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Quantifying the impact of public omics data
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The amount of omics data in the public domain is increasing every year. Modern science has

become a data-intensive discipline. Innovative solutions for data management, data sharing,

and for discovering novel datasets are therefore increasingly required. In 2016, we released

the first version of the Omics Discovery Index (OmicsDI) as a light-weight system to

aggregate datasets across multiple public omics data resources. OmicsDI aggregates geno-

mics, transcriptomics, proteomics, metabolomics and multiomics datasets, as well as com-

putational models of biological processes. Here, we propose a set of novel metrics to quantify

the attention and impact of biomedical datasets. A complete framework (now integrated into

OmicsDI) has been implemented in order to provide and evaluate those metrics. Finally, we

propose a set of recommendations for authors, journals and data resources to promote an

optimal quantification of the impact of datasets.
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Public availability of datasets is growing in all disciplines,
because it is considered to be a good scientific practice (e.g.
to enable reproducibility) and/or it is mandated by funding

agencies and scientific journals1,2. Science is now a data intensive
discipline and therefore, new and innovative ways for data
management, data sharing and for discovering novel datasets are
increasingly required3,4. However, as data volumes grow, quan-
tifying data impact becomes more and more important. In this
context, the Findable, Accessible, Interoperable, Reusable (FAIR)
principles have been developed to promote good scientific prac-
tises for scientific data and data resources5. In fact, recently,
several resources1,2,6 have been created to facilitate the Findability
(F) and Accessibility (A) of biomedical datasets. These principles
put a specific emphasis on enhancing the ability of both indivi-
duals and software to discover and re-use digital objects in an
automated fashion throughout their entire life cycle5. While data
resources typically assign an equal relevance to all datasets (e.g. as
results of a query), the usage patterns of the data can vary
enormously, similarly to other “research products” such as pub-
lications. How do we know which datasets are getting more
attention? More generally, how can we quantify the scientific
impact of datasets?

Recently, several authors7–9 and resources10 pointed out the
importance of evaluating the impact of each research product,
including datasets. Reporting scientific impact is indeed increas-
ingly relevant for individuals, but also reporting aggregated
information has become essential for research groups, scientific
consortia, institutions or for public data resources among others,
in order to assess the level of importance, excellence and rele-
vance of their work. This is a key piece of information for funding
agencies, which is used routinely to prioritise the projects and
resources they fund. However, most of the efforts nowadays focus
on the evaluation and quantification of the impact of publications
as the main artefact. For instance, in 2013, the “altmetrics” team
proposed a set of ‘alternative’ metrics to trace research products
with special focus on publications10. Specific tools and services
have been built since to aggregate “altmetrics”, including for
instance counts of mentions of a given publication in blog posts,
tweets and articles in mainstream media. The altmetrics attention
score is widely used by the research community nowadays (e.g. by
multiple scientific journals), as a measure of scientific influence of
manuscripts. However, adequate tracking and recognition of
datasets has been limited so far for multiple reasons: (i) the
relatively low number of publications citing datasets instead of
their corresponding publications; (ii) the lack of services that
store and index datasets from heterogeneous origins; and (iii) the
absence of widely used metrics that enable the quantification of
their impact. Some attempts have been made to improve the
situation, by introducing data object identifiers (DOIs) directly
associated to datasets11.

In 2016, we released the first version of the Omics Discovery
Index (OmicsDI—https://www.omicsdi.org) as a light-weight
system to aggregate datasets across multiple public omics data
resources. OmicsDI aggregates genomics, transcriptomics, pro-
teomics, metabolomics and multiomics datasets, as well as com-
putational models of biological processes1. The OmicsDI web
interface and Application Programming Interface (API) provide
different views and search capabilities on the indexed datasets.
Datasets can be searched and filtered based on different types of
technical and biological annotations (e.g. species, tissues, diseases,
etc.), year of publication and the original data repository where
they are stored, among others. At the time of writing (March
2019), OmicsDI stores just over 454,200 datasets from 16 dif-
ferent public data resources (https://www.omicsdi.org/database).
The split per omics technology is as follows: transcriptomics
(125,891 datasets), genomics (309,961), proteomics (12,362),

metabolomics (2411), multiomics (6578) and biological models
(8651). Here, we propose a set of novel metrics to quantify the
impact of biomedical datasets. A complete framework (now
integrated in OmicsDI) has been implemented in order to provide
and evaluate those metrics. Finally, we propose a set of recom-
mendations for authors, journals and data resources to promote
an optimal quantification of the impact of datasets.

