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A combined variational and diagrammatic quantum
Monte Carlo approach to the many-electron
problem
Kun Chen 1 & Kristjan Haule 1

Two of the most influential ideas developed by Richard Feynman are the Feynman diagram

technique and his variational approach. Here we show that combining both, and introducing a

diagrammatic quantum Monte Carlo method, results in a powerful and accurate solver to the

generic solid state problem, in which a macroscopic number of electrons interact by the long

range Coulomb repulsion. We apply it to the quintessential problem of solid state, the

uniform electron gas, which is at the heart of the density functional theory success in

describing real materials, yet it has not been adequately solved for over 90 years. Our

method allows us to calculate numerically exact momentum and frequency resolved spin and

charge response functions. This method can be applied to a number of moderately interacting

electron systems, including models of realistic metallic and semiconducting solids.
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The success of the Feynman’s diagram technique1 rests on
two pillars, the quality of the chosen starting point and
one’s ability to compute the contributions of high-enough

order, so that the sum ultimately can be extrapolated to the
infinite order.

Here we address the former by introducing the variationally
optimized starting point, as discussed below, and we solve the
latter by developing a powerful Monte Carlo method which can
sum factorially large number of diagrams while massively
reducing the fermionic sign problem by organizing Feynman
diagrams into sign-blessed groups. The resulting Variational
Diagramatic Monte Carlo (VDMC) method is a generic many-
body solver, which is here tested on the classic solid state pro-
blem. We compute the spin and the charge response functions,
which are directly accessed by the experiment, but remain
challenging to compute by other methods. The accuracy of the
calculated response functions is sufficiently high, so as to
uncover previously missed fine structure in these responses.

Results
The optimized starting point Lagrangian. In the Feynman
diagrammatic approach, one splits the Lagrangian of a system, L,
into a solvable part L0 and the interaction ΔL= L− L0. The effect
of the interaction is included with a power expansion in ΔL,
constructed using the Feynman diagrams. Such diagrammatic
series achieves the most rapid convergence when the leading term
L0 captures the emergent collective behavior of the system, which
can be very different from the non-interacting problem2. In the
metallic state, which is of special interest in this paper, the low-
temperature physics is described by the emergent quasiparticles
interacting with a screened Coulomb interaction. We build an
effective Feynman diagrammatic approach by explicitly encoding
such physics in L0. We screen the interaction in L0 with a
screening parameter λ, rendering the Coulomb interaction short-
ranged (VðrÞ / expð�r

ffiffiffi
λ

p Þ=r). Correspondingly, a λ counter-
term must be added to ΔL to capture the non-local effects of the
Coulomb interaction with high-order diagrams (see the Methods
section). Similarly, we introduce an electron potential vk which
properly renormalizes the electron dispersion and also fixes the
Fermi surface of L0 to the exact physical volume, which is
enforced by the Luttinger’s theorem3 (see the Methods section).
In our simulations, such choice shows the most rapid and uni-
form convergence of the response functions for both small and
large momenta.

Motivated by Feynman’s variational approach4, we take the
screening parameter λ as variational parameter which should be
optimized to accelerate the rate of convergence. It was shown in
the development of optimized perturbation theory5 and varia-
tional perturbation theory6,7 that the best choice of a variational
parameter is the value at which the targeted observable is
least sensitive to the change of the parameter. This technique is
called the principle of minimal sensitivity (PMS). In refs. 7–10, it
was shown that the perturbative expansion optimized with the
PMS can succeed even when interaction is strong, and regular
perturbation theory fails. In this work, we optimize the
screening parameter λ with PMS and observe a vast improvement
to the convergence of the targeted response functions with
expansion order.

The sign-blessed Monte Carlo algorithm. While our setup of the
expansion (with the static screening and the physical Fermi
surface) is not entirely new11–14, its evaluation to high-enough
order until ultimate convergence has not to our knowledge been
achieved before in any realistic model containing the long-range
Coulomb interactions that are relevant for realistic solids. Our

solution employs a recently developed diagrammatic Monte Carlo
method15–22, which is here optimized to take a maximal advan-
tage of the sign blessing in fermionic systems16. Namely, by
carefully arranging and grouping the Feynman diagrams, it is
possible to ensure a massive sign cancellation for different dia-
grams in the same group, before the MC sampling is
performed21,23. The conventional diagrammatic Monte Carlo
algorithms15–20, which were sampling the diagrams one by one,
are highly inefficient here.

