & Lehner, B. The Causes and Consequences
of Genetic Interactions (Epistasis). Annu. Rev. Genomics Hum. Genet. 20,
https://doi.org/10.1146/annurev-genom-083118-014857 (2019).

33. Gjuvsland, A. B., Plahte, E. & Omholt, S. W. Threshold-dominated regulation
hides genetic variation in gene expression networks. Bmc. Syst. Biol. 1, 57
(2007).

34. Kacser, H. & Burns, J. A. The molecular basis of dominance. Genetics 97,
639–666 (1981).

35. Ptashne, M. A genetic switch: phage lambda revisited. (Cold Spring Harbor
Laboratory Press, New York, US, 2004).

36. Ackers, G. K., Johnson, A. D. & Shea, M. A. Quantitative model for gene
regulation by lambda phage repressor. Proc. Natl Acad. Sci. USA 79,
1129–1133 (1982).

37. Lagator, M., Paixao, T., Barton, N., Bollback, J. P. & Guet, C. C. On the
mechanistic nature of epistasis in a canonical cis -regulatory element. eLife 6,
e25192 (2017).

38. Igler, C., Lagator, M., Tkačik, G., Bollback, J. P. & Guet, C. C. Evolutionary
potential of transcription factors for gene regulatory rewiring. Nat. Ecol. Evol.
2, 1633–1643 (2018).

39. Lagator, M., Sarikas, S., Acar, H., Bollback, J. P. & Guet, C. C. Regulatory
network structure determines patterns of intermolecular epistasis. eLife 6,
e28921 (2017).

40. Wylie, C. S. & Shakhnovich, E. I. A biophysical protein folding model
accounts for most mutational fitness effects in viruses. Proc. Natl Acad. Sci.
USA 108, 9916–9921 (2011).

41. Jiang, L., Mishra, P., Hietpas, R. T., Zeldovich, K. B. & Bolon, D. N. A. Latent
effects of Hsp90 mutants revealed at reduced expression levels. PLoS. Genet. 9,
e1003600 (2013).

42. Starr, T. N., Flynn, J. M., Mishra, P., Bolon, D. N. A. A. & Thornton, J. W.
Pervasive contingency and entrenchment in a billion years of Hsp90
evolution. Proc. Natl Acad. Sci. USA. 115, 4453–4458 (2018).

43. Araya, C. L. et al. A fundamental protein property, thermodynamic stability,
revealed solely from large-scale measurements of protein function. Proc. Natl
Acad. Sci. USA 109, 16858–16863 (2012).

44. Castel, S. E. et al. Modified penetrance of coding variants by cis-regulatory
variation contributes to disease risk. Nat. Genet. 50, 1327–1334 (2018).

45. Boucher, J. I., Bolon, D. N. A. & Tawfik, D. S. Quantifying and understanding
the fitness effects of protein mutations: Laboratory versus nature. Protein Sci.
25, 1219–1226 (2016).

46. Otwinowski, J., McCandlish, D. M. & Plotkin, J. B. Inferring the shape of
global epistasis. Proc. Natl Acad. Sci. USA. 115, E7550–E7558 (2018).

47. Weinreich, D. M., Watson, R. A. & Chao, L. Perspective: sign epistasis and genetic
costraint on evolutionary trajectories. Evolution 59, 1165–1174 (2005).

48. Bhaskaran, S., Umesh, P. & Nair, A. S. Hill Equation in Modeling
Transcriptional Regulation. in Systems and Synthetic Biology, 77–92 (Springer,
Netherlands, 2015).

49. Keren, L. et al. Massively parallel interrogation of the effects of gene
expression levels on fitness. Cell 166, 1282–1294.e18 (2016).

50. Tokuriki, N. & Tawfik, D. S. Chaperonin overexpression promotes genetic
variation and enzyme evolution. Nature 459, 668–673 (2009).

51. Bridgham, J. T., Ortlund, E. A. & Thornton, J. W. An epistatic ratchet
constrains the direction of glucocorticoid receptor evolution. Nature 461,
515–519 (2009).

52. Onge, R. P. S. et al. Systematic pathway analysis using high-resolution fitness
profiling of combinatorial gene deletions. Nat. Genet. 39, 199–206 (2007).

53. Soyk, S. et al. Bypassing negative epistasis on yield in tomato imposed by a
domestication gene. Cell 169, 1142–1155.e12 (2017).

54. Gjuvsland, A. B., Vik, J. O., Beard, D. A., Hunter, P. J. & Omholt, S. W.
Bridging the genotype-phenotype gap: what does it take? J. Physiol. 591,
2055–2066 (2013).

55. Kogenaru, M. & Tans, S. J. An improved Escherichia coli strain to host gene
regulatory networks involving both the AraC and LacI inducible transcription
factors. J. Biol. Eng. 8, 2 (2014).

56. Chen, Y.-J. et al. Characterization of 582 natural and synthetic terminators and
quantification of their design constraints. Nat. Methods 10, 659–664 (2013).

57. Andersen, J. B. et al. New unstable variants of green fluorescent protein for
studies of transient gene expression in bacteria. Appl. Environ. Microbiol. 64,
2240–2246 (1998).

58. Waldo, G. S., Standish, B. M., Berendzen, J. & Terwilliger, T. C. Rapid protein-
folding assay using green fluorescent protein. Nat. Biotechnol. 17, 691–695 (1999).

59. Julien, P., Miñana, B., Baeza-Centurion, P., Valcárcel, J. & Lehner, B. The
complete local genotype–phenotype landscape for the alternative splicing of a
human exon. Nat. Commun. 7, 11558 (2016).

