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SETD1A protects from senescence through
regulation of the mitotic gene expression program
Ken Tajima1,2,5,7, Satoru Matsuda1,2,6,7, Toshifumi Yae1,2,7, Benjamin J. Drapkin1,3, Robert Morris1,

Myriam Boukhali1, Kira Niederhoffer1, Valentine Comaills 1, Taronish Dubash1, Linda Nieman1, Hongshan Guo1,

Neelima K.C. Magnus1, Nick Dyson1, Toshihiro Shioda1, Wilhelm Haas1, Daniel A. Haber1,3,4 &

Shyamala Maheswaran1,2

SETD1A, a Set1/COMPASS family member maintaining histone-H3-lysine-4 (H3K4) methy-

lation on transcriptionally active promoters, is overexpressed in breast cancer. Here, we show

that SETD1A supports mitotic processes and consequentially, its knockdown induces senes-

cence. SETD1A, through promoter H3K4 methylation, regulates several genes orchestrating

mitosis and DNA-damage responses, and its depletion causes chromosome misalignment

and segregation defects. Cell cycle arrest in SETD1A knockdown senescent cells is inde-

pendent of mutations in p53, RB and p16, known senescence mediators; instead, it is sustained

through transcriptional suppression of SKP2, which degrades p27 and p21. Rare cells escaping

senescence by restoring SKP2 expression display genomic instability. In > 200 cancer cell

lines and in primary circulating tumor cells, SETD1A expression correlates with genes pro-

moting mitosis and cell cycle suggesting a broad role in suppressing senescence induced by

aberrant mitosis. Thus, SETD1A is essential to maintain mitosis and proliferation and its

suppression unleashes the tumor suppressive effects of senescence.
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Senescence is a prolonged state of growth arrest induced by a
variety of stimuli including oncogene activation, oxidative
and metabolic stress and mitotic aberrations1,2. It is a

physiological process involved in aging and age-related diseases3,4

and is an important tumor suppressor mechanism in pre-
malignant tumors. A subset of these preneoplastic lesions
including benign nevi, lung adenomas, and prostatic intra-
epithelial neoplasia eventually override this safeguard mechanism
through the loss of p53, RB, INK4a and ARF and progress to
malignant tumors5–8. Senescence is also an alternative cellular
response to chemo- and radiation-therapies, which induce
extensive DNA damage. A minor fraction of therapy-induced
senescent cells (TIS) override growth arrest through acquisition of
stem-like properties9 and unstable genomes10 and the cells
escaping senescence exhibit highly drug resistant phenotypes11,12.
However, the mechanisms that underlie senescence, particularly
in cancer cells that have already inactivated RB and p53 signaling
are not defined, and these may offer the potential for modulating
this tumor suppressive pathway.

In a shRNA screen of chromatin modifiers13, we identified
SETD1A as one of the most potent regulators of key genes driving
mitosis. SETD1A encodes a highly conserved member of the
multi-subunit Set1/COMPASS complex14, whose functional
paralogues, Set1 and dSETD1 in yeast and Drosophila, respec-
tively, are critical to maintain proliferation and viability15–19.
Gene knockdown of Setd1a in mice causes severe proliferative
defects during embryonic development20, suggesting that this
function of SETD1A is evolutionarily conserved. Although the
loss of SET proteins in multiple organisms causes extensive
proliferative defects, their involvement in the maintenance of
overall H3K4 methylation under these conditions has precluded
our understanding of the specific molecular mechanisms under-
lying these functional defects.

Here we show that by regulating H3K4 methylation on the
promoters of mitotic genes, SETD1A maintains the integrity of
the mitotic process in cells. As a result, SETD1A knockdown,
independent of the p53 and RB status in cells, leads to severe
mitotic defects and senescence, suggesting that SETD1A plays a
pivotal role in maintaining the balance between multiple cellular
processes involved in cellular fitness.

Results
Suppression of SETD1A induces senescence. The over-
expression of SETD1A in multiple tumor types13 suggests an
aberrant adaptation of this chromatin regulator in cancer cells.
Analysis of publicly available data from 935 breast cancers (http://
www.cbioportal.org) shows that SETD1A is amplified in 7% of
cases and in 12% of mixed ductal and lobular breast carcinomas
(MDLC). Studies of clonal evolution in breast cancer patient-
derived xenografts in mice analyzed at single-cell resolution21

show that 24% of the resulting tumors exhibit SETD1A gene
amplification (Fig. 1a). Furthermore, overexpression of SETD1A
in breast cancers is associated with poor clinical outcome (Fig. 1b;
Logrank P= 0.0035; HR= 5.03 (1.51–16.8)), suggesting that it
confers a growth advantage in multiple tumor settings.

To study the role of SETD1A in cancer, we suppressed its
expression in cancer cells. Remarkably, knockdown of SETD1A
(SETD1A-KD) suppresses proliferation and triggers prompt (72
h) and massive cellular senescence, with very large cells
expressing characteristic ß-galactosidase (ß-gal) activity (Fig. 1c,
d; Supplementary Fig. 1a, 1b, Data from three independent
experiments are presented as Mean+ SD; *p < 0.05 by two-tailed
unpaired Student’s t test). Suppressing SETD1A expression in the
immortalized but non-tumorigenic human mammary epithelial
cell line, MCF10A, also leads to increased senescence compared

with shGFP expressing control cells (Supplementary Fig. 1c, Data
from two independent experiments are presented as Mean+ SD;
*p < 0.05 by two-tailed unpaired Student’s t test). In addition to
increasing the expression of the senescence core signature22

(Supplementary Fig 1d), SETD1A-KD in cells increases cytokine
and chemokine activity consistent with the senescence-associated
secretory phenotype (SASP), both at the RNA and protein levels
(Fig. 1e, f).