We evaluate diagrams in the momentum and imaginary-time
representation, and for each configuration of random momenta
(k0, k1, k2, ⋯, kN) and times (τ1, τ2, ⋯, τ2N) generated by the
Markov chain, we sum the contribution of all diagrams at a
given order N, which have the same number of momenta and
time variables23. For example, when computing the polarization
at order N= 6, the sector without counterterms contains 14,593
Feynman diagrams (see Fig. 1). These are regrouped into a
much smaller number of sign-blessed groups to boost the
efficiency of the MC sampling. For example, motivated by the
crossing symmetry, at the lowest order in the crossing
exchange, we get from standard Feyman diagrams to so-called
Hugenholtz diagrams24 where the direct and exchange inter-
actions are combined into an antisymmetrized four point vertex
(see Fig. 1, green box). That exchange operation keeps the
diagram exactly the same, except for a change of the overall sign
and a change of momentum on a single interaction line, hence
the pairs of such diagrams largely cancel. After this operation,
there are only 877 Hugenholtz diagrams at order 6. To further
reduce the number of diagrams, we then combine the
polarization diagrams that can be derived from the same free-
energy diagram by attaching two external vertices to propaga-
tors. Mathematically, adding external vertices to a free-energy
diagram corresponds to taking its functional derivative with
respect to the inverse propagator. Therefore, the above step
groups the polarization diagrams into a conserving group in the
Baym–Kadanoff sense25, and the sign cancellation is guaranteed
by the Ward identities (see Supplementary Note 1). For
example, at order N= 6 there are only 41 such free-energy
groups (see Fig. 1). We thus managed to reduce the complexity
from 14,593 individual diagrams to 41 groups. The diagrams in
the same group are very similar, and hence can share the
identical momentum/time variables (except the external
vertices). This not only ensures the massive sign cancellation
between different diagrams but also reduces the cost of
computing the total weight of Feynman diagrams in Monte
Carlo updates.

Finally, beyond variationally optimizing the zeroth order term
(L0) we can also look for improvement of the high-order vertex
functions. One of our choices is to sum up all ladder diagrams
dressing the vertices (see Supplementary Fig. 3). We call this
scheme the Vertex Corrected Constant Fermi Surface (VCCFS).
The original diagrammatic expansion is here called Constant
Fermi Surface (CFS) scheme. The name originates in the above
described principle that electron potential vk is determined in
such a way that L and L0 share the same physical Fermi surface
volume.

Spin susceptibility of the uniform electron gas. All results in
this work are obtained at temperature T= 0.04EF, which is much
lower than any other scale in UEG problem26; hence, results are
the zero temperature equivalent. We want to point out that finite
temperature calculations are very hard in the Diffusion Monte
Carlo (DMC)27, while our method is very well suited for finite
temperature calculations, and converges even faster with the
increasing order. While wave function properties, such as energy
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and pair distribution function, are very precisely computed by
DMC27, and some of them are also are amenable to approx-
imations such as GW28,29, the response functions are more
challenging to evaluate with the existing techniques. The strength
of our approach is that it can be used to compute both the static
and the dynamic, the single and the multiparticle correlation
functions.

In Figs. 2 and 3 we show the momentum-dependent (Pauli)
spin susceptibility at zero frequency, which has never been

precisely calculated before to our knowledge even though its
overall shape is crucial for the design of appropriate exchange-
correlation functionals of the density functional (DFT) to predict
magnetic order in real materials. In panels (a) and (b) we show
how the convergence properties of the susceptibility χs depends
on the screening parameter λ in the theory. Note that the static
screening in L0 is always compensated by the counterterm in ΔL,
so that for any value of λ the UEG model is recovered at infinite
order limit. The observable χs(q= 0) develops a broad plateau as
a function of λ (Fig. 2a, b) at the point λ�N , which is slightly
increasing with the increasing order. This shows that if expansion
is carried out to high-enough order, the physics becomes more
and more local and allows one to use very short-range form of the
interaction, which greatly improves the efficiency of the method.
We note that this property will be very beneficial in the realistic
material applications, where the converged result is extremely
difficult to obtain due to the long-range nature of the bare
Coulomb interaction. Figure 2c shows the value of χs(q= 0) at the
optimized λ�N versus perturbation orders. When the PMS is used,
such that the variational parameter λ is optimized order by order,
the convergence is very rapid, even when the bare interaction is
strong. The value χs(q= 0) at the optimized λ�N is monotonically
increasing with the increasing order in the CFS scheme, and
beyond the second order is oscillating around the converged value
in VCCFS scheme. Both schemes converge towards the same
value, and the systematic error bar at a given truncation order can
be estimated from comparison between the two methods,
allowing one to extract very precise value of χs(q= 0) even at a
moderate expansion order (see Fig. 2c, Table 1).