Results
Omics data reanalysis and citations. By March 2019, the num-
ber of datasets with at least one reanalysis, one citation, one
download, one view and that contained connections in knowl-
edgebases was 12,162, 58,054, 66,418, 163,431 and 469,015,
respectively (Table 1). The reanalysis metric quantifies how many
times one dataset has been re-used (re-analysed) and the result
deposited in the same or in another resource. We classify rea-
nalyses in two different categories: (i) reanalyses performed by
independent groups (Independent Lab Reanalyses) or reanalyses
performed systematically by resources such as PeptideAtlas or
Expression Atlas (Resource Reanalyses). On average, each rea-
nalysed dataset is reanalysed 2.3 times. However, each omics type
has a different pattern: proteomics (5.90), transcriptomics (1.31),
multiomics (2.07), genomics (1.26) and models (30.08).

Frequently, dataset re-use is a hierarchical process, where one
dataset is reanalysed subsequently multiple times. Figure 1a
presents a reanalysis network for the model BIOMD0000000055,
starting from 2006 (release year) to 2015. A different pattern is
illustrated in Fig. 1b, where BIOMD0000000286 is derived from
multiple source models. BioModels curates and annotates for
each deposited model, the corresponding model from which it is
derived (if applicable). Figure 1c shows the reanalysis network of
the PRIDE dataset PXD000561 (https://www.omicsdi.org/dataset/
pride/PXD000561) (75); one of the “drafts of the human
proteome”. This dataset and the PXD000865 have supported
the annotation of millions of peptides and proteins evidences,
enabling the large-scale annotation of the human proteome12 and
have been reanalysed by multiple databases including the
proteomics resources PeptideAtlas and GPMDB13.

Interestingly, the distribution of the elapsed time between the
year of publication of the original datasets and publication of the
reanalyses shows that most of the datasets are reanalysed within
the first 5 years after publication (Fig. 2a). After 10 years of
publication, still datasets are often reused in public databases like
Expression Atlas. The proteomics community (PRIDE datasets)
in contrast to transcriptomics tends to reanalyse the data within 3
years of its publication. Typically, the number of reanalyses in
OmicsDI grows within the first 5 years making this a metric
better suited to measure immediate impact.

The second metric is the number of direct citations in
publications for each dataset as previously suggested14. The
number of datasets with at least one citation in EuropePMC is
58,054 (Table 1). Figure 2b shows the distribution of dataset
direct citations by omics type. Transcriptomics datasets are the
most cited ones, followed by genomics and multiomics datasets.
Interestingly, the standard deviation indicates that in transcrip-
tomics some datasets get significantly more attention from the
community than others (STD= 16), whereas for proteomics
datasets the citation rate is much more homogenous (STD= 1.7).
The current workflow searches EuropePMC using all the
identifiers associated with a given dataset (e.g. a given dataset
can be cited in a publication using the ArrayExpress, GEO or
BioProject identifiers). For example, the dataset E-GEOD-2034
(https://www.omicsdi.org/dataset/arrayexpress-repository/E-
GEOD-2034) is cited 312 and 28 times, using the ArrayExpress
(E-GEOD-2034) and GEO (GSE2034) identifiers, respectively.
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Biological entity connections. We analysed the number of bio-
logical entities reported on each omics dataset (e.g. UNIPORT
proteins) stored in other knowledge-bases (UniProt) (Table 1).
More than 53% of the datasets contains biological connections
that can be traced to knowledge-based resources, such as
Ensembl15, UniProt16 or IntAct17. The number of connections
across different omics types can differ significantly. For example,
dataset E-MTAB-599 (“RNA-seq of mouse DBA/2JxC57BL/6J
heart, hippocampus, liver, lung, spleen and thymus”), associated
with this publication18, has 1,710,979 connections, including
1,689,177 genome variants, 21,572 gene values and 230 other
connections, ranging from sample annotations to nucleotide
sequences. The second most connected dataset in the Metabo-
Lights database (MTBLS392—https://www.omicsdi.org/dataset/
metabolights_dataset/MTBLS392), associated with this publica-
tion19, only contains 345 metabolites reported in the ChEBI
database20. To overcome these differences, we have implemented
a normalisation method that creates a connectivity score which
boosts how much a dataset contributes to a specific knowledge-
base and also boost datasets that are included in more knowledge-
bases (Supplementary Note 1).