The cell cycle arrest resulting from SETD1A-KD (Supplemen-
tary Fig. 2a; Data from three independent experiments are
presented as Mean+ SD; *p < 0.05 by two-tailed unpaired
Student’s t test) is consistent with cellular senescence, and it is
not associated with apoptosis as seen by the absence of the
caspase-3 and PARP cleavage markers of apoptosis, following 3-
and 7-days of SETD1A-KD23,24 (Fig. 2a). Despite its develop-
mental role in regulating global H3K4 methylation20, SETD1A-
KD in cancer cells does not affect total H3K4 mono-, bi, or tri-
methylation, suggesting that the senescence phenotype in these
cells is limited to more specific targets (Fig. 2b). Induction of
senescence following SETD1A-KD is observed in all cell lines
tested (breast cancer, N= 4 cell lines; lung, N= 2 cell lines; colon,
N= 7 cell lines), independent of the mutational status of TP53,
RB, K-Ras and INK4A, known mediators of cellular senescence
signals1,2,25 (Fig. 2c, Supplementary Fig. 2b; Data from three
independent experiments are presented as Mean+ SD; *p < 0.05
by two-tailed unpaired Student’s t test).

SETD1A induces mitosis and DNA damage response genes. To
dissect the potential mechanisms underlying SETD1A-KD
senescence, we performed transcriptome analysis using two dif-
ferent cell types (breast cancer MDA-MB-231 and lung cancer
A549), in which SETD1A-KD induces senescence (Fig. 1c, d,
Supplementary Fig. 1b). Comparison of the transcriptome
changes in control and SETD1A-KD cells across both cell lines
identified 345 shared transcripts that were suppressed by multiple
shRNA constructs (Supplementary Fig. 3a). To determine which
of these transcripts are directly regulated through SETD1A-
mediated changes in H3K4Me3 chromatin marks on their pro-
moters, deposited through its methyl transferase activity14, we
performed genome-wide H3K4Me3 ChIP-Sequencing in control
and SETD1A-KD MDA-MB-231 cells. We identified 3258 loci
with significant reduction in H3K4 trimethylation in cells, 42% of
which resided within gene promoter regions (Supplementary
Fig. 3b). Overlapping the transcriptional and chromatin changes
induced by shRNA suppression of SETD1A nominated 53 genes
as candidate direct targets regulated by changes in H3K4Me3
chromatin marks on their promoters (Fig. 3a, Supplementary
Fig. 3c). As a third measure of functional significance, whole
proteome analysis [(multiplexed mass spectrometry (MS)] using
isobaric tandem mass tag (TMT) labeling26,27 of SETD1A-KD in
both cell lines using two independent shRNA constructs, identi-
fied 33 of the 36 (92%) SETD1A targets detected by MS as being
also reduced in protein expression (Supplementary Fig. 3d).

Gene Set Enrichment Analysis (GSEA) of the 53 consensus
SETD1A targets identified pathways involved in mitosis and cell
cycle regulation, and DNA-damage response as the top hits
(FDR ≤ 0.25; Fig. 3a). Consistent with these findings, in the Broad
Institute genome-wide shRNA screening database across 285
cancer cell lines (www.broadinstitute.org/achilles), the top 10
pathways correlated with SETD1A-KD (accounting for 57% of
genes analyzed), correspond to cell cycle and mitosis, of which 7
gene sets are significantly associated with sister chromatid
cohesion (Fig. 3b, Supplementary Fig. 4a). SETD1A expression
is similarly associated with mitosis, cell cycle and DNA damage
response pathways, as demonstrated by high-throughput
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quantitative proteome data using 41 breast cancer cell lines28

(Fig. 3c, Supplementary Fig. 4b). To define the extent to which the
correlation between SETD1A expression and these cellular
processes is relevant in clinical samples, we analyzed single-cell
RNA-Sequencing data derived from primary patient-derived
circulating tumor cells (CTCs) enriched from women with
advanced breast cancer29,30, which also confirmed the correlation
in expression between SETD1A and genes involved in mitosis and
DNA damage repair (Fig. 3d). Taken all together, these findings
show that SETD1A expression, consistent with its methyl
transferase activity, by modulating H3K4Me3 marks on promo-
ters, positively regulates the expression of a subset of genes
required for execution of cell division. These chromatin-mediated

transcriptional effects resulting from the changes in SETD1A-
induced H3K4 methylation of promoters appear to differ from
the role for SETD1A in mediating the survival of acute myeloid
leukemia cells through a non-enzymatic function mediated
through its interaction with cyclin K31.