Figure 2d shows the momentum dependence of spin suscept-
ibility χs(q) at λ*/EF= 0.75, optimized at the highest order (N= 6)
and its comparison to the non-interacting (RPA) result, which
underestimates χs up to 57%.

In Fig. 3a we show the same spin susceptibility as in Fig. 2d, but
for other values of density parameter rs= 1–4 (here density
n ¼ 3=ð4πr3s Þ). Both VCCFS and CFS schemes agree with each
other within the statistical error bar at order N= 6 for all rs ≤ 4.
We note that this spin susceptibility plays a central role in
construction of the DFT exchange-correlation kernel for magne-
tically ordered systems. Finally, Fig. 3b displays the static local-field
correction, which measures the deviation from the non-interacting

electron gas (χRPA), GðqÞ � q2

8π ðχ�1
RPAðq;ω ¼ 0Þ � χ�1ðq;ω ¼ 0ÞÞ.

It is a very sensitive measure of electron correlations. It has been
suggested in the literature that the possible peak near k ~ 2kF is of
great importance for understanding the quasiparticle properties30.
Within the local density approximation, the function G(q) is
approximated by the quadratic parabola depicted in Fig. 3b31,
which is an excellent approximation at small q ≤ kF, but its
deviation from the quadratic function is very pronounced near 2kF.
Note that within RPA G(q) vanishes, as RPA does not take into
account the exchange-correlation kernel. We note that our
calculation clearly shows that in the exact solution, the local-field
correction displays non-trivial maximum just above 2kF, which has
not been established before.

Charge response function. Figure 4 shows the dielectric function
ϵðqÞ for densities rs= 1 to rs= 4, and its comparison to RPA and
DMC31,32 results. We show several orders (N= 2–5) using
VCCFS scheme, and also the extrapolated result to N=∞ using
standard second-order Richardson extrapolation. The DMC data
are in agreement with our prediction, but notice that DMC allows
one to calculate only a set of discrete points, while the developed
VDMC method gives a smooth and very accurate continuous
curve, which allows one to resolve the fine structure. For example,
we notice that there is a clear kink of 1=ϵ curve near 2kF. This
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Fig. 1 Grouping of Feynman diagrams. The grouping is achieved by
leveraging the fermionic crossing symmetry and the free-energy generating
functional. Orange top box shows the number of Feynman/Hugenholtz/
Free-energy Hugenholtz diagrams at orders 3–6, excluding the
Hartree–Fock sub-diagrams (see Supplementary Note 1). The green panel
on the left and the right shows an example of the free-energy Hugenholtz
diagram, and how is the Hugenholtz vertex related to the standard
Feynman diagram. Note that a single Hugenholtz diagram with N vertices
(black dots) represents up to 2N standard Feynman diagrams with
alternating signs. By attaching two external vertices to different
propagators in the Hugenholtz free-energy diagram in the green box, one
generates four topologically distinct groups of standard Feynman diagrams
for the polarization function. Two of them are shown in the blue and orange
box below. By the process of attaching external vertices to a single
Hugenholtz free-energy diagram, we generate 10 out of 11 standard
Feynman diagrams for the polarization at the third order. The color lines
represent our choice for momentum loops, which are uniquely determined
by the choice of the loops in the free-energy Hugenholtz diagram. The
external momentum is added through the shortest path connecting two
external vertices. Note that such grouping of diagrams allows us to
calculate the weight of all diagrams in this figure with only eight different
electron propagators, instead of expected 36. The above protocol can
generate multiple copies of the same Feynman diagram. We tested two
approaches: (a) we keep one copy to avoid double counting; (b) we keep all
copies and precompute the symmetry factors, and we notice somewhat
better performance of scheme (b)
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feature has been proposed in some theories (e.g. ref. 33), but the
previous DMC results in refs. 31,32 were not precise enough to
confirm or disprove it.

