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A single shot coherent Ising machine based on a
network of injection-locked multicore fiber lasers
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Yushi Kaneda1, Saikat Guha1, Mark A. Neifeld1,4 & N. Peyghambarian1

Combinatorial optimization problems over large and complex systems have many applica-

tions in social networks, image processing, artificial intelligence, computational biology and a

variety of other areas. Finding the optimized solution for such problems in general are usually

in non-deterministic polynomial time (NP)-hard complexity class. Some NP-hard problems

can be easily mapped to minimizing an Ising energy function. Here, we present an analog all-

optical implementation of a coherent Ising machine (CIM) based on a network of injection-

locked multicore fiber (MCF) lasers. The Zeeman terms and the mutual couplings appearing

in the Ising Hamiltonians are implemented using spatial light modulators (SLMs). As a proof-

of-principle, we demonstrate the use of optics to solve several Ising Hamiltonians for up to

thirteen nodes. Overall, the average accuracy of the CIM to find the ground state energy was

~90% for 120 trials. The fundamental bottlenecks for the scalability and programmability of

the presented CIM are discussed as well.
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For decades, optics has been preferred for communication and
parallel processing1. In the past, optical-computing techniques
have been able to demonstrate some mathematical operations

such as Fourier Transform2, vector matrix multiplication3, inverse
matrix4–6, and more recently multiplication and division using
nonlinear optics7–10. One of today’s major challenges in the digital
electronic computation is the optimization problem for a very large
data set. To improve the power consumption and speed for that
type of computation, several new technologies have been intro-
duced. For instance, multicore for electronic central processing
units as well as parallel computing architecture such as subthreshold
very large-scale integration (VLSI), application-specific integrated
circuit (ASIC), and a custom ASIC, the Tensor Processing Unit
(TPU)11. However, optimization problems for large data sets
remain an issue and is a subject of ongoing research both in terms
of software and hardware improvements. The main problems faced
by electronic computation platforms are bandwidth limitation and
high power consumption of electronic devices1,12,13. Hybrid
optical-electronic platforms have been recently explored as a way to
enhance the speed, and to lower the power consumption for some
computation problems. Examples include reservoir computing14–16,
signal processing17–22, and spike processing23–25.

Optical computers do not have to mimic the same algorithmic
design used in digital computers. Early attempts to do so failed to
implement an all optical computing based on optical logical gates
due to the lack of energy-efficient and compact optical devices26.
In some physical systems, remarkably in ultrashort laser phe-
nomena, the nonlinear dynamics of a complex system rapidly
happen much faster than what can be computed by a digital
computer. For such problems, an analog device that mimics the
physics of a complex phenomenon may have great benefits for
computational purposes17,18. In other words, for specific com-
putation problems where electronic digital processors have diffi-
culties in simulating a complex nonlinear system, an analog
optical system may be a solution, or can be used as an accelerator,
to help the digital simulation in a metaphoric way via a non-
algorithmic approach, where an engineered programmable
all-optical computer serves as a metaphor to the desired nonlinear
dynamics to be emulated27–31.

Combinatorial optimization problems are universal and
have many applications from image processing32, artificial
intelligence33,34, machine learning34–37 to computational biol-
ogy38–44. Most of these problems are in non-deterministic poly-
nomial time (NP)-hard or NP-complete categories. There exist
some approximate algorithms45–47 or simulated annealing
methods48 that are used commonly in digital computers to obtain
a solution in reasonable time. However, solving these problems
efficiently in terms of power consumption and speed for a large
number of variables (e.g. 106), is still beyond classical digital
computers and electronic analog computation platforms alike7–9.
Quantum annealing49–51 and adiabatic quantum computation
platforms52 have been recently introduced in the effort of solving
NP-hard problems. Although, the performance and scalability of
such machines still need to be explored53,54. Finding the ground
state spin configuration of the general Ising Hamiltonian is
known to be an NP-hard problem (for three dimensions, as well
as two dimensions with the Zeeman term):55

H ¼
XN
i;j≠i

Jijσ iσ j þ
XN
i¼1

λiσ i ð1Þ

Here, H is the Ising Hamiltonian, Jij is the mutual couplings
between node i and j, λi is called the Zeeman term (external field),
σi and σj are the ith and the jth spins, respectively, where each
spin can take a value of +1 or −1. In the past few years, some
physical systems have been introduced as coherent Ising

Hamiltonian solvers. One such system was based on a coupled
degenerate optical parametric oscillator network56–60, and
another was based on a network of injection-locked lasers61–64.

