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A systematic approach to orient the human
protein–protein interaction network
Dana Silverbush1 & Roded Sharan1

The protein-protein interaction (PPI) network of an organism serves as a skeleton for its

signaling circuitry, which mediates cellular response to environmental and genetic cues.

Understanding this circuitry could improve the prediction of gene function and cellular

behavior in response to diverse signals. To realize this potential, one has to comprehensively

map PPIs and their directions of signal flow. While the quality and the volume of identified

human PPIs improved dramatically over the last decade, the directions of these interactions

are still mostly unknown, thus precluding subsequent prediction and modeling efforts. Here

we present a systematic approach to orient the human PPI network using drug response and

cancer genomic data. We provide a diffusion-based method for the orientation task that

significantly outperforms existing methods. The oriented network leads to improved prior-

itization of cancer driver genes and drug targets compared to the state-of-the-art unoriented

network.
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H igh-throughput technologies are routinely used nowadays
for interactome mapping by technologies such as yeast
two-hybrid1,2 and co-immunoprecipitation followed by

mass spectrometry3. However, the resulting protein–protein
interaction (PPI) networks have limited predictive power as they
lack information on the logic of the connections. Going beyond
bare topological models requires, as a first step, orienting the
interactome, that is, predicting the direction of signal flow (if any)
of each interaction4. Such orientation information can be further
utilized to predict common properties of signaling pathways5,
study the progression of genome-related diseases6, aid in the
development of drugs7 and tailoring treatment combinations8,
investigate the effects of a chemical inhibitor in a disease setting9,
and many more. Indeed, Cao et al.10 showed that incorporating
the direction of interactions improves the prediction of protein
function in yeast. In human, Vinayagam et al.11 showed that a
directed network improves the prediction of previously unknown
modulators in the ERK signaling pathway. Nevertheless, to date,
direction information is available for only a small percentage of
the interactions. For example, Kyoto Encyclopedia of Genes and
Genomes (KEGG)12 contains 5769 directed interactions in
human out of the current 311,962 interactions present in Bio-
GRID interaction database (BioGRID)13, where we expect at least
40% of these interactions to have a direction14.

Existing orientation methods have been mainly applied to
yeast15–19. These approaches relied on information from per-
turbation experiments, in which a gene is perturbed (cause) and
as a result other genes change their expression levels (effects). The
common assumption in these methods is that for an effect to take
place there must be a directed path in the network from the
causal gene to the affected gene.

The generalization of these methods to human is hampered by
two main obstacles. First, there is a lack of cause-effect infor-
mation to guide the orientation. Second, the scale of the problem
is much bigger as the size of the human PPI network is almost 3-
fold bigger than the yeast one (BioGRID, January 2016, non-
redundant Interactions)13. The only attempt to orient a human
PPI network was made by Vinayagam et al.11. They overcame the
lack of a comprehensive collection of cause-effect pairs by
focusing on (shortest) paths from membrane receptors to tran-
scription factors (TFs). As the correspondence between receptors
and TFs is only partially known, they assumed that all receptors
should be connected to all TFs, thus obtaining only an approx-
imation to the true signaling directions.

Here we report on a method for network orientation, Diffu-
se2Direct, which is based on diffusing signals from causal pro-
teins to affected proteins. To generate cause-effect information in
human we utilize two independent resources: (i) drug response
data, which captures the effect of drugs, represented by their
protein targets, on gene expression; and (ii) cancer genomic data,
which captures the effect of a patient's somatic mutations on gene
expression. We show that the assigned directions are highly
accurate, outperforming the state-of-the-art methods by a wide
margin. Moreover, we show that the predicted directions are
robustly predicted and are consistent across the data source used.
We then integrate all available data sources to construct a
consensus-oriented human network. We demonstrate its utility in
the prediction of drug targets and cancer driver genes.