SETD1A-KD induces mitotic defects. We then evaluated whe-
ther depletion of SETD1A in cells leads to mitotic defects. Dual
tubulin and DAPI nuclear staining of SETD1A-KD cells shows
a dramatic increase in the fraction of cells harboring micronuclei
or chromosomal fragments (Fig. 4a, bar graph shows data
from three independent experiments presented as Mean+ SD;
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Fig. 1 SETD1A expression protects cells from senescence. a SETD1A is amplified in breast cancer. Publicly available data from 935 breast cancers (http://
www.cbioportal.org/) was evaluated for SETD1A gene amplification. The frequency of amplification in mixed ductal and lobular (MDLC), invasive ductal
carcinoma (IDC) and invasive lobular carcinoma (ILB) of the breast is shown. IBC represents invasive breast carcinoma. Clonal evolution of breast cancer
patient derived xenografts in mice, studied at single-cell resolution21, shows that 24% of the resulting tumors exhibit SETD1A gene amplification (BCCRC-
Xeno). Source data are provided as a Source Data file. b Kaplan–Meier analysis was used to plot the overall survival of hormone receptor positive breast
cancer patients with high (upper tertile) and low SETD1A expression. p value was calculated using log-rank test (Logrank p= 0.0035; HR= 5.03
(1.51–16.8). c SETD1A depletion induces senescence. Left: Relative proliferation of MDA-MB-231 cells infected with shGFP and shSETD1A. shSETD1Aav

represents the mean of cells infected with two different shSETD1A constructs. Data from three independent experiments are presented as Mean+ SD;
*p < 0.05 by two-tailed unpaired Student’s t test. Source data are provided as a Source Data file. Right: Images of ß-gal stained control (shGFP) and
SETD1A-KD (shSETD1A) MDA-MB-231 cells are shown. The scale bar represents 50 µm. d Bar graph shows the percentage of ß-gal positive cells in
MDA-MB-231 cultures infected with shSETD1A and shGFP. shSETD1Aav represents the mean of cells infected with two different shSETD1A constructs.
Data from three independent experiments are presented as Mean+ SD; *p < 0.05 by two-tailed unpaired Student’s t test. Source data are provided as a
Source Data file. e Senescence-associated secretory phenotype (SASP) in SETD1A-KD cells. RNAs showing log2 fold change > 1(FDR q value > 10%) in
both SETD1A-KD (compared with shGFP) MDA-MB-231 and A549 cells were analyzed by GSEA for the enrichment of cytokine and chemokine activity.
Genes contributing to the enrichment of each pathway and FDR q-values are provided. f Proteomic analysis of SASP in SETD1A-KD cells. Proteins showing
log2 fold change > 1(FDR q value > 10%) in both SETD1A-KD (compared with shGFP) MDA-MB-231 and A549 cells were analyzed by GSEA for the
enrichment of cytokine and chemokine activity. The fold induction of the genes contributing to the enrichment of each pathway and FDR q-values are
provided
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*p < 0.05 by two-tailed unpaired Student’s t test). Real-time
imaging of RFP-tagged H2B-expressing cells shows that mitotic
defects precede the senescence phenotype exhibited by the
SETD1A-KD cells (Supplementary movie 1, 2). Further analysis
by co-staining with DAPI and antibodies against CREST, a pro-
tein marking the centromeres, also shows pronounced abnorm-
alities in chromosome alignment during metaphase (Fig. 4b, c, e,
f; bar graphs show data from three independent experiments
presented as Mean+ SD; *p < 0.05 by two-tailed unpaired Stu-
dent’s t test). These are measured as metaphase plate abnormal-
ities (Fig. 4b, e; Arbitrary units; shGFP (n= 91 cells): 76 ± 17,
shSETD1Aav from constructs #1 and #2 (n= 91 cells): 98 ± 24;
bar graph shows data from three independent experiments pre-
sented as Mean+ SD; *p < 0.001 by two-tailed unpaired Student’s
t test) and as the fraction of cells with mis-aligned chromosomes
(Fig. 4c, f; shGFP (n= 47 cells): 24% ± 3%, shSETD1Aav from
constructs #1 and #2 (n= 89 cells): 41% ± 4%; bar graph shows
data from three independent experiments presented as Mean+
SD; *p < 0.001 by two-tailed unpaired Student’s t test). Evaluation
of anaphase cells demonstrates an increased fraction of cells with
lagging chromosomes (Fig. 4d, g; Mean+ SD; shGFP (n= 43
cells): 24% ± 3%, shSETD1Aav from constructs #1 and #2 (n= 68
cells): 53% ± 7%; bar graphs show data from three independent

experiments presented as Mean+ SD; *p < 0.01 by two-tailed
unpaired Student’s t test).

To expand on the observation that mitotic defects in
proliferating SETD1A-KD cells are likely to be linked to the
induction of the senescent phenotype, we took advantage of the
tight dependence of MDA-MB-231 cell proliferation on gluta-
mine supplementation in the culture medium, and their profound
growth arrest following its withdrawal. Indeed, L-glutamine
withdrawal from MDA-MB-231 cells, which suppresses prolif-
eration (Fig. 4h, Each data point represents data from three
independent experiments presented as Mean+ SD; *p < 0.05 by
two-tailed unpaired Student’s t test), mitigates the senescence
phenotype observed following SETD1A-KD. Restoring L-
glutamine to starved cells 24 hours after shSETD1A transfection
triggers proliferation as well as the emergence of senescent cells
(Fig. 4i, Data from three independent experiments are presented
as Mean+ SD; *p < 0.05 by two-tailed unpaired Student’s t test).
Thus, reduction of SETD1A expression in actively proliferating
cells results in severe mitotic defects followed by cellular
senescence.