We have studied the correlation between all the metrics for the
different omics types (Fig. 3). The number of reanalyses and
citations are highly correlated for proteomics datasets (R= 0.7)
but are not correlated for other omics fields, such as
transcriptomics, genomics and multiomics: 0.018, 0.02 and 0.12,
respectively. The highest global correlation (R= 0.5) is observed
for the combination of number of connections and downloads.
Generally, the five metrics are not correlated for any of the omics
fields (Fig. 3) and can be seen as orthogonal variables to get a
broader representation of the impact of omics datasets.

Discussion
One of the obstacles to achieving a systematic deposition of
datasets in public repositories is the lack of a broad scientific
reward system, considering other research products in addition to
scientific publications7. Different studies have demonstrated the
need for metrics and frameworks to quantify the impact of
deposited datasets in the public domain. Such a system would not
only encourage authors to make their data public, but also would
help funding agencies, biological resources and the scientific
community as a whole to focus on the most impactful datasets. In
OmicsDI we have implemented a novel platform to quantify the
impact of public datasets systematically, by using data from
biological data resources (reanalyses), literature (citations),
knowledge bases (connections), views and downloads. Every
metric is updated on a weekly basis and made available through
the OmicsDI web interface and API.

One of the primary findings is that in systems biology (the
BioModels database21 is the representative resource), the
deposition of data has enabled systematic generation of new
knowledge (biological models) based on previous datasets. For
example, the model “Genome-scale metabolic modelling of
hepatocytes reveals serine deficiency in patients with non-
alcoholic fatty liver disease” (MODEL1402200003)22 has been
used to build more than 6000 models available in BioModels. We
noticed different complex graph patterns of reanalysis in the
BioModels database. For example, Fig. 1a shows the reanalysis
network of model BIOMD0000000055, where the original model
published in 2006 has been reused to build new models until
2015. BioModels can be built from multiple models and origi-
nated new models (Fig. 1b). BioModels database has defined
during the submission process a mechanism to annotate if the
model reuse parts of previously published models enabling
OmicsDI to build and trace reanalysis patterns. In contrast toT
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biological models, the proteomics (Fig. 1c) and transcriptomics
fields are still working to define a proper mechanism to report the
multiple reanalyses of datasets in a hierarchical manner11. For
this reason, the reanalysis pattern detected in proteomics are “one
to many” networks where one dataset has been reanalysed by
multiple datasets (e.g. PXD000561).

Moreover, the results showed that the reanalysis metric is
crucial to highlight relevant datasets early after the dataset release
(Fig. 2c). Overall, 8000 datasets (>5% of OmicsDI content) have
been reanalysed by resources, such as PeptideAtlas, GPMDB or
Expression Atlas, among others. However, it should be noted that
the reanalysis metric measures only the impact of datasets in the
same or in other data resources contributing their metadata to
OmicsDI, which constitutes a fraction of the total re-use by the
scientific community.

To complement the reanalysis metric, we counted direct cita-
tions of datasets in scientific publications. Different studies have
estimated that the proportion of the total citation count con-
tributed by data depositions is around 6–20%10,14. Most of the