Diffuse2Direct is available open source on github at: https://
github.com/danasilv/Diffuse2Direct

Results
Diffuse2Direct: diffusion-based approach to orient a net-
work. Diffuse2Direct (D2D) uses causal proteins and paired
effects to orient an undirected or a partially directed network

(Fig. 1). The input to D2D consists of a collection of experi-
ments, also termed guiding sources, each of which induces a set
of causal proteins and a set of affected proteins (Fig. 1a). Here,
we have considered drug response data, where causal proteins
correspond to drug targets and affected proteins correspond to
genes whose expression changed following a treatment with
the drug. Similarly, we have exploited cancer genomics data,
where causal proteins correspond to mutated genes and affected
proteins correspond to genes that are differentially expressed
between the tumor and matched-normal tissues. The input
to D2D further includes a physical network of protein–protein
and protein–DNA interactions (Fig. 1a). Each experiment is
used to compute a network diffusion value for each protein in
the network according to its proximity to the causal proteins of
that experiment on the one hand, and to the affected set on the
other hand (Fig. 1b). These diffusion values are combined to
score the likelihood of each of the two possible directions of
an edge, and the resulting scores are used as predictive features
for the edge's true direction (Fig. 1c). A classifier is then applied
to the computed features to predict the direction of the inter-
actions (Fig. 1d). Each interaction is assigned with the most
likely direction and a confidence estimate for it. For any given
confidence threshold, the result is a partially directed network
whose directed part (oriented interactions) can be viewed as
representing signaling interactions and its undirected part
(unoriented interactions) can be viewed as representing intra-
complex or other undirected interactions.

To exemplify the predictive power of the edge scores computed
via diffusion, we calculated them in a small scale example—the
VEGF pathway from KEGG—stripping it off its orientation
information. In this application, the network nodes were set to be
the pathway's entities, and the edges were defined to be the
pathway's interactions (in their undirected form). A score was
computed for each direction of an edge by calculating the ratio of
(1) diffusing from the pathway’s set of input nodes (in-degree 0),
and (2) diffusing from the pathway’s set of output nodes (out-
degree 0) as described in the “Methods” section. Since in this
example there is only one guiding source (the inputs and outputs
of the pathway), no subsequent classification step was needed and
we can view the computed scores as the final D2D scores. The
resulting scores were used to orient the pathway: if one direction
received a higher score than its opposite direction, then this
direction is chosen; otherwise, the edge is left undirected. The
output network is depicted in Fig. 2a. Out of 52 interactions, 48
are oriented as cataloged in KEGG (92% accuracy), including the
complex FAK-Paxillim whose interaction remains undirected. In
comparison, a naïve orientation strategy based on depth first
search (DFS) or breadth first search (BFS) visiting time (i.e.,
orienting an edge from the first visited to the second visited node)
yielded inferior results with accuracies of 57% and 81%,
respectively. The higher performance of the diffusion-based
strategy, even in this simple setting, can be explained by the
consideration of multiple paths at the same time, rather than a
single path at a time.

A similar high concordance between the predicted and true
orientations in KEGG was obtained when analyzing the five largest
pathways in KEGG (containing 200–350 irreversible interactions
each), with 88% agreement on average, as well as when analyzing
directed interactions from NetPath20, downloaded via PathLinker21

(Fig. 2b). We show-case the scores distribution for the different
KEGG interaction types via the pathway Steroid hormone
biosynthesis, showing a clear separation between the scores of
oriented interactions in KEGG and the scores of interactions that
should remain unoriented (Fig. 2c). For the latter, D2D
scores yielded a distribution centered around 0, capturing the lack
of directionality for these interactions.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-10887-6

2 NATURE COMMUNICATIONS |         (2019) 10:3015 | https://doi.org/10.1038/s41467-019-10887-6 | www.nature.com/naturecommunications

https://github.com/danasilv/Diffuse2Direct
https://github.com/danasilv/Diffuse2Direct
www.nature.com/naturecommunications