SKP2 contributes to senescence in SETD1A-KD cells.
Senescence-associated cell cycle arrest in SETD1A-KD cells,
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despite being independent of the mutational status of RB and p53
(Fig. 2c, Supplementary Fig. 2b), is associated with the induction
of p21 and p27 (Fig. 5a). The induction of p21 and p27 protein
expression upon SETD1A-KD is also observed in the RB and p53
inactive MBA-MB-468 and BT549 cells (Fig. 2c, Supplementary
Fig. 5). Having identified SKP2, the ubiquitin ligase which

regulates the turnover of these two cell cycle regulators32, as a
major direct target of SETD1A (Supplementary Fig. 3c), we tes-
ted whether SKP2 contributes to the induction of senescence-
associated cell cycle arrest in SETD1A-KD cells. Using qPCR and
western blot analysis, we first confirmed that endogenous SKP2
mRNA and protein are indeed suppressed in MDA-MB-231 cells
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tailed unpaired Student’s t test. Source data are provided as a Source Data file

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-10786-w ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:2854 | https://doi.org/10.1038/s41467-019-10786-w |www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


following SETD1A-KD (Fig. 5b, Data from three independent
experiments are presented as Mean+ SD; *p < 0.05 by two-tailed
unpaired Student’s t test). and then used tiled ChIP-qPCR across
the SKP2 transcriptional start site, identifying the suppression of
H3K4Me3 marks in the proximity of the transcription start site
(Fig. 5c, Data from three independent experiments are presented
as Mean+ SD; *p < 0.05 by two-tailed unpaired Student’s t test).
To determine whether restoration of SKP2 expression in
SETD1A-KD cells can rescue the senescence phenotype, we
generated cells with ‘doxycycline-inducible SKP2’ expression
(Fig. 5d). Inducible expression of SKP2 in SETD1A-KD cells
(using two different shSET1A constructs) effectively reduced the
expression of p27 and p21 proteins (Fig. 5d). Staining for ß-
Galactosidase shows that induction of SKP2 partially suppressed
the emergence of ß-Gal-positive senescent cells by 50% following
SETD1A-KD (Fig. 5e, Data from three independent experiments
are presented as Mean+ SD; *p < 0.05 by two-tailed unpaired
Student’s t test).

Cells escaping senescence exhibit genomic instability. The link
between SETD1A and SKP2 in mediating cellular senescence is
further supported by the analysis of rare SETD1A-depleted cells
that escape senescence after prolonged culture for over 90 days.
The SETD1A-KD cells that escape senescence re-enter the cell
cycle and resume proliferation and have reduced levels of ß-gal
staining (Fig. 6a–c; Supplementary Fig. 6a, 6b, Data from three
independent experiments are presented as Mean+ SD; *p < 0.05
by two-tailed unpaired Student’s t test). Since SETD1A-KD cells
show extensive mitotic defects, we tested whether cells escaping
senescence would exhibit genomic instability. Staining these cells
with tubulin and DAPI demonstrated that these cycling cells
harbor major chromosome segregation defects (Fig. 6d, e, Data
collected from 10 different fields per sample are presented as
Mean+ SD; *p < 0.05 by two-tailed unpaired Student’s t test). We
confirmed that the escaping cells had initially suppressed
SETD1A by performing single-cell cloning of control shGFP and
SETD1A-KD cells and monitoring colony growth. Our results
show that only 2 out of 190 (1.1%) SETD1A-KD cells gave rise to
colonies compared with 89.4% in shGFP treated single cells
(Supplementary Fig. 6c), suggesting that escape from senescence
is a rare event in the model. qPCR analysis confirmed the con-
tinued presence of the shSETD1A construct within the cells
escaping senescence (Supplementary Fig. 6d). In these
senescence-escaping cells SETD1A expression remains only par-
tially suppressed (Supplementary Fig. 6e, Data from three inde-
pendent experiments are presented as Mean+ SD; *p < 0.05 by
two-tailed unpaired Student’s t test), and SKP2 mRNA expression
is restored (Fig. 6f, Data from three independent experiments are
presented as Mean+ SD; *p < 0.05 by two-tailed unpaired Stu-
dent’s t test). To further determine whether recalibration of
SETD1A and SKP2 expression in the SETD1A-KD senescent cells
contributes to their escape, we knocked down their expression
individually. In both instances, knockdown of either SETD1A or
SKP2 re-induces the senescence phenotype (Supplementary
Fig 6f, 6g) suggesting that the SETD1A-SKP2 axis maintains
its important role in protecting cells from senescence. Unlike
the SETD1A-KD senescent cells in which p27 expression is
increased, the p27 protein levels in the senescence-escaping
SETD1A-KD cells ( > 90 days) are similar to the control shGFP
cells (Supplementary Fig. 7). Taken together, these data indicate
that rare cells may overcome SETD1A-KD-mediated senescence
by reactivating SKP2 expression, partially through recalibrating
SETD1A expression, but that they sustain persistent genomic
instability, consistent with deregulation of the normal mitotic
program.