In this paper, we present simulations as well as experimental
results for an all-optical analog coherent Ising machine (CIM)
based on a network of injection-locked single frequency multicore
fiber (MCF) lasers. As a proof-of-principle, we have performed
the experiment for several Ising Hamiltonians with size of N= 3
(triangle topology), N= 4 (square lattice), N= 7 (1D chain), and
N= 13 example. In the optical platform we present, three spatial
light modulators (SLMs) are used, one to program the Zeeman
terms, the two others to encode the mutual couplings. Our
experimental results are compared with a brute-force algorithm
(BFA) which performs an exhaustive search to find the exact
ground state of the Ising Hamiltonian. Statistical analysis shows
that our system achieved an average accuracy of ~90% for 120
trials. We examined four different Ising Hamiltonians and repe-
ated the experiment up to 20 times for each case. The accuracy is
calculated based on the following:

Accuracy ¼ Emax � Eexp
Emax � EG

����
���� ´ 100%; ð2Þ

where Eexp is the measured expectation value of the Ising
Hamiltonian based on the experiment. EG and Emax are the cal-
culated ground state and maximum expectation values of the
Ising Hamiltonian, respectively, according to BFA simulation.

The modeling of the system has been done based on evolution
of complex photon field operator and approximating the photon
field amplitude by a square root of the photon number (mean
field approximation) in right and left circular polarizations.
Finally, we discuss some bottlenecks in the scalability, accuracy,
and programmability of the presented CIM.

We would like to stress that the theoretical and experimental
results in this paper exhibit an interesting candidate platform for
an optical computer whose coupled nonlinear analog dynamics
exhibits a discrete binary saturation effect that seeks a physical
energy minimum61. This makes it a strong candidate to encode
binary-valued Boolean optimization problems. However, whether
the physical energy minimum maps to the computational energy
minimum (e.g., of an Ising problem) producing results of suffi-
cient accuracy that cannot be obtained using digital means, e.g.,
using a polynomial time approximation scheme (PTAS), remains
unclear. However, the small-size systems we simulate and phy-
sically emulate show excellent agreement with theory, and pro-
duce results with remarkable accuracy to attaining the ground
state of the Ising function, and consumes much less power than a
purely digital solver would consume.

Results
Injection-locked laser system and mapping to the Ising
Hamiltonian. The system is composed of an injection-locked
laser network where several slave lasers (SLs) are locked to a
master laser (ML) in terms of oscillation frequency and polar-
ization state. The number of SLs represent the number of nodes
in the Ising Hamiltonian, and they are locked by a single fre-
quency ML with vertical linear polarization. The links between
SLs presented in Fig. 1 show the mutual couplings (Jij) where the
strength of the coupling for each pair of the SLs is symmetric
(Jij= Jji and Jii= 0). In a fully connected graph with size of
N, the number of edges (Nedg) are equal to ðN2Þ ¼ 1

2NðN � 1Þ and
for the case of an Ising Hamiltonian, there are 2N possible spin
configurations.