reanalyses tracked in OmicsDI have been performed using GEO
datasets, which might have biased the results to a specific
resource. However, our findings show the same patterns in the
literature: almost 9000 datasets have been cited in publications at
least once. It is important to highlight that counting direct
database citations in the whole text of manuscripts is only pos-
sible for open access publications. In the case where the corre-
sponding publications are not open access, dataset identifiers
would need to be included in the PubMed abstract to be included
in this metric. The coverage of direct citations in publications is
therefore limited by this systemic issue. We have found that the
transcriptomics community (individual researchers) tend to cite
the same datasets more often, with an average of four citations
per dataset. The most cited dataset is “Transcription profiling of
human breast cancer samples—relapse free survival” (E-GEOD-
2034), totalling 312 citations. Both metrics, reanalyses and cita-
tions, should be used in combination for a better understanding
of the dataset impact. Our results show that both metrics are
uncorrelated and should not be aggregated. For example, dataset
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Fig. 1 Examples of the reanalysis network for different OmicsDI datasets: a BioModels model BIOMD0000000055. BioModels are reused over time (e.g.
2006–2015) to build new models; in the BioModel database each new model contains references to the original source model of information. b Twelve
different BioModels models are connected through a reanalysis network. The BioModel database traces the origin of each model and the relations between
them, enabling to trace complex reanalysis relations where models can be originated from multiple models and be used by other models. c Proteomics
reanalysis network for the draft of the human proteome project (PRIDE accession PXD000561). In proteomics, the predominant reanalysis pattern is “one
to many”, where original deposited submissions are reanalysed in multiple datasets by multiple authors
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E-MTAB-513 is among the 10 most cited datasets in the litera-
ture: it has been cited 155 times and reanalysed 4 times. In
addition to the normalised values, we have decided to provide the
“raw” metrics to the community, which will enable to combine
them into more complex models23. However, we have shown that
these metrics can be used independently to generate models for
clustering and classification (Supplementary Note 2).

In 2011, Mons et al. introduced the idea of nano-publications,
from which the authors could get credit not only through the
actual publication but also through all the knowledge associated
with it7. In our view, the value of the dataset should not be only
associated with the “raw data” or the claims in the publication,
but also should be assessed considering all the biological entities
supported in knowledgebases. We have developed the connec-
tions metric, which can be used to estimate the impact of a
dataset for knowledgebases, by counting how many biological
entities are supported by it.

Importantly, OmicsDI is monitoring not only the web interface
views but also the interaction through the OmicsDI API. On
average, every dataset in OmicsDI has been accessed at least 30
times since 2016 (Table 1). By March 2019, we had captured the

number of direct downloads for six different databases at the
European Bioinformatics Institute. These two metrics (views and
downloads) are not publicly available in any of these resources
and at present are infeasible to retrieve. In fact, at present, the first
coordinated efforts to gather them in a standard manner are
taking place in the context of the ELIXIR framework for Eur-
opean biological data resources24. With this first implementation,
we are promoting that resources systematically release this
information to the public domain.

The newly implemented OmicsDI dataset claiming system
enables authors, research groups, scientific consortia and research
institutions to organise datasets under a unique OmicsDI profile,
and for datasets to be added to their own ORCID profiles as well.
At the time of writing (March 2019), 968 datasets have been
claimed into ORCID profiles through OmicsDI. In our view,
following the same system for monitoring the impact of indivi-
dual datasets, these metrics could also be used to measure at least
some aspects of the impact of public omics data resources25,26. A
common problem of impact evaluation is to compare different
fields or topics with the same metrics. Figure 4 shows the average
distribution of metrics (raw and normalised) for each omics type.
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We observed major differences across omics types, which
demonstrate that each field has different patterns for each metric.
Therefore, we recommend the use of these metrics to evaluate
datasets within the same omics field, as classified by OmicsDI1.

Several studies have discussed the challenges of collecting
impact metrics for manuscripts and datasets14,27,28. With
the developments of new services such as the EuropePMC API,
the compilation of direct citations for datasets has become more
feasible7. However, in our view, some conventions should be
implemented to normalise the way datasets are cited:

i. When the dataset is the main focus of work, dataset identifiers
should be used, instead of citing the corresponding publica-
tions as suggested by the FORCE11 group29.

ii. The scientific community needs to develop standard citation
strategies for datasets. For example, ~60% of the data re-used
in one of the drafts of the human proteome27 was collected
from public repositories. However, no proper references to
the original authors and data were present in the main text of
their manuscripts. In order to be able to properly cite the re-
use of datasets, new mechanisms should be developed to
enable an adequate reporting. OmicsDI has implemented a
visualisation component (Supplementary Note 3) that allows
users to cite the corresponding dataset using the FORCE11
Data Citation Synthesis Group.

iii. Repositories should make openly available (in an easy to
retrieve manner) the links between their reanalysed and the
original datasets. Good examples of these links can be found
already in Expression Atlas and PeptideAtlas, where every
reanalysed dataset references the original ones (Supplemen-
tary Note 4). Indeed, many databases reference only the
associated publications rather than the actual dataset
identifiers. The correct tracking of datasets in a database
by other data resources can help to assess its impact, since it

demonstrates that the data they store is actively re-used by
(and thus it is relevant to) the community. Naturally, the
same effort should also be made by knowledgebases (e.g.
resources including pathways, interactions, gene/protein
profiles, etc.), to reference the original datasets rather than
the publications, in order to recognise that a large part of the
biological knowledge is derived from the actual datasets.