Discussion
In summary, we report that knockdown of a single H3K4
methyltransferase, SETD1A, is sufficient to induce massive
senescence in proliferating cells. We propose that this phenom-
enon stems from two convergent pathways: aberrant expression
of genes critical for proper execution of mitosis, together with
overexpression of the ubiquitin ligase SKP2, whose targets p21
and p27 are known mediators of cell cycle arrest as well as
senescence32 (Fig. 7). These signals trigger senescence only in
proliferating cells, given the absence of this phenotype in growth
arrested cells. Taken together, these observations suggest that
SETD1A plays a critical role in integrating the diverse compo-
nents of cell division. Such a model would be consistent with
SETD1A being required for embryonic, epiblast and neural stem
cell survival20 and the profound proliferative defects that
accompany its loss in model organisms15–19.

Members of the COMPASS family are the most frequently
mutated or rearranged chromatin regulators in many cancers33.
Prevalence of mutations or translocations of SETD1A have not
yet been reported cancer, however, SETD1A is amplified in mixed
ductal and lobular and invasive breast carcinomas, suggesting that
increased copy number might constitute one of the mechanisms
responsible for its overexpression in cancer. Whether deregula-
tion of DNA methylation could also elevate SETD1A expression
in proliferating cancer cells remains to be determined. Cancer
cells exhibit continued proliferation, often under conditions of
mitotic stress and DNA damage. In this context, overexpression
or even amplification of SETD1A may serve to confer enhanced
fitness, allowing cells to tolerate some deregulation of mitotic
pathways. In fact, amplification of the SETD1A gene in a high
fraction (24%) of patient-derived breast cancer clones engrafting
in mice could be attributed to the mitotic and cell cycle compe-
tence acquired by these high SETD1A expressing tumor cells21.

Although senescence-associated cell cycle arrest is mostly
irreversible, a minor fraction of cells does escape senescence and
these cells often exhibit more aggressive phenotypes12,34. Identi-
fying mechanisms that promote the escape from senescence and
re-entry of cells into the cell cycle is critical to maximally exploit
the tumor suppressive properties of senescence. Progression of
premalignant lesions into malignant tumors predominantly
occurs through the loss of p53, INK4a and ARF35, whereas
mechanisms enabling therapy-induced senescent cells to escape
cell cycle arrest are highly context dependent and include the
activation of CDK1/cdc236, maintenance of stem cells through
ATR and/or Wnt-dependent37,38 pathways as well as activation of
survival mechanisms39. In the SETD1A-KD senescence model,
we identify restoration of SKP2 as one of the mechanisms that
facilitates the escape of a rare population of mitotically defective
cells. Recalibration of SETD1A expression may contribute to
restoration of SKP2 expression in the senescence-escaping cells,
since repeat knockdown either SETD1A or SKP2 can re-establish
the senescence phenotype. We had previously shown that
SETD1A, through the induction of a network of miRNAs, sup-
presses the expression of several p53 downstream targets
including BTG213, an inhibitor of cell cycle progression40.
Knockdown of BTG2 in SETD1A-KD cells also decreases the
fraction of ß-gal positive cells implicating additional mechanisms
in the escape of SETD1A-KD cells from senescence (Supple-
mentary Fig. 8, Data from three independent experiments are
presented as Mean+ SD; *p < 0.05 by two-tailed unpaired Stu-
dent’s t test)

Senescence is not only a potent tumor-suppressive and drug-
response mechanism, it is also thought to be a fundamental
cellular pathway that drives organismal aging3,4. As such,
SETD1A, a chromatin modifying enzyme which integrates
two fundamentally opposing pathways – proliferation and
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senescence – provides a druggable node that may provide
insight into modulating cancer and aging phenotypes in the
future. Histone-modifying enzymes, which regulate transcrip-
tional programs, are emerging as promising cancer therapeutic
targets41–43. Our findings show that inhibiting SETD1A is
sufficient to unleash the senescence phenotype illustrating the
potential consequence of targeting a single chromatin modifier.
For cancer applications, exploiting the senescence phenotype
induced by SETD1A inhibition will require identifying addi-
tional actionable signaling nodes to suppress escape from
senescence, and combinatorial regimens to definitively halt
cancer cell proliferation.

Methods
Cell culture. All cell lines were acquired from ATCC. Human breast and lung
cancer cell lines, MDA-MB231, A549, MCF7, MDA-MB-468, BT549, and H1299,
were grown in Dulbeccco’s modified medium supplemented with 10% female fetal
bovine serum, glutamine and penicillin/streptomycin. Human colon cancer cell
lines, HCT8, H630, HCT116, DLD1, HCT15, SW620 and HT29, were grown in
RPMI 1640 medium supplemented with 10% female fetal bovine serum and
penicillin/streptomycin. They were periodically authenticated and were matched
with the earliest passage cell lines. All cell lines were also periodically tested for
mycoplasma contamination using the MycoFluorTM Mycoplasma Detection Kit
(Thermo Fisher Scientific) and shown as negative for infection.

Viral infection. Lentiviral short hairpin RNA constructs were obtained from the
RNAi Consortium shRNA Library at the Broad Institute. The target sequences
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against each gene are listed in the Table 1. Inducible expression of SKP2 was
accomplished by stable lentiviral transfection of pInducer-SKP2 into cells. The
sequence pENTR-SKP2, Ultimate ORF from Life Technologies, was transferred to
the backbone pInducer 20 with the gateway system from Life Technologies.
Conditioned medium containing infective lentiviral particles was generated by co-
transfecting 3 µg of lentiviral vector, 3 µg of pCMV ∂8.91 and 1 µg pHCMV-VSV-
G into 2 × 106 293 T human embryonic kidney cells using FuGENE 6 transfection
reagent (Roche Applied Science). Supernatants were collected 48 hours after
transfection and filtered through a 0.45 um membrane (Millipore). The cells were
directly infected using 8 µg/mL of polybrene.