Finally, in Table 1 we give our best estimates for the static spin
and charge response with estimation of the error bar. Within our
method the spin response shows faster convergence with
increasing order; hence, it allows us to compute the spin response
more precisely than the charge response. Therefore, our values for
χs/NF are more precise than currently available literature
(compare columns one and two). Note that the previous estimate
for the spin susceptibility relied on an uncontrolled ansatz for the
spin dependence of the susceptibility, hence large uncertainty.

Contrary to the spin response, or finite momentum charge
response, the static uniform charge response P(q= 0, ω= 0) can
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Fig. 2 Spin susceptibility of UEG at rs= 4. This corresponds to a density n ¼ 3=ð4πr3s Þ. The optimization of χs(q= 0, ω= 0) versus the screening parameter
λ within a CFS and b VCCFS scheme. Susceptibility χ and λ are scaled by the density of states at the Fermi level NF ¼ ð 3

2πÞ2=3=ð2πrsÞ, and the Fermi energy
EF, respectively. The shaded region shows the estimated total s.d. error bar of our calculation. A single extrememum at the optimized λ* appears, which is
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Table 1 Long wavelength values of spin and charge response

rs χs/NF litt.(χs/NF) P(0)/NF litt.(P(0)/NF)

1 1.152 (2) 1.15–1.16 1.208 (6) 1.207–1.208
2 1.296 (6) 1.27–1.31 1.54 (2) 1.549–1.549
3 1.438 (9) 1.39–1.48 2.20 (6) 2.194–2.203
4 1.576 (9) 1.51–1.66

First column χs= χs(q= 0, ω= 0) is the spin susceptibility, here normalized by the density of
states at the Fermi level (NF), as computed by the current method. The second column shows
the range of previous estimations from the literature37. P(0)≡ P(q= 0, ω= 0) is the static
uniform charge polarization as obtained by this method. Unfortunately both CFS and VCCFS
methods approach the converged value from below, hence extrapolation to N=∞ is needed,
which leads to much larger error bar in our calculation. The fourth column lists previous DMC
results, extracted from two different correlation energy ansatzes proposed in refs. 37,38
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be obtained from the ground state energy of the system, without
explicitly introducing a modulated external potential, and hence it
can be extracted very precisely from the existing DMC
calculations. We compare it with our results, and find excellent
agreement. We note that static P(q= 0, ω= 0) at rs= 4
convergences very slowly in our method, due to proximity to
the well known charge instability at rs ≈ 5.2; hence, we can not
reliably extrapolate its value to infinite order at rs ≥ 4.

Discussion
The prospects of combining the Variational diagrammatic Monte
Carlo with DFT to obtain theoretically controlled results in real
solids are particularly exciting, as the DFT potential is semi-local
and can be added to vk, so that it will play a role of a counter-term
in the expansion. The complexity would be modest, because no
expensive self-consistency is required, and because the interaction
is statically screened, hence the scaling of this method should be
similar to the complexity of screened hybrids34 rather than the
self-consistent GW approximation35.

Methods
Model definition. The UEG model describes electrons in a solid where the positive
charges, which are the atomic nuclei, are assumed to be uniformly distributed in
space. The electrons interact with the other charges through a long-range Coulomb
interaction. The second-quantized Hamiltonian is

Ĥ ¼
X
kσ

k2 � μ
� �

ψ̂y
kσ ψ̂kσ þ ð1Þ

1
2V

X
q≠0

kk′σσ′

8π
q2
ψ̂y
kþqσ ψ̂

y
k′�qσ′ψ̂k′σ′ψ̂kσ ð2Þ

where ψ̂/ψ̂y are the annihilation/creation operator of an electron, μ is the chemical
potential controlling the density of the electron in the system. We measure the
energy in units of Rydbergs, and the wave number k, q in units of inverse Bohr
radius.

Lagrangian with the counterterms. In the path integral representation, using the
standard Hubbard–Stratonovich transformation, the Lagrangian of the uniform
electron gas can be cast into the form in which the Coulomb interaction is
mediated by an auxiliary bosonic field ϕq. Motivated by the well known fact that
the long-range Coulomb interaction is screened in the solid, and that the effective
potential of emerging quasiparticles differs from the bare potential, we introduce
the screening parameter λq and an electron potential vk into L0, which then takes
the form

L0 ¼ P
kσ

ψy
kσ

∂
∂τ � μþ k2 þ vkðξ ¼ 1Þ� �

ψkσ

þP
q≠0

ϕ�q
q2þλq
8π ϕq

ð3Þ

and represents well the low-energy degrees of freedom in the problem when
parameters λq and vk are properly optimized. To compensate for this choice of L0,
we have to add the following interaction:

ΔL ¼ �
X
kσ

ψy
kσvkðξÞψkσ � ξ

X
q≠0

ϕ�q

λq
8π

ϕq ð4Þ

þ
ffiffiffi
ξ

p iffiffiffiffiffiffi
2V

p
X
q≠0

ϕqρ�q þ ρqϕ�q

� �
: ð5Þ

so that, when the number ξ is set to unity, L= L0+ ΔL(ξ) is exactly the UEG
Lagrangian. The density ρ is ρq ¼ P

kσ ψ
y
kσψkþqσ . Note that the first two terms in

ΔL are the counterterms14 which exactly cancel the two terms we added to L0
above. We use the number ξ to track the order of the Feynman diagrams, so that
order N contribution sums up all diagrams carrying the factor ξN. We set ξ= 1 at
the end of the calculation. Note also that this arrangement bears similarity with the
well established methods, such as G0W035, which computes the self-energy at the
lowest order (ξ1) and sets vk to the DFT Kohn–Sham potential, and λq to the
bubble diagram (λq= g0g0 with g0�1

k ¼ ðiωþ μ� k2

2m � vkÞ). The so-called skeleton
Feynman diagram technique is recovered when vk and λq are equated with the self-
consistently determined self-energy and polarization. However, note that such
diagram expansion can be dangerous, as it can lead to false convergence to the
wrong solution36.

Variational optimization. In optimizing the screening parameter λq by the prin-
ciple of minimal sensitivity, we found it is sufficient to take a constant λq= λ.
Furthermore, we found that the uniform convergence for all momenta is best
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Fig. 4 The inverse dielectric function (1=ϵ). a–d Results for rs= 1–4 respectively at λ�N¼5, optimized for order 5, but we show 1=ϵ for all orders up to 5 and its
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achieved when the electron potential vk preserves the Fermi surface volume of g0k ;
therefore, we expand vk ¼ ξ ðΣx

k � Σx
kF
Þ þ ξ2 s2 þ ξ3 s3 � � �, and we determine sN so

that all contributions at order N do not alter the physical volume of the Fermi
surface. In other words, we ensure the density, which can be calculated with the
identity n=−Pq(τ= 0) where jqj � kF, remains fixed order by order. Since the
exchange (Σx

k) is static, and is typically large, we accomodate it at the first order
into the effective potential, so that at the first order we recover the screened
Hartree–Fock approximation, i.e., interaction screened to �expð�r

ffiffiffi
λ

p Þ=r and
optimized λ.

We also introduce a vertex correction scheme (VCCFS) to further improve the
convergence of the series. In practice, within the VCCFS scheme, we precompute
the three-point ladder vertex, and attach it to both sides of a polarization Feynman
diagram, and at the same time, we eliminate all ladder-type diagrams from the
sampling, to avoid double counting of diagrams (see Supplementary Fig. 4).

Comparison to existing approaches. Finally, we discuss the advantages and
limitations of the proposed method. The current variational approach is very
effective at weak to intermediate correlation strength (spin/charge response up
to rs ≈ 4), but to extend it to the regime with stronger correlations, one would
need to introduce more sophisticated counterterms, such as the three and the
four point vertex renormalization, to capture the emergent charge instability
around rs ≈ 5.2. Beyond the variational approach, we also want to point out that
our developed Monte Carlo algorithm is a very generic Feynman diagram cal-
culator for many-electron systems with long-range Coulomb repulsion, and is
more efficient and simpler that the existing conventional diagrammatic Monte
Carlo of refs. 15–20. For example, VDMC requires only three updates, while the
conventional approach needs about dozen updates. More importantly, this
algorithm utilizes the sign-blessed grouping techinque to dramatically improve
the sampling efficiency. Comparing to the recently proposed Determinant
Diagrammatic Monte Carlo algorithm21, our method is more generic in the
sense that the algorithm can directly work in any representation (momentum/
frequency, space/time) and can handle any vertex renormalization without
sacrificing the efficiency.

Data availability
All analytical data not given in the Supplementary Information are available on request.

Code availability
The code is available at https://github.com/haulek/VDMC with https://doi.org/10.5281/
zenodo.3309567, and https://github.com/kunyuan/FeynCalc with https://doi.org/
10.5281/zenodo.3308233.
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