We envision that as more and more data is made publicly
available, more standardisation will be implemented to cross-link
resources, manuscripts, datasets and the final biological mole-
cules, making the proposed framework more robust. We expect
that any mature omics field should welcome novel insights that
can be derived from existing datasets and promote their trace-
ability. We all “stand on the shoulders of giants”. Therefore, we
expect that an improved quantitation of the impact of datasets
will help scientists, funders and research organisations to better
value a broader range of “giants” (research products).

Methods
Omics datasets impact metrics. In contrast to publications, where the impact is
mainly measured by the number of citations, we believe the impact of datasets
should be quantified using more than one metric. We have formulated five metrics
that can be used to estimate the impact of datasets (Fig. 5):

1. Number of reanalyses (reanalyses): A reanalysis can be generally defined as the
complete or partial re-use of an original dataset (A) using a different analysis
protocol and stored either in the same or in another public data resource (B)
(Fig. 5). For example, PeptideAtlas30 systematically reanalyses public
proteomics datasets, mainly from PRIDE31 and MassIVE (massive.ucsd.
edu). The new peptide and protein evidences from these reanalyses have
become an invaluable resource, e.g. for the Human Proteome Project12. The
appropriate and accurate reference to the original datasets in other resources
facilitates the reproducibility and traceability of the results and the recognition
for the authors that generated the original dataset32. We implemented the
reanalysis metric using the OmicsDI XML schema (https://github.com/
OmicsDI/specifications), which provides a mechanism to define when a
dataset is based on another one (Fig. 5).
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2. Direct citations of dataset identifiers in publications (citations): Citations
represent the number of publications that directly refer to dataset identifiers14.
We use the EuropePMC API (europepmc.org/RestfulWebService)33 to query
all the open access publications that directly cite a dataset accession.
EuropePMC stores scientific publications (and also pre-prints) that are open
access, so the whole text of the manuscript can be used for performing text
mining, enabling this functionality. With increasing standardisation of data
citations in the scientific literature, as proposed by Fenner et al. 29, this metric
is expected to become easier to systematically generate in the future.

3. Number of downloads and views (downloads and views): The number of
views and downloads of each dataset can be used to estimate the number of
times a dataset is used even if it does not get cited or publicly reanalysed.
These two metrics have recently been proposed by different journals

(e.g. PLOS https://www.plos.org/article-level-metrics) to complement the
number of manuscript citations. By 2019, we were able to systematically trace
the number of direct downloads from six different data resources (PRIDE,
ArrayExpress, MetaboLights, EVA, Expression Atlas and ENA). Additionally,
we provide counts of the number of views and accesses for each dataset
coming from all database providers via the OmicsDI web and restful API
(https://www.omicsdi.org/ws/), respectively.

4. Number of biological entities claims based on the dataset (connections): Here,
we provide counts of the number of biological entities which are reported by a
given dataset, in various popular biomedical knowledge bases, such as UniProt
(protein sequences), IntAct34 (molecular interaction data) or Reactome35

(biological pathways) (Fig. 5b), (Supplementary Note 2). Most of the omics
datasets support biological claims (e.g. pathways, interactions, expression