We begin with deriving nonlinear coupled photon rate
equations describing the dynamics of a network of injection-
locked lasers for the average photon numbers in the left (niL) and
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the right (niR) circular polarization modes, as a function of time.
At steady state, i.e., when dniR tð Þ=dt ¼ dniL tð Þ=dt ¼ 0 is satisfied,
one can derive a mapping (modulo some issues to be discussed
later) between Ising spins and the aforesaid steady-state photon
numbers at well above threshold, by invoking the minimum gain
principle (see Supplementary note 1 for full derivations)61. This
mapping is as follows:

σ i ¼
ffiffiffiffiffiffi
niR

p � ffiffiffiffiffiffi
niL

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
niR þ niL

p and σ j ¼
ffiffiffiffiffiffinjR

p � ffiffiffiffiffiffinjL
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

njR þ njL
p ð3Þ

The Zeeman term and mutual couplings in Eq. (1) are as
follows:

λi ¼ 2

ffiffiffiffiffiffiffi
Q
QM

s ffiffiffiffiffiffi
nM

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
niR þ niL

p χiCos φi � φMi � φM

� � ð4Þ

Jij ¼ γijCosðφi � φj � φjiÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
njR þ njL

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
niR þ niL

p ; ð5Þ

where QM is the ML’s cavity quality factor, χi is the amplitude
attenuation coefficients from the horizontal linear polarization of
the ML into the ith SL. γij is the amplitude attenuation coefficient
for the horizontally polarized signal between ith and jth SLs
which are real and positive when the relative phase difference
between two SLs are 0 or π61,62. φi and φj are the ith and jth SLs’
phases, respectively. φM is the ML’s phase, and φMi and φji are the
acquired phases from the ith SL locked to ML and ith SL to jth SL,
respectively.

The Ising problem’s solution, i.e., the binary spin configuration,
emerges spontaneously at steady state where each spin (defined as
a function of niL and niR above) saturate to binary discrete levels.
This behavior can be quantitatively explained via the minimum
gain principle, through a natural polarization mode competition
enforced by cross-gain saturation rule61,62 to minimize Supple-
mentary eq. 6, as discussed in the Supplementary note 1.

In a single mode laser cavity, the bandwidth of the gain
medium contains a broad range of modes. However, only
one mode gets the chance to amplify and represent the output
of the single mode laser. The cavity also has a natural loss which
can be varied for different cavity modes. Furthermore, the only
mode that lases as the single mode laser, is the mode with the
lowest loss in the cavity due to cross-gain saturation65–67.

Nevertheless, the coherently coupled SLs oscillate with a specific
polarization configuration state that minimizes the total loss of
the network. The minimum value of the total loss is equal to the
total gain of the network61,62. The relationship between the above
said minimum gain principle and the ground state of the Ising
Hamiltonian is based on a numerical verification and does not
stand on a solid physical argument.

Simulation results. When the SLs are locked to the ML, by
slightly rotating the ML’s vertical polarization the Zeeman term
initiates. At the same time by enabling the cross links between
SLs, the mutual-coupling terms in the Ising Hamiltonian are
turned on. After a short time (defined by the lifetime of the active
atoms in the gain medium), the system reaches at the steady state.
As we mentioned earlier the left and right circular polarizations
are the degree of freedom used in order to determine the sign of
Ising spins. If niR > niL we consider that σ i ¼ þ1, and likewise, the
spin is set to σ i ¼ �1 if niR < niL (this convention is applied for σ j
as well). We have used a numerical simulation in order to
examine the nonlinear coupled laser equations (Supplementary
eqs. 3–5) as a CIM, followed by a network of injection-locked
MCF lasers. The results of the simulation for N= 3 and N= 10
SL cores are shown in Fig. 2, for a random choice of the coupling
matrix and the Zeeman terms. We set the phase of all SLs to be
equal to ML’s phase in the simulation. For t < 0, the Zeeman and
cross-coupling terms are not turned on. Due to the initialization
induced by the only vertically polarized injection-locking signal
from the ML, the average photon numbers in two polarization
states are equal (niR= niL).