60. Zhang, J., Kobert, K., Flouri, T. & Stamatakis, A. PEAR: a fast and accurate
Illumina Paired-End reAd mergeR. Bioinformatics 30, 614–620 (2014).

61. Rubin, A. F. et al. A statistical framework for analyzing deep mutational
scanning data. Genome Biol. 18, 150 (2017).

62. Schymkowitz, J. et al. The FoldX web server: an online force field. Nucleic
Acids Res. 33, W382–W388 (2005).

63. Kawashima, S. et al. AAindex: amino acid index database, progress report
2008. Nucleic Acids Res. 36, D202–D205 (2007).

64. Zaslavsky, B. Y., Mestechkina, N., Miheeva, L. & Rogozhin, S. Measurement of
relative hydrophobicity of amino acid side-chains by partition in an aqueous
two-phase polymeric system: Hydrophobicity scale for non-polar and
ionogenic side-chains. J. Chromatogr. A. 240, 21–28 (1982).

65. Cherstvy, A. G. Positively charged residues in dna-binding domains of
structural proteins follow sequence-specific positions of DNA phosphate
groups. J. Phys. Chem. B 113, 4242–4247 (2009).

66. Henikoff, S. & Henikoff, J. G. Amino acid substitution matrices from protein
blocks. Proc. Natl Acad. Sci. USA 89, 10915–10919 (1992).

67. Bintu, L. et al. Transcriptional regulation by the numbers: models. Curr. Opin.
Genet. Dev. 15, 116–124 (2005).

68. Huang, G. S. & Oas, T. G. Structure and stability of monomeric.lambda.
Repressor: NMR evidence for two-state folding. Biochemistry 34, 3884–3892
(1995).

69. Parsell, D. A. & Sauer, R. T. The structural stability of a protein is an
important determinant of its proteolytic susceptibility in Escherichia coli. J.
Biol. Chem. 264, 7590–7595 (1989).

70. Hastie, T. & Stuetzle, W. Principal Curves. J. Am. Stat. Assoc. 84, 502–516
(1989).

Acknowledgements
We thank members of the Lehner lab and J. Ren for comments on the paper. This work
was supported by a European Research Council (ERC) Consolidator grant (616434), the
Spanish Ministry of Economy and Competitiveness (BFU2017-89488-P and SEV-2012-
0208), the Bettencourt Schueller Foundation, Agencia de Gestio d’Ajuts Universitaris i de
Recerca (AGAUR, 2017 SGR 1322.), and the CERCA Program/Generalitat de Catalunya.
X. Li was supported in part by a fellowship from the Ramón Areces Foundation. We also
acknowledge the support of the Spanish Ministry of Economy, Industry and Competi-
tiveness (MEIC) to the EMBL partnership and the Centro de Excelencia Severo Ochoa.

Author contributions
X.L. performed all experiments, analyses and modelling. J.L. built the plasmid construct
pCIPR. X.L., J.L., R.D. and B.L. conceived the project. X.L. and B.L. designed the project
and interpreted the data, X.L., P.B-C. and B.L. wrote the paper.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-11735-3

14 NATURE COMMUNICATIONS |         (2019) 10:3886 | https://doi.org/10.1038/s41467-019-11735-3 | www.nature.com/naturecommunications

https://doi.org/10.1146/annurev-genom-083118-014857
www.nature.com/naturecommunications


Additional information
Supplementary Information accompanies this paper at https://doi.org/10.1038/s41467-
019-11735-3.

Competing interests: The authors declare no competing interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

Peer review information: Nature Communications thanks Elena Kuzmin, Simon
Forsberg and Stig W. Omholt for their contribution to the peer review of this work. Peer
reviewer reports are available.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2019

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-11735-3 ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:3886 | https://doi.org/10.1038/s41467-019-11735-3 | www.nature.com/naturecommunications 15

https://doi.org/10.1038/s41467-019-11735-3
https://doi.org/10.1038/s41467-019-11735-3
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications
www.nature.com/naturecommunications

	Changes in gene expression predictably shift and switch genetic interactions
	Results
	Mutagenesis of the lambda repressor at two expression levels
	Mutational effects in CI change non-linearly
	Changing expression alters how mutations in CI interact
	A mathematical model predicts changes in epistasis
	The cause of expression-dependent epistasis
	Changes in gene expression reverse the sign of epistasis
	Changes in gene expression alter epistasis for many genes
	Ambiguous genetic predictions

	Discussion
	Methods
	Microbe strain and growth conditions
	Mutant oligonucleotide library synthesis and amplification
	Plasmid constructs
	Making highly efficient electro-competent cells
	Sorting cells based on CI mutants’ phenotypes
	Verification of mutational effects
	Quantification of CI protein expression
	From sequencing data to target gene expression
	From Illumina sequencing reads to variant counts
	Calculating enrichment scores and filtering
	Mapping enrichment scores to GFP signal
	Correcting technical biases
	Calculating mutational effects at amino acid level
	Rescaling the mean GFP signals to the detection limits
	Folding energy, binding energy and structural analysis
	Other features tested
	Mathematical model
	Regulatory interaction model of the CI-repressor system
	Estimating the functional protein concentration
	Thermodynamics of CI folding model
	Combining models
	Comparing four different sub-models
	Log-additive model
	Full model
	Folding-only model
	Regulation-only model
	Simulation overview
	Simulating the mutational effects based on the model
	Comparing model predicted and observed double mutational effects
	Predicting pair-wise genetic interactions with each sub-model
	Toy models of three protein expression–nobreakfitness relationships
	Quantification and statistical analysis
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Additional information