4

3

2

1

0

90

60

30

0

0.8

0.6

0.4

0.2

0.0

20

15

10

5

0

3000

2000

1000

0

A
vg

. c
ita

tio
ns

 
A

vg
. v

ie
w

s
A

vg
. r

ea
na

ly
si

s
A

vg
. d

ow
nl

oa
ds

A
vg

. c
on

ne
ct

io
s

Genomics

Genomics

Metabolomics

Metabolomics

Models

Models

Multiomics

Multiomics

Proteomics

Proteomics

Transcriptomics

Transcriptomics

Genomics Metabolomics Models Multiomics Proteomics Transcriptomics

Omics type

Omics type

Genomics Metabolomics Models Multiomics Proteomics Transcriptomics

Omics type

Genomics Metabolomics Models Multiomics Proteomics Transcriptomics

Omics type

Genomics Metabolomics Models Multiomics Proteomics Transcriptomics

Omics type

Genomics Metabolomics Models Multiomics Proteomics Transcriptomics

Omics type

Genomics Metabolomics Models Multiomics Proteomics Transcriptomics

Omics type

Genomics

Metabolomics

Models

Multiomics

Proteomics

Transcriptomics

Omics type

Genomics

Metabolomics

Models

Multiomics

Proteomics

Transcriptomics

Omics type

Genomics

Metabolomics

Models

Multiomics

Proteomics

Transcriptomics

Omics type

Genomics

Metabolomics

Models

Multiomics

Proteomics

Transcriptomics

Omics type

Genomics

Metabolomics

Models

Multiomics

Proteomics

Transcriptomics

Omics type

Genomics

Metabolomics

Models

Multiomics

Proteomics

Transcriptomics

Omics type

Genomics

Metabolomics

Models

Multiomics

Proteomics

Transcriptomics

Omics type

Genomics

Metabolomics

Models

Multiomics

Proteomics

Transcriptomics

Omics type

Genomics

Metabolomics

Models

Multiomics

Proteomics

Transcriptomics

Omics type

Omics type

Genomics Metabolomics Models Multiomics Proteomics Transcriptomics

Omics type

Genomics Metabolomics Models Multiomics Proteomics Transcriptomics

Omics type

Genomics Metabolomics Models Multiomics Proteomics Transcriptomics

Omics type

0.0100

0.0075

0.0050

0.0025

0.0000

A
vg

. n
or

m
al

iz
ed

 c
ita

tio
ns

A
vg

. n
or

m
al

iz
ed

 v
ie

w
s

A
vg

. n
or

m
al

iz
ed

 r
ea

na
ly

si
s

A
vg

. n
or

m
al

iz
ed

 d
ow

nl
oa

ds
A

vg
. n

or
m

al
iz

ed
 c

on
ne

ct
io

ns

0.04

0.03

0.02

0.01

0.00

9e–05

6e–05

3e–05

0e+00

0.15

0.10

0.05

0.00

0.075

0.050

0.025

0.000

a b

c d

e f

g h

i j

Fig. 4 Average distribution of each metric (citations, views, reanalysis, downloads and connections) by omics type: raw (a, c, e, g, i) and normalised values
(b, d, f, h, j). The raw values are the metrics values collected with the OmicsDI pipelines, whereas the normalised values are the transformation of those
values using MinMax scaler or the Biological connections normalisation method

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-11461-w ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:3512 | https://doi.org/10.1038/s41467-019-11461-w | www.nature.com/naturecommunications 7

https://www.plos.org/article-level-metrics
http://www.omicsdi.org/ws/
www.nature.com/naturecommunications
www.nature.com/naturecommunications


profiles, etc.) that are either manually curated or automatically annotated in
relevant knowledge bases. We believe that calculating impact in this manner is
needed, since for instance, if a number of gene expression profiles were
supported by one particular dataset, that information contribution would be
lost (or at least untraceable) if that dataset was no longer publicly available. All
biological knowledgebases are indexed and queried by OmicsDI using the EBI
Search indexing system (Supplementary Note 1).

Metrics normalisation. We have implemented two different normalisation
methods to adjust all the metrics generated on different scales to a notionally
common scale. For citations, views, downloads and reanalyses metrics the nor-
malisation of each value was estimated using the MinMax Scaler method36,37. The
MinMaxScaler is a robust method to shrink original values of a distribution to a
range such that it becomes a value between 0 and 1. This normalisation method
works better for cases in which the values distribution does not follow a Gaussian
model and the standard deviation is relatively small36,37. However, for the con-
nection metric a different normalisation method needed to be applied because
depending on the omics type the number of reported biological entities could vary
widely. For example, a dataset within the genomics type can contain millions of
connections (PRJNA391943 in ENA has 9,443,069 genomic sequence variant sites)
and the datasets with most connections in metabolomics can contain only 3113
connections (i.e. metabolites).