RNA interference assay. siRNA against BTG2 (5′-CAGAGCACUACAAA-
CACCACUGGUU-3′) or non-targeting control (50 nM) were transfected into cells
using the Lipofectamine RNAiMAX (Invitrogen) according to manufacturer’s
protocol.

qPCR. RNA was isolated using RNeasy Mini kit (Qiagen) and mRNA quantitation
was performed using SYBR Green in an ABI PRISM 7500 sequence detection
system with 96-block module and automation accessory (Applied Bio-system).
GAPDH or ß-actin was used as an internal control. All samples were analyzed in
triplicate. The primer sequences are listed in the Table 2.

Western blot. Antibodies used were rabbit anti-SETD1A polyclonal antibody (Cat.
A300–289 A, BETHYL; 1:1000 dilution), rabbit anti-p21 polyclonal antibody (Cat.
sc-397, Santa Cruz; 1:100 dilution), rabbit anti-p27 polyclonal antibody (Cat. sc-
528, Santa Cruz; 1:100 dilution), rabbit anti-caspase-3 polyclonal antibody (Cat. sc-
7148; 1:200 dilution), rabbit anti-PARP antibody (Cat. #9542; Cell Signaling
Technology; 1:1000 dilution), rabbit anti-Histone H3 antibody (Cat. ab176842,
Abcam; 1:500 dilution), rabbit anti-SKP2 antibody (Cat. #4358; Cell Signaling),
rabbit anti-Histone H3 mono-methyl K4 antibody (Cat. ab8895; Abcam; 1:500
dilution), rabbit anti-Histone H3 di-methyl K4 antibody (Cat. ab32356; Abcam;
1:2000 dilution), rabbit anti-Histone H3 tri-methyl K4 antibody (Cat. ab12209;
Abcam; 1:1000 dilution) and mouse anti-Actin monoclonal antibody (BD
Bioscience; 1:1000 dilution). Cell were lysed in RIPA lysis buffer [20 mM Tris,
pH8.0 150 mM NaCl, 10 mM NaF, 0.1% SDS, 1% Nonidet P-40, 1X protease
inhibitor mixture (Roche)]. Lysates were run on a SDS-4-15% polyacrylamide gel
(Bio-Rad) and transferred onto PVDF membranes (Millipore) and Nitrocellulose
membrane (Invitrogen). Immunoblots were visualized with a Western Lightning
Plus chemiluminescence kit (PerkinElmer) and the Odyssey blot imager (LI-COR).
Uncropped and unprocessed scans of all the important blots are provided in the
source data file.

Senescence-associated (SA) ß-galactosidase staining. SA ß-galactosidase
staining was performed using the Senescence Cells Histochemical Staining Kit from
Sigma-Aldrich. Briefly, cells were fixed and incubated with freshly prepared
staining solution overnight according to manufacturer instructions. The percentage
of positively stained cells was determined by counting five random fields. Images of
representative fields were captured under 200X magnification.

SETD1A

SETD1A

SETD1A-KD

Mitotic defects

Mitosis

Senescence

Senescence

Genomic instability

Mitotic genes

Mitotic genes

SKP2

SKP2+other

Escape

p21, p27

SKP2

p21, p27

Fig. 7 SETD1A maintains the balance between proliferation and senescence. Suppression of SETD1A leads to mitotic defects and simultaneous repression
of SKP2 in these cells causes the defective daughter cells to enter senescence with increased levels of p21 and p27. SETD1A-KD cells escaping senescence
re-enter the cell cycle through upregulation of SKP2 as well as other mechanisms. The inset summarizes the pivotal role SETD1A expression in maintaining
the balance between mitosis and senescence

Table 1 List of target sequences against shRNAs

5′–3′
SETD1A #1 CCGGGAAGATCGTGATCTACTCCAACTCGAGTTGGAGTAGATCACGATCTTCTTTTTTG
SETD1A #2 CCGGGCGATTCGTCTTCCAAATGTTCTCGAGAACATTTGGAAGACGAATCGCTTTTTTG
SKP2 #1 CCGGGCCTAAGCTAAATCGAGAGAACTCGAGTTCTCTCGATTTAGCTTAGGCTTTTTG
SKP2 #2 CCGGGATAGTGTCATGCTAAAGAATCTCGAGATTCTTTAGCATGACACTATCTTTTTG

Table 2 The primer sequences used for gene expression
analysis using qPCR

SETD1A Forward 5′-GGCCAGATTCATCAACCACT-3′
SETD1A Reverse 5′-CGATCTTCTTCTGGGACTCG-3′
SKP2 Forward 5′-ATGCCCCAATCTTGTCCATCT-3′
SKP2 Reverse 5′-CACCGACTGAGTGATAGGTGT-3′
GAPDH Forward 5′-AGTCCTTCCACGATACCAAAGT-3′
GAPDH Reverse 5′-CATGAGAAGTATGACAACAGCCT-3′
β-Actin Forward 5′-CTCTTCCAGCCTTCCTTCCT-3′
β-Actin Reverse 5′-AGCACTGTGTTGGCGTACAG-3′
BTG2 Forward 5′-CAGAGCACTACAAACACCACTG-3′
BTG2 Reverse 5′-CTGAGTCCGATCTGGCTGG-3′
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Cell cycle analysis. Cells were harvested, washed twice in PBS, resuspended in
70% ethanol overnight, and then diluted in propidium iodide, RNase staining
buffer (BD Pharmingen) and incubated for 15 min at 37 °C. Samples were analyzed
with flow cytometry (BD LSRFortessa Cell analyzer) and Flowjo software
(FLOWJO, LLC).

Time-lapse imaging. H2B-RFP-expressing A549 cells were infected with either
shSETD1A or shGFP and real-time imaging was initiated 24 hours after infection
using the confocal Zeiss LSM170 using an enclosed stage incubator, after regulating
temperature, CO2 level and humidity. For RFP images within each well, nine
images (3 × 3 tile) were captured every 5–8 min over 3 days (24–96 h after infec-
tion) at ×20 magnification. Sample focus was maintained during the course of the
experiment using an external diode laser. Cell viability was confirmed by observing
of mitotic cells throughout the duration of the experiment. Videos were analyzed
using the ZEN software (Zeiss).

Proliferation assays. Cells were trypsinized and 2.5 × 103 cells were plated in
individual wells of a 96-well plate. On the day of evaluation, a 10 µL WST-8
solution (WST-8 cell proliferation and cytotoxicity assay kit; Cayman Chemical)
was added into each well. Plates were then incubated for an additional 1 h at 37 °C
and the absorbance was determined at 450 nm. The cell counts for 3 wells/time-
point were averaged for each group and the data were used to derive growth curves.

ChIP-Sequencing. ChIP assay to define H3K4Me3 marks on the SKP2 promoter
using 10 primers spanning the region was done as described in13. Quantitative PCR
was performed using primers listed in the Table 3.

Distribution of global histone H3 harboring H3K4me3 marks in shGFP and
SETD1A-KD cells (from three independent samples) was determined by ChIP-
seq44. Cells at 80% confluence in 150 mm dishes (3 × 106- 5 × 106 cells per dish)
were crosslinked with 1% formaldehyde for 15 min at 37 °C and quenched with
formaldehyde containing 125 mM glycine. The cells were then washed twice with
cold PBS and collected into 1 mL of cellular lysis buffer (5 mM Pipes, 85 mM KCl,
and 0.5% NP-40 with protease inhibitors mixture). Nuclei were collected and
incubated in nuclear lysis buffer [50 mM Tris (pH 8.0), 10 mM EDTA (pH 8.0),
0.2% EDTA with protease inhibitors mixture]. Formaldehyde-crosslinked
chromatin was fragmented to a target size of 200-300 bp using a Covaris
S2 sonicator (Covaris, Woburn, MA) at 4 °C. Size distribution of gDNA fragments
was determined using the Agilent Bioanalyzer (Agilent Technologies, Santa Clara,
CA). Protein G magnetic beads were incubated with 4 µg of either anti-Histone H3
tri-methyl K4 antibody or IgG control on rotator at 4 °C for 6 h. Sonicated
chromatin was subjected to chromatin immunoprecipitation with protein G
magnetic beads conjugated with each antibody on rotator at 4 °C overnight. After
six washes, the beads were eluted with elution buffer (50 mM NaHCO3, 140 mM
NaCl, 1% SDS). Following both RNaseA and proteinase K treatment, genomic
DNA fragments enriched for interaction with H3K4me3 were released from
proteins by heat, purified using PCR clean-up kit (Qiagen), and subjected to deep
sequencing library construction using the SOLiD 5500 Fragment Library Core Kit
and the SOLiD EZ Bead emulsion PCR system (Life Technologies, Carlsbad, CA).
Deep sequencing was performed using the SOLiD 5500XL deep sequencer (50 nt,
single reads), and the XSQ-format raw data were subjected to color-space

alignment to the GRCh37/hg19 human genome reference sequence to obtain the
BAM format-aligned read data using the ABI LifeScope software (Life
Technologies). Uniquely mapped reads (12-15 million reads per library) were
subjected to detection of H3K4me3 peaks and differential distributions using the
MACS2 callpeak function45. Annotation of H3K4me3 peaks to the transcription
start sites of known human genes was performed using the R/bioconductor
packages ChIPseeker46, clusterProfiler47, and TxDb.Hsapiens.UCSC.hg19.
knownGenes. Gene Ontology analysis of genes differentially enriched for H3K4me3
at the promoter sequence was performed using the DAVID web server48.
Quantitative differences in promoter-associated H3K4me3 peaks within known
genes were statistically examined using two-samples t test with Welch’s correction.
ChIP sequencing data have been deposited in the NCBI Gene Expression Omnibus
database under accession code GSE 117427.