At t= 0, the Zeeman and cross-coupling terms are enabled.
Immediately afterwards, the average photon numbers in two
polarization modes depart from each other due to the effect of
polarization control from the ML (Zeeman term) and the mutual
couplings among the SLs. Eventually, the system reaches a steady
state with a convergence time of about 1 ms controlled by the
Yb3+ lifetime. The sign of computed Ising spins in Fig. 2e, f are
correspond to the ground state spin configuration of the Ising
Hamiltonians and we have verified the results with the BFA (See
Supplementary note 2 for all parameters used in the simulation).

It should be emphasized that the some of the simulations could
not find the exact ground state for some Ising Hamiltonians and
they were trapped in local minima (See Supplementary note 3 for
an example and summary in Supplementary table (1)). However,
one of the great advantage of this CIM could be the very short
experimental convergence time that is independent of the number
of nodes (only related to the Yb3+ lifetime ~1ms). Therefore, in
some cases, the ground state, or approximate ground state, of a
very large size Ising Hamiltonian can be found by this proposed
CIM in millisecond range time.

Experimental results. We have performed an all-optical experi-
mental platform to verify and study the performance of the
proposed CIM based on a network of injection-locked MCF
lasers. Figure 3 represents the concept of proposed optical CIM
based on a network of injection-locked MCF lasers.

We have previously reported on successfully injection locking of
19 SLs with a single frequency distributed feedback laser at 1030 nm
as the ML68. In the present experiment, the SLs were prepared from
an MCF composed of proprietary phosphate glasses and highly
doped with 6% Yb2O3 as the gain medium (Made by NP Photonic
Inc.). The MCF was cladding pumped by a 975 nm fiber-coupled
diode laser. The special design and engineering of the MCF is
maintained such that the signal was strongly confined in the cores.
Therefore, the cross talks due to the evanescent couplings among
the cores are negligible for a short length of MCF68. The imaging

Master laser

Isolator

SL 1

SL 2

SL 3 SL …

SL N-1

SL N
J1N

J23

JN,N –1
J12

Fig. 1 Injection-locked laser system scheme. N as the number of slave lasers
(SLs) denotes the size of the Ising Hamiltonian and the optical interactions
pathway between them follow the mutual couplings concept. Master laser
(ML) initiates the Ising Hamiltonian with slightly change to its vertical linear
polarization state
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and focusing lenses, that were used in the system for pumping and
injecting the ML, have been selected carefully to reduce the
aberration and match with the MCF’s numerical aperture. Figure 4
denotes the experimental setup of the optical CIM. The setup has
four main blocks: the Zeeman term initiator (Fig. 4a), the mutual
couplings unit (Fig. 4b), the SLs preparation part (Fig. 4c), and
finally, the polarization measurement and injection-locking mon-
itoring section (Fig. 4d). The status of injection-locking MCF SLs
was being monitored via a Fabry–Perot interferometer (FPI)68.

The Zeeman term (λi) is configured by a programmable
diffractive polarizing element like an LCOS spatial light
modulator. The polarization state of the injected ML can be set
independently for each core of the MCF thanks to the
programmable polarization rotation element by using sub-
apertures of SLM1. The specific polarization states can be
established by setting the retardation coefficients of the pixels
composing the different sub-apertures of the SLM1. The total
spatial polarization rotation across the ML beam was measured to
be 3° (see Supplementary Note 5 for more info).

We implemented two different mutual-coupling schemes,
presented in Fig. 4b. The first one is using a flat mirror and a
lens in a one-to-one imaging system where the facet of the MCF
was inversely imaged onto itself. In this case, only a fixed Jij
matrix with central symmetry could be achieved since retro-
reflector was not programmable.