Application to drug response data and performance evalua-
tion. As a first large scale application of the method, we used drug
response data (see “Methods” section) to orient a human PPI
network. Specifically, in this application we assumed that the
effect of each drug can be described as emanating from its set of
targets and affecting the genes that were observed to be differ-
entially expressed in response to treatment with the drug. As test
sets for the orientation we used five subsets of directed interac-
tions (Supplementary Table 1): interactions from large scale
databases, including kinases and phosphatases to their substrates
(KPIs), protein–DNA interactions (PDIs) and E3 ubiquitination
(E3) interactions—all down sampled to avoid degree bias (see
“Methods” section). In addition, we used two sources of small-
scale experiments: directed interactions from the well studied
EGFR pathway (EGFR)22, and a collection of signal-transduction
interactions in mammalians compiled by Vinayagam et al.11

(STKE).
To evaluate the predicted orientation we computed precision-

recall curves for each of the five test sets under a 3-fold cross-
validation scheme (Fig. 3). Areas under these curves are given in
Supplementary Table 1, ranging from 0.74 to 0.92 depending on
the test data used. To compare our results to those obtained using
the network topology alone, we applied a variant of the diffusion
suggested by Erten et al.23, which does not depend on prior cause-
effect information. This topology-only variant results in an
average area under the curve of 0.56 (Supplementary Table 1),
demonstrating the importance of the causality information in
guiding the orientation. Robustness analysis shows that the high
performances are consistent across parameter choice (Supple-
mentary Fig. 1).

We compared D2D to two previous orientation methods. The
first method by Vinayagam et al.11 tackles the lack of
experimental guiding data by using the functional annotation of
proteins. Vinayagam et al. computed features describing the
probability of each direction of an interaction to participate in a
shortest path from any membrane receptor to any transcription
factor. The second approach, called SHORTEST17, is a leading
approach for orienting the yeast network, guided by knockout
experiments in which one gene is perturbed (cause), and as a
result other genes change their expression (effects). Using integer
linear programming (ILP) formulation SHORTEST orients the
network so as to connect a maximum number of cause-effect
pairs via shortest paths. We adapted SHORTEST to orient the
human network by using the drug response data and by
modifying the confidence assignment scheme of SHORTEST to

make it scalable to the human network (see “Methods” section).
Notably, the fraction of edges assigned with a direction by
SHORTEST depends on the edge coverage by the shortest paths
connecting the input pairs. For the drug response data, such paths
cover only 44,647 of the edges, thus greatly limiting the method's
coverage. For comparison purpose, when including the SHORT-
EST orientation we restricted the evaluation to the interactions
covered by SHORTEST (Supplementary Fig. 2). Vinayagam et al.
outperforms SHORTEST on the restricted set, while D2D
outperforms both. On the full network, D2D outperforms
Vinayagam et al. on all test sets (Fig. 3).

To evaluate the effect of the size of the cause-effect input data,
we used growing numbers of drugs to orient the network. As
evident from Supplementary Fig. 3, increasing the number of
drugs increases both the recall and the precision of the
predictions, supporting our use of drug information for the
orientation.

Next, we aimed to evaluate the contribution of different drug
attributes to the orientation. To this end, we extracted from the
classifier the number of times each drug was chosen as a feature
(i.e., received a non-zero coefficient in the L1 regularization
setting) and compared it to: (i) the number of its known drug
targets, (ii) the number of genes that were observed to be
differentially expressed in response to treatment with the drug,
(iii) the cellular localization24 of its targets, and iv) the cellular
localizations of the genes that were observed to be differentially
expressed in response to the drug (Supplementary Fig. 4). The
attribute that was most correlated with choosing the drug as a
feature was its number of known targets that are localized to the
membrane (Pearson correlation two-sided 0.2, p-value < 10−6),
with the next being number of targets localized to the
extracellular matrix (Pearson correlation two-sided 0.12, p-
value < 0.0025) and the third being the number of known targets
for a drug (Pearson correlation two-sided 0.1, p-value < 0.0088).
Although statistically insignificant, it is interesting to note that
the fourth attribute was the number of differentially expressed
genes that are localized to the nucleus (Pearson correlation two-
sided 0.06, p-value < 0.1245).

Application to cancer genomics data. As an alternative to the
drug-based pairs, we used gene pairs derived from genomic
mutation data and the resulting expression changes from The
Cancer Genome Atlas (TCGA). In this setting, mutations, fusions
and copy number alterations of a patient are translated to causal
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Fig. 1 An overview of the Diffuse2Direct orientation algorithm. aWe start from an input network along with guiding information consisting of a collection of
experiments, each of which induces a set of causal proteins and a set of effect proteins. As an example we show here drug response information, inducing a
set of drug targets and their associated set of differentially expressed genes. b For each experiment in the collection, we perform network diffusion once
from the causal set and once from the effect set, and integrate the scores. c The resulting scores are used as predictive features for the direction of each
edge. d A classifier assigns a confidence to each directed edge, and using a cutoff we obtain a directed network
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proteins, and genes that are differentially expressed in a tumor
with respect to a matched healthy tissue serve as the effects (see
“Methods” section). We oriented the human network using
guiding information from four sources: 200 acute myeloid leu-
kemia (AML)25, 960 breast cancer26, 631 colon cancer27, and 316
ovarian cancer28 patient samples. To evaluate the results we used
the same cross-validation scheme as above (Supplementary
Table 1). Remarkably, we observed wide agreement on the
orientation derived from each of the guiding sources (Fig. 4a).
Furthermore, the higher the agreement the higher is the orientation
accuracy, with 18.2% accuracy for directions supported by only one

oriented network, 39.6% for directions supported by two sources,
60.4% for three, 81.8% for four, and 96.3% for directions supported
by all five oriented networks (Fig. 4b, chi-square p < 10−40).

Construction and evaluation of a consensus orientation.
Reassured by the good performance and high agreement on the
test sets, we turned to learn an orientation by using all available
training data (i.e., using the five test sets amounting to 33,756
directed interactions) and integrating all available guiding sour-
ces. To this end, we used a single guiding source at a time (drug
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response, AML, breast, colon or ovarian patients) training a
classifier with the directed 33,756 interactions so as to assign
direction estimates to the remaining 145,631 undirected interac-
tions. Whenever the ratio D2D(u,v) to D2D(v,u) exceeded 1+ ∈
(where we set ∈ to be 0.01) for some information source, we
included the edge (u,v) in its directed network (Supplementary
Table 2). Next, we constructed a consensus-oriented network by
counting the votes for each direction from the five source-specific
directed networks. The resulting oriented network is available as
Supplementary Data 1 and includes for each edge its orientation
confidence, computed as the number of guiding sources sup-
porting the inferred orientation divided by the number of guiding

sources supporting the opposite orientation (or by 1 if there is no
support for the opposite orientation). We marked the edges with
low orientation confidence (less than 2) as unoriented, and the
rest as oriented, leaving 69% of the network's edges oriented.
Validating this network with independent sources suggests that it
is highly reliable. Out of 33% (69,704) of the network's edges that
were oriented with maximum confidence, 1917 were included in
curated information from the PathLinker database21 with 70%
agreement (1334 had the same orientation and 583 were oriented
differently, hyper geometric p-value < 10−90). Out of 69% of the
edges that were oriented with confidence of at least 2 confidence
score, 2,815 were included in PathLinker with 63% agreement
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(p < 2×10−67). As another validation, the interactions that D2D
left as unoriented were enriched with known complexes from the
CORUM database29 with a hyper geometric p-value < 10−102.
When applying the same test to the highly confident oriented
interactions (confidence of 5), we obtained an insignificant hyper
geometric p-value of 0.99.

We reasoned that the resulting orientation can assist in
elucidating the functional roles of proteins based on their network
location, as the edge directions greatly limit the number of paths
in the network. As an example, we applied the orientation to
prioritize drug targets. We oriented the network using only the
cancer data sets. Then for each drug, we ranked the genes as
potential targets of the drug based on their proximity to the drug-
induced expression. To this end, we flipped all directions in the
(oriented) network, so that a diffusion process will follow a signal
traversing up-wards in the network, i.e. opposite of the
orientation, and computed a network diffusion score using the
differentially expressed genes induced by the drug as a prior set.
We found that the orientation-based scores outperform the ones
obtained when using an unoriented network (Fig. 5a), with a
mean rank for a true drug target of 6045 (out of 15,501 network
genes) compared to a mean rank of 8837 obtained by a
completely unoriented network (Wilcoxon signed-rank test, p-
value < 10−12).

Similarly, we hypothesized that the oriented network could
assist in elucidating cancer driver genes. We oriented the network
leaving out one disease set at a time (AML, colon, breast or
ovarian cancer). Then, we ranked the genes based on their
proximity to the differentially expressed genes of the data set:
as before we flipped the network, and computed the network
diffusion scores for each patient separately, diffusing from
the patient differentially expressed genes. We aggregated the
ranking from all the patients to create one comprehensive list of
putative driver genes. Focusing on the top K% scoring genes at a
time, we calculated their enrichment against multiple sources of
driver (positive controls) and non-driver genes (negative
controls). To this end, we used the gene lists introduced by
Hofree et al.30, complied from different sources: Cancer Gene
Census version 73 (CGC)31, the Atlas of Genetics and
Cytogenetics in Oncology and Hematology (AGO)32, Uni-
protKB33, DISEASES34 and MSigDB35. The oriented network
based computation consistently reported higher fractions of
driver genes and lower fractions of non-driver genes compared

to the unoriented one (Fig. 5b for the top 1% genes in
AML, Supplementary Fig. 5 for the full range of K values and four
disease sets). In particular, 49% of the top 1% of the
genes reported by the orientation-based computation are in
the AGO positive list, which consists of 1429 genes (hyper
geometric p-value < 10−37); 30% of the top 1% reported genes are
in the CGC positive list, which consists of copy number
variations, single nucleotide variants, somatic mutations and
translocation of 531 genes (hyper geometric p-value < 10−29);
39% of the top 1% genes are in the text mining list derived from
the DISEASES database which consists 711 genes (hyper
geometric p-value < 10−40), and 63% of the 1% genes found in
the comprehensive list unifying CGC, UniprotKB, DISEASES
and MSigDB30 which consists of 2045 genes (hyper geometric
p-value < 10−47). Importantly, known non-driver genes are
underrepresented in the predictions, with only 1.3% of the top
1% reported genes present in the curated negative AGO list
(NegAGOClean) which consists of 3272 known non-driver genes
(hyper geometric p-value < 10−13).

Discussion
We have developed a method for orienting a network that is
based on diffusion. We applied it to multiple drug response and
cancer genomics data sets to infer a comprehensive and highly
accurate orientation of the human protein–protein interaction
network, significantly outperforming previous work. Key to the
power of the oriented network is the great reduction in the
number of possible paths in the network, guiding any subsequent
analysis to the more plausible ones. To exemplify the power of
this reduction, we applied the oriented network to the inference
of drug targets and cancer driver genes. In both tasks, it sig-
nificantly outperformed an application that is based on the
unoriented network.

The network we have constructed can be incorporated with
minimum to no change into a variety of existing solutions: as a
skeleton for inferring process-specific subnetworks36–38, propa-
gating functional and disease-related information10,39–42, and
learning logical models of signaling pathways with the potential
to greatly expand our understanding of their inner workings43–45.
Thus, we believe that the oriented network advances us an
important step toward mechanistic understanding of cellular
processes.
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Methods
Diffusion-based orientation. We devised an orientation algorithm, Diffuse2Direct
(D2D), which is based on propagating signals from causal to affected proteins and
observing the direction of signal flow in the network. Unlike previous approaches,
the algorithm does not rely on shortest paths only and accounts for all possible
paths from source to target proteins. D2D receives as input a collection of
experiments inducing paired sets of causes and effects, and a network of physical
interactions between proteins for which an orientation is desired. The network may
be undirected or mixed (containing both undirected interactions and directed
ones). To ensure that the diffusion process converges, the network must be con-
nected if undirected, and strongly connected if mixed (as is, e.g., the case for the
BioGRID network we use here). Each edge (i, j) of the network has an associated
confidence score weight (i, j), which may be equal to 1 for an unweighted network.
D2D assigns directions to the edges using the following steps: (i) diffusing once
from the causal proteins and once from the paired effect proteins; (ii) combining
the two diffusion scores into a single score for each possible edge direction; and (iii)
using the combined scores across multiple pairs as predictive features for inferring
the direction of each interaction. These steps are described in detail below.

The diffusion process and edge scoring. The diffusion process computes a score
for each protein which is the sum of a network term and a prior knowledge term.
Formally, the score F(v) of a node v with a set of network neighbors N(v)is:

F vð Þ ¼ α
X

uϵNðvÞ
F uð Þwðu; vÞ

2
4

3
5þ 1� αð ÞPðvÞ ð1Þ

where α is a smoothing parameter that balances between the network and the prior
terms, w is the edge weight normalized by the sum of outgoing edges33:

wðu; vÞ ¼ weightðu; vÞ
Σk2NðuÞweightðu; kÞ ð2Þ

and P(v) is a prior score to a protein, which is set to 1
Priorsj j if it is part of the prior

set, and 0 otherwise. The diffusion score is computed in an iterative manner, as
described by Cowen et al.41, where at each iteration a vertex pushes its current
score to its (out-going) neighbors, in proportion to the weight of the respective out-
going edge, until convergence. Convergence is achieved when the square root of the
summed absolute changes in scores for the last iteration is below β, where we set β
to be 10−5.

To assign a score for each edge direction, we compute a diffusion Fc from the set
of causes (i.e., the set of causal proteins induced by an experiment serves as the
prior set in this network diffusion computation) and a diffusion FE from the set of
effects, after reversing any pre-set directions in the network. If an edge (u,v) is
directed from u to v then we expect u to be closer to the causal proteins than v, and

v to be closer to the set of effects than u, thus the ratios FC uð Þ
FC vð Þ and

FE vð Þ
FE uð Þ should be

greater than 1. We take the score of the directed edge (u,v) to be the product of
these ratios, i.e., the larger the score the more likely it is that the edge is directed

from u to v (Fig. 1b):

score u; vð Þ ¼ FC uð Þ � FE vð Þ
FC vð Þ � FE uð Þ ð3Þ

Note that this formulation tends to relax potential degree bias as each node is
taken into consideration twice—once in the numerator and once in the
denominator.

Inference of directions. The above process can be recorded in a vector in which
each entry corresponds to a candidate directed edge in the network (for example,
(x, y), (y, x), (y, z), (z, y) in Fig. 1c) and contains its score. The process may be
repeated for multiple input experiments, for example the administration of dif-
ferent drugs, inducing paired sets of causes and effects, resulting in a matrix of edge
scores, where rows correspond to edges and columns to experiments. Each row
reflects the contribution of its directed edge to connect the corresponding paired
sets of causes and effects induced by an experiment. These features are fed to a
logistic regression classifier which assigns a D2D score to each directed edge
(Fig. 1d). To direct an edge, we choose the highest scoring direction unless the ratio

of both scores, MaxfD2D u;vð Þ
D2D v;uð Þ ;

D2D v;uð Þ
D2D u;vð Þg is below 1+ ∈, where we set ∈ to be 0.01. To

avoid overfitting and restrict the number of features, we used L1 regularization
where the value of the regularization balancing parameter was chosen via a nested
3-fold cross-validation in the range of 10−4 to 104. For completeness, we provide a
formal description of the classifier in Supplementary Note 1. We further describe
other inference strategies that were considered and evaluated in Supplementary
Note 2.

Drug response data. For each drug, we consider its known targets as causal
proteins and genes whose expression changes in response to treatment by the drug
as effects. Drug targets were extracted and assembled from DrugBank46, DCDB47,
and KEGG DRUG12 databases. Genes whose expression changed in response to the
corresponding treatment were extracted from the Connectivity Map (CMap,
build248). CMap contains 6100 gene expression measurements in response to the
administration of 1309 drugs and small molecules. These measurements were taken
under different drug concentrations and on different cell-line types using the
Affymetrix HG-U133A and HT-HG-U133A Array. In order to form drug-specific
set of differentially expressed genes, we followed the normalization and filtering
procedures described in Iskar et al.49 (Supplementary Note 3). In total, we extracted
551 drugs with 1915 known targets (702 unique targets, 3.48 targets per drug on
average). We extracted 21,424 differentially expressed genes (3487 unique genes,
38.88 genes per drug on average).

Cancer genomics data. We utilized data generated by the TCGA Research Net-
work http://cancergenome.nih.gov/ downloaded on April 2016. Samples were taken
from 200 AML patients, 631 Colon cancer patients, 960 breast cancer patients, and
316 ovarian cancer. Per sample, we labeled a gene as causal if it was either called as
mutated or had copy number variation by TCGA. We labeled a gene as an effect if
it was called as significantly differentially expressed by Cosmic31, i.e., its absolute
fold change z-score was above 2.
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Fig. 5 Orientation improves the prediction of drug targets and cancer driver genes. a The genes in the network are ranked according to their proximity to
the differentially expressed genes of a given drug. We calculated the rank assigned to the correct drug targets by using the oriented network versus the
unoriented one and a random ranking, and found that the oriented-based scoring ranks the correct drug targets higher (closer to 1) than both the
unoriented-based scoring and the random scoring, with Kalgarov-Smirnov p-value < 0.05, indicated by a star. The box plots were plotted using seaborn
python package with the default setting (as detailed before in Fig. 2c). b The genes in the network are ranked by their proximity to the differentially
expressed genes of the cancer patients. Showing here the percentage of genes out of the top K= 1% ranked genes matching known driver genes and
known non-driver from multiple sources for AML. The oriented network consistently reports more known driver genes and less known non-drover genes
than the unoriented one, see extended results in Supplementary Fig. 5
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Implementation of previous orientation methods. We reimplemented the
method of Vinayagam et al.11. To this end, we counted for each directed edge the
number of shortest paths traversing it to connect (a) any membrane receptor to any
transcription factor, and (b) any member of a known family of membrane
receptors to any member of a known family of transcription factors. These counts
were used to derive classification features for predicting edge directions as done by
Vinayagam et al. In addition, we tried a variant of the method guided by drug
response data, using pairs of drug-targets and responding (differentially expressed)
genes, rather than membrane-to-transcription-factor pairs, yet only 16% of the
interactions in the network were covered by shortest paths from drug response
data, information which the method relies on.

A second method we compared to is the SHORTEST17 method, which uses
an integer linear programming algorithm to find an orientation that connects a
maximum number of cause-effect pairs using shortest paths. To speed up its
computation for large networks, we changed the scheme it applies to assign
confidence to the edge orientations as follows. Let Sopt be the value of an optimal
solution computed by SHORTEST. To compute a measure of confidence in a
given orientation of an edge e= (v, w), SHORTEST originally reruns the ILP
while forcing e to carry the opposite orientation (w, v) and sets its confidence
value to c= Sopt− Se, where Se is the maximum number of satisfied pairs for the
modified instance. The repeated solution of many ILP instances is very costly.
Instead, we extended SHORTEST to include weights on the pairs guiding the
orientation. When all the weights are assigned 1, SHORTEST computes Sopt. To
each weight we subsequently add random noise by sampling from a Gaussian
distribution with mean 0 and variance 0.1. We repeat this process 1000 times
and rerun the ILP. The final per-pair score assigned to a direction of an
interaction is the fraction of times (out of 1000 repeats) it was oriented in that
direction. We used this score as a first feature and the number of shortest paths
traversing the edge as a second, feeding both to a logistic regression classifier
which assigns a confidence score to each directed edge. We verified that this
method is comparable to the previously used one on the yeast data set it was
originally applied to (Supplementary Fig. 6).

Last, we applied a variant of diffusion approach suggested by Erten et al.23 to
compute a benchmark orientation which is based solely on the network topology.
Specifically, we computed the diffusion scores by setting α in equation (1) to 1, thus
eliminating the effect of the chosen priors. For each edge (u,v) we calculated three
such (topology-only) scores F(u), F(v) and F(u)/F(v), and used them as features for
a logistic regression classifier.

Network and validation sets. We used the Homo Sapiens network from BioGRID
(release 3.4.126)13 of 147,753 PPIs integrated with known collections of directed
interactions with proteins in the BioGRID network:

(i) 450 signal-transduction interactions in mammalian cells (STKE) from the
Database of Cell Signaling (http://stke.sciencemag.org/cm/ April 23, 2009 version)
used for validation by Vinayagam et al.11

(ii) 117 interactions of the EGFR signaling pathway (EGFR) from Samaga
et al.22

(iii) 4,293 kinase/phosphotase to substrate interactions (KPIs) from
Phosphositeplus (www.phosphosite.org)50.

(iv) 28,566 protein to DNA interactions (PDIs) downloaded from ChEA
database: integrating genome-wide ChIP-X experiments51.

(iiv) 330 E3 ubiquitination interactions, downloaded from hUbiquitome52, a
database of experimentally verified human ubiquitination enzymes and substrates.

Extending the BioGRID network with these sets resulted in an integrated
network with 179,487 interactions (358,974 bi-directed interactions). Confidence
score estimates for interactions are taken from the ANAT53 software, which uses a
logistic regression-based scheme based on the techniques by which an interaction
was detected. Directed interactions added to the network are assigned a fixed
confidence value of 0.8.

For validation purposes, we used the known collections of directed interactions.
We note that although PDIs and KPIs are routinely used as test sets for network
orientation, both are strongly biased toward having interactions directed from a
high degree protein to a low degree protein. To remove this degree bias, we filtered
the test sets by random downsampling of such interactions so that the resulting
number of interactions from high to lower degree nodes is equal to the number of
interactions that are directed from low to higher degree nodes. The filtered test sets
included: (i) 450 STKE interactions; (ii) 117 interactions of the EGFR signaling
pathway; (iii) 1798 KPIs down-sampled from an original set of 4293 interactions;
(iv) 171 PDIs down-sampled from 28,566 interactions; and (v) 104 E3
ubiquitination interactions down-sampled from 330 interactions. Each test set of
true orientations was supplemented with an equal-size set of false orientations by
using the same edges but flipping their directions.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available in public repositories: (1)
skeleton unoriented network is available on BioGRID (release 3.4.126) at https://thebiogrid.

org/; (2) drug targets are available at DrugBank (https://www.drugbank.ca/), DCDB (http://
www.cls.zju.edu.cn/dcdb/), and KEGG DRUG (https://www.genome.jp/kegg/); (3) Genes
whose expression changed in response to the corresponding treatment are available from the
Connectivity Map (CMap, build2, https://portals.broadinstitute.org/cmap/); (4) cancer
genomics data are available from the TCGA research center (http://cancergenome.nih.gov/).
(5) The consensus oriented network resulted in this study is available here as Supplementary
Data 1.

Code availability
The software is available open source on github at https://github.com/danasilv/
Diffuse2Direct.
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