OmicsDI connection normalisation (connectivity score) measures the average
ranking of a dataset across all knowledgebases. There are five ranking levels
(corresponding to the 20, 40, 60, 80 and 100 percentiles of connections). We first
calculate which percentile a dataset falls into, in any given domain or
knowledgebase. Datasets in a 0–20 percentile get rank 1, in a 20–40 percentile get
rank 2 and so on. Then, the final score is calculated by averaging these ranks across
all knowledgebases. This normalisation method boosts datasets that are included
and referenced by multiple knowledgebases. It also ensures that as OmicsDI grows,
by including more datasets and omics domains, the score will become more robust
against outliers in the future.

Proposed platform to quantify dataset impact. In order to compute the pro-
posed metrics (reanalyses, citations, views, downloads and connections), a novel
platform has been developed within OmicsDI. OmicsDI imports the metadata for

each dataset from the original providers, using the OmicsDI XML file format
(Supplementary Note 5)1. In order to ensure that the metrics are accurate, the
infrastructure implements a system to remove dataset redundancy (when two
different resources store the same original dataset). An automatic pipeline and a
manual annotation system enable OmicsDI to group duplicated datasets with
potentially different identifiers (e.g. transcriptomics datasets available in
ArrayExpress and Gene Expression Omnibus (GEO)) (Fig. 5c). In this case, the
pipeline designates one of the datasets as the canonical representation and anno-
tates the rest of identifiers as additional secondary ones. All these pipelines and
software components can scale to handle thousands of datasets and systematically
compute and update the metrics on a weekly basis (github.com/OmicsDI/index-
pipeline).

The current OmicsDI web interface includes for each dataset a new badge
(Rosette flower) including all the metrics proposed (Fig. 6). The number in the
centre of the Rosette’s shows the aggregated score (Omics score). The Omics score
is computed using all the normalised metrics (reanalyses, citations, views,
downloads and connections). The formula for this metric will be estimated as

described:
σd2Odi

¼ CodP
CoOdi

þ CidP
CiOdi

þ PdP
POdi

þ VdP
VOdi

þ DdP
DOdi

� �

´ 1000

The intensity of the colour leaf in the flower will change depending on the value
of the metric with respect to all datasets.

Dataset claiming component. Analogously to services such as Google Scholar and
ResearchGate for publications, we have implemented a mechanism that enables
researchers to create their own profile in OmicsDI, by claiming their own datasets.
Researchers need to log into OmicsDI using their corresponding ORCID account
details (Supplementary Note 7), and search for relevant datasets using different
criteria such as: (i) dataset identifiers, (ii) specific keywords in the title or
description of the dataset, or analogous information from the corresponding
manuscript where the generation of the dataset is reported, and/or (iii) the author’s
name, among others. Then, datasets can be added to an OmicsDI personal profile
where it is possible to visualise the impact metrics (reanalyses, citations, views,
downloads and connections), providing to researchers this rich information. The
URLs of personal profiles can be shared with anyone in the community. Addi-
tionally, as a key point, OmicsDI claimed datasets can be synchronised to the
researcher’s own ORCID profile, highlighting datasets there as a research product
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Fig. 5 The metrics estimation pipeline is based on the OmicsDI XML file format that is used to transfer datasets from each provider into OmicsDI. Data is
imported from each provider into a central MongoDB database. An automatic pipeline is run to detect duplication and data replication across the resource.
The pipelines use the central MongoDB database, the EuropePMC API and the knowledgebases (e.g. Ensembl, UniProt) to compute/estimate the different
metrics
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as well38. Although this mechanism is initially aimed at individual researchers (e.g.
https://www.omicsdi.org/profile/xQuOBTAW), research groups, scientific con-
sortia (e.g. https://www.omicsdi.org/profile/ZEd3mwfF), and research institutions
can also create their own OmicsDI profile, facilitating the aggregation, visualisa-
tion, tracking and impact assessment for their generated datasets and the addition
to their own OmicsDI profiles. In addition, OmicsDI has implemented a simple
visualisation component that allows users to cite the corresponding dataset using
the FORCE11 Data Citation Synthesis Group recommendations (http://www.dcc.
ac.uk/resources/how-guides/cite-datasets).

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The datasets mentioned in the current study are available in BioModels, ArrayExpress
and PRIDE databases. No datasets were generated during the current study.

Code availability
All code supporting the current study is deposited in GitHub under the organisation
(https://github.com/OmicsDI).
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