The second design of the mutual coupling used two SLMs. In
this case, the connections between SLs can be programmed to
control the values of Jij matrix (Fig. 5). To do so, diffraction
gratings are displayed by the SLMs. The frequency and
orientation of the gratings define the diffraction direction, the
amplitude modulation is responsible for the diffraction ampli-
tude, and the phase of the diffracted beams can be adjusted using
the spatial phase of the gratings (lateral shift). To obtain multiple
beams from one input SL beam, several gratings are multiplexed.
Sub-apertures are defined for each incident SL on the SLM. This
system requires two SLMs, one to deflect the beams and the other
to restore the angle of incidence to ensure correct injection inside
the fiber core.
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Fig. 2 Simulation results. Time dynamic of a network of injection-locked MCF lasers for N= 3 (left column) and N= 10 (right column). The time evolution
analyses are plotted in the log format for a, b photon number in right and left circular polarizations, c, d up-level population, and e, f computed Ising spins.
The calculated Ising spin signs for N= 3 and N= 10 correspond to the ground state spin configuration of introduced Ising Hamiltonians
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Fig. 3 The proposed architecture for the coherent Ising machine (CIM). The injection-locked laser system consists of an Ytterbium doped multicore fiber
(MCF) as the slave lasers (SLs), locked to a single frequency master laser (ML). The spatial light modulator 1 (SLM1) is used to implement Zeeman terms
via a small change in the vertical polarization state of ML. SLM2 and SLM3 are the elements to program the interaction terms (Jij)
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The SLMs that we used had a compounded diffraction
efficiency of 2.13% at 1030 nm. Also, we had to add an extra
50/50 beam splitter (BS) in the optical pathway between SLs (BS1)
to make the mutual-coupling symmetric and BS3 (8% reflection
ratio) for measurement and FPI monitoring. Hence, we only
considered maximum two connections for each SL to other SLs.

The proper optical elements between different SLMs and the
SLs are chosen via a primary calculation for Gaussian beams
propagation through a nonsymmetric optical system by a so
called tensor ABCD law69,70 as well as by using a commercially
available code Zemax. This investigation was performed in order
to match the NA, mode field diameter, radius of curvature and

the ray off-set of the SLs beams for the cross-couplings (see
Supplementary Note 4).

For the measurement section, we have implemented a
simultaneous polarization state readout using a quarter wave-
plate at 45°, two polarizing beam splitters and a standard CMOS
camera (Fig. 4d). The photon number in left and right circular
polarizations which define the effective Ising spins (Eq. (3)), were
measured simultaneously by a single camera. The front facet of
the MCF was imaged to the camera using a set of positive
lenses. F2–F7 and F2–F8 high precision corrected aspheric (up to
14th order to reduce the aberration) lens pairs were used to
readout the polarization evolution of the orthogonal polarization
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states of the CIM as shown in the Fig. 4. The camera was a CMOS
pixel array sensitive at near infrared wavelength. We developed
a MATLAB scripts to read the relative intensity between
the left and right circular polarizations of each core from
the camera files.

Central symmetry coupling. For the mutual coupling terms (Jij)
using a reflector mirror and a lens, any MCF slave laser core is
coupled to the geometrically symmetric core in the 19-core array.
Although 19 cores are available, we only employed 13 cores of the
MCF because three cores did not have good injection-locking
quality and three cores were not able to connect to any SL due to
the symmetric inversion transformation (See Fig. 6a, b).

Considering reflection and coupling losses, a maximum of 25%
of total power would couple back to the MCF cores. We observed
experimentally that this amount of feedback can disturb the states
of the injection-locking lasers and making the system unstable
and out of locking eventually. For that reason, we placed an
attenuator to couple a smaller amount of light back to the MCF
cores. Typically, we allow a maximum of ~5% power coupling to
take place. Figure 6d shows the experimental results of the optical
CIM for N= 13 SLs.