Arrayed gene expression analysis. RNA expression in SETD1A-depleted A549
and MDA-MB-231 cells was analyzed using the Human Gene Expression 12 × 135
K Arrays (Roche Nimblegen). Briefly RNA was extracted from A549 and MDA-
MB-231 cells infected with shGFP or two independent shSETD1A constructs
(shSETD1A#1 and shSETD1A#2) using the RNeasy Mini kit (Qiagen). cDNA
synthesis was performed using the Roche cDNA synthesis system (11 117 831 001).
cDNA was hybridized to the Human Gene Expression 12 × 135 K Arrays in
duplicate according to the manufacturer’s protocol. The microarrays were scanned
on Nimblegen MS200 at 2 µm resolution. Scans were converted to RMA-
normalized49,50 expression values using Roche NimbleScan 2.6 software. Micro-
array data have been deposited in the NCBI Gene Expression Omnibus database
under accession code GSE 7149813.

Quantitative proteomics. To define the mechanism underlying the senescence
phenotype exhibited by SETD1A knockdown cells, we quantitatively mapped the
proteomes using multiplexed mass spectrometry (MS) by applying isobaric tandem
mass tag (TMT) technology26,27. shGFP and shSETD1A MDA-MB-231 and A549
cells (carried out in triplicate) were pelleted and re-suspended in lysis buffer
containing 75 mM NaCl, 50 mM HEPES (pH 8.5), 10 mM sodium pyrophosphate,
10 mM NaF, 10 mM ß-glycerophosphate, 10 mM sodium orthovanadate, 10 mM
phenylmethanesulfonylfluoride, Roche Complete Protease Inhibitor EDTA-free
tablets, and 3% sodium dodecyl sulfate. Cells were lysed by passing them 10 times
through a 21-gauge needle, and the lysates were prepared for analysis on the mass
spectrometer28. Briefly, reduction and thiol alkylation were followed by purifying
the proteins using MeOH/CHCl3 precipitation. Protein digest was performed with
Lys- C and trypsin, and peptides were labeled with TMT-10-plex reagents (Thermo
Scientific) and fractionated by basic pH reversed phase chromatography. Multi-
plexed quantitative proteomics was performed on an Orbitrap Fusion mass spec-
trometer (Thermo Scientific) using a Simultaneous Precursor Selection (SPS) based
MS3 method26,27. MS2 spectra were assigned using a SEQUEST-based proteomics
analysis platform51. Based on the target-decoy database search strategy52 and
employing linear discriminant analysis and posterior error histogram sorting,
peptide and protein assignments were filtered to a false discovery rate (FDR) of
<1%53. Peptides with sequences that were contained in more than one protein
sequence from the UniProt database were assigned to the protein with most
matching peptides53. TMT reporter ion intensities were extracted as that of the
most intense ion within a 0.03 Th window around the predicted reporter ion
intensities in the collected MS3 spectra. Only MS3 with an average signal- to-noise
value larger than 40 per reporter ion as well as with an isolation specificity27 larger
than 0.75 were considered for quantification. A two-step normalization of the
protein TMT-intensities was performed by first normalizing the protein intensities
over all acquired TMT channels for each protein based on the median average
protein intensity calculated for all proteins. To correct for slight mixing errors of
the peptide mixture from each sample, a median of the normalized intensities was
calculated from all protein intensities in each TMT channel, and protein intensities
were normalized to the median value of these median intensities. Known protein-
protein interactions were extracted from the String database (high confidence
score > 0.7)54.

Analysis of gene sets enriched in SETD1A co-regulated genes. Data derived
from multiplexed proteomic analysis on 41 breast cancer cell lines described in
ref. 28 were used to calculate the co-regulation of all proteins with respect to
endogenous basal SETD1A protein expression using pairwise Pearson correlation
calculations28. The correlation scores were sorted to generate an ordered list of
proteins and then the proteins identifiers were converted to their associated gene
symbol. We performed a GSEA for the GO term Biological Process gene set col-
lection (MSigDB) using the pre-Ranked GSEA tool available from the Broad55.
Significantly enriched genesets were defined by the Benjamini-Hochberg adjusted p
values (FDR q values < 25%). The full set of significantly enriched gene sets are
provided as Supplementary table 1.

SETD1A co-dependency analysis. The Project Achilles RNAi viability database
was analyzed to identify the gene dependencies that are most closely associated
with SETD1A dependency. This analysis was performed on the published Achilles
v2.20.2 dataset, comprised of 17,098 gene dependency z-score across 501 cancer

Table 3 DNA sequences of the 10 primers spanning the
SKP2 promoter

P1 Forward 5′-TTCCAAGCACCATTCATTCA-3′
Reverse 5′-GTGGTGGCAGCTACCTGTTT-3′

P2 Forward 5′-AAGAAGGGTGGACCGTCTTC-3′
Reverse 5′-GTCAGGCTGGTCTCGAACTC-3′

P3 Forward 5′-GTTACCGGGGCAAACTATCA-3′
Reverse 5′-CTGGGAACTAGAATACTTGCAACA-3′

P4 Forward 5′-GGGAAAGGACGTAGCTTCAA-3′
Reverse 5′-AGGCTAAGCCGTTCATCAAA-3′

P5 Forward 5′-ATGGATTTCGCATGGTCATT-3′
Reverse 5′-TCAGCTGGCTACGTGTGTTT-3′

P6 Forward 5′-GCTGGGCTACTGTCACCACT-3′
Reverse 5′-GTGAGGCGCTTTTGAGTCTG-3′

P7 Forward 5′-TGCTAGGCTTAGCGGGTCT-3′
Reverse 5′-CCCTTTTTGCAATCCGTTTA-3′

P8 Forward 5′-TGCGATTCTGTTAGCTGCTG-3′
Reverse 