For this experiment, the MCF was pumped at 3.8W (the
threshold pump power for lasing 13 SLs), and injection of ~183mW
from the ML into the inner cladding of the MCF. Initially, the SLM1
was set at constant retardation, and the mutual-coupling unit was
mechanically blocked by a slow shutter (t < 50ms in Fig. 6d left
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N= 13. c A microscope picture from the facet of the Ytterbium doped phosphate glass MCF. d The calculated Ising spins evolution based on the measured
relative intensities between photon numbers in right and left circular polarizations, detected by a CMOS CCD camera. e Simulated Ising spins based on the
experimental data that we fed to the Ising solver code and excellent agreement with d in terms of spin signs. Both experiment and MCF simulation found
the ground state spin configuration for the Ising Hamiltonian. f Computed Ising energy values for all possible spin configurations (213) using a brute-force
algorithm (BFA). g Sorted Ising energy values from f versus number of spin configurations. h Average accuracy of the optical coherent Ising machine (CIM)
for that particular Ising Hamiltonian with N= 13, was calculated to be 93.6% of actual value of the ground state Ising Hamiltonian. The minimum accuracy
that was performed by the experiment was 89%. The CIM relaxed to the exact ground state four times out of 20 times experimentations
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side). Both the mutual-coupling shutter and the Zeeman terms were
abruptly turned on at t= 0 (t= 50ms in Fig. 6d), and the
polarization states were recorded as a function of time until steady
state was performed (t > 77ms in Fig. 6d right side).

The convergence time of the steady state for the polarization
states were limited to the slow speed of the mechanical shutter,
the camera readout time and the analog–digital data conversion.
The difference between photon number in right and left circular
polarizations for each SL was observed to move towards positive
spin (+1) or negative spin (−1) as expected (Eq. (3)). The signal-
to-noise ratio of the photon numbers at the camera readout was
high enough to easily distinguish between negative and positive
Ising spins for each SL. Figure 6e shows the numerical simulation
of the CIM based on the experimental data that we obtained for
the Zeeman and mutual-coupling terms (see Supplementary
note 6 for the specific choices of the coupling matrix and Zeeman
terms we made, and the experimental data).

We compared this result with a BFA and it confirms that the
MCF simulation found the ground state of the Ising Hamiltonian.
We repeated the experiment 20 times (turning on and off the
Zeeman and mutual coupling terms) in a 20 s time frame

duration. Four times the optical CIM found the exact ground
state. For the 16 other cases, the system converged toward local
minima with minimum and maximum accuracy of 89 and 95% of
the ground state energy, respectively (Fig. 6f, g). Figure 6h
denotes the accuracy versus number of experimental trial.

The optical CIM for this particular Hamiltonian, maintained the
average accuracy of ~93%. There are various reasons that could
explain why the system did not always fall in the ground state. One
explanation is the external disturbances on the SLs’ cavity, such as
airflow and vibration, which perturbed the quality of the injection-
locking network. Fundamentally, the noise and fluctuations from
the ML or the pump could also effect on the results61.

General coupling matrices. We have performed the experiment
for some other Ising Hamiltonians based on the optical design
Using the diffraction from two SLMs to control the Jij terms. For the
mutual couplings terms, three gratings with different connectivity
and modulation amplitude were uploaded to the SLMs. Figure 7a
describes the first connectivity that was implemented between the
SLs, and where each SL was only connected to two other SLs.
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Figure 7b is a picture of the facet of the MCF at the time when the
Ising Hamiltonian was turned on. It can be seen that the brightness
between nR and nL are different. The brightness’s change as the
function of time until the system reaches to the steady state after
1ms (dniRdt ¼ 0 & dniL

dt ¼ 0 but
ffiffiffiffiffiffi
niR

p � ffiffiffiffiffiffi
niL

p
≠ 0). Figure 7c, d

denote the Ising spin signs based on the experimental measurement
and MCF simulation, respectively. Figure 7e shows the sorted Ising
energy versus the number of spin configuration (27 spin config-
urations) produced by the BFA. Figure 7f is the accuracy of com-
puted Ising energy based on measured Ising spin configurations
versus the number of experiments. (see Supplementary note 6 for
the experimental data).

We performed the experiment for another example with size of
N= 7 (see Supplementary Note 7) and the CIM found the ground
state with overall average of ~90% accuracy. Figures 8 and Fig. 9
denote two Ising Hamiltonian instances with size of N= 3 and N=
4, respectively (see Supplementary Note 6 for the experimental data).

Discussion
We investigated both theoretically and experimentally an all-
optical CIM based on a network of injection-locked MCF lasers.
The numerical simulation of the system can find the ground state
Ising spin configuration consistent with the BFA results.
Although, we should note that in some cases, the numerical
simulation of the injection-locking network did not find the
ground state. As proof-of-principle, we performed several
experiments for different Ising Hamiltonians with size of N= 3,
N= 4, N= 7, and N= 3, repeating the experiment 20 times each.
Table 1 denotes a summary of the experimental results:

We attribute the fluctuations observed in the experimental system
to some macroscopic effects such as vibration or airflow in the cavity,
changing the length of the cavity because of temperature fluctuations

in the lab or any other effect that can change the status of injection-
locking system. The proposed optical CIM converges to the result in
1ms and it does not increase as the problem size increases.

Increasing the number of cores in the MCF could scale the
Ising Hamiltonian if stable injection locking is maintained.
Hypothetically, increasing the bandwidth of the injection locking
is one of the key element in order to scale the CIM to higher
nodes. Increasing the number of cores, needs a higher pump
power. In this case the cooling of the MCF should be also well
controlled in order to keep the length of the cavity constant.
Other macroscopic affects such as thermal fluctuations and
vibrations can disturb the cavity of SLs and they need to be taken
in account. The other important key element to scale the CIM is
implementing SLMs with high diffraction efficiency and low loss.
This allows increasing number of edges in the mutual-coupling
matrix. However, each SL’s energy is reduced by the of square of
the number of connections which reduces the feedback to the
MCF. (We experimentally found in our system that the feedback
power ratio needs to be <5% and >1%). For instance, replacing
the current SLMs (2.13% diffraction efficiency) with optimized
SLMs for 1030 nm wavelength (~94% diffraction efficiency),
allows us to implement fully connected Ising Hamiltonian up to
N= 95 nodes and ðN2Þ ~ 4465 edges (see Supplementary note 8 for
more details). Furthermore, using the CCD camera with higher
pixel depth can result in principle, to detect more accurately the
variations between nR and nL. In other word, the lower bound
limitation for the feedback power ratio (1%), can even be pushed
to be smaller which would permit us to implement the CIM with
higher nodes and edges (see Supplementary note 8).

According to Eqs. (4) and (5), the Zeeman term and mutual
couplings are dependent on the photon numbers (niL and niR)
which indicates that the described mapping of the CIM to the
Ising Hamiltonian is dependent on the solution of the specific
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Ising instance to be solved. This can be a major issue to program
the CIM to solve any arbitrary Ising Hamiltonian specially when
we want to feed a hard instance of an NP-hard problem into the
CIM. However, we can approximate the ratios involving niL and
niR in Eqs. (4) and (5) to one since the magnitudes of the total
energy in the SLs and ML can be taken to be almost equal, i.e.,
niL þ niR ¼ njL þ njR for all i and j.

However, despite the above issues of the solution-dependent
mapping, the original proposed CIM based on the injection-
locked lasers61 is an interesting nonlinear coupled optical system
worthwhile of exploration as a platform for analog computation.
The system seeks a physical energy minimum driven by its
Lagrangian. The challenge will be to find a computationally hard
problem that can be mapped into that physical Lagrangian. It
however is intriguing that despite these purportedly imprecise
mapping, the CIM finds the ground state or at least a local
minimum close to the ground state, for problems of small sizes.

Future work must entail investigation of the sensitivity and
robustness of the proposed CIM based on a network of injection-
locked MCF lasers. It should be emphasized that this CIM pro-
posal should not be construed as a claim to solve NP-Hard
problems efficiently. As such, it will be important to characterize
the approximation ratios (to the cost of the optimal solution)
attained by this solver, and compare that to those attained by the
best-known (digital) PTAS for the problems at hand.

Data availability
The data that support the plots within this paper and other findings of this study are
available from the corresponding author on reasonable request.

Code availability
Simulation and data analyses codes are available from the corresponding author on
reasonable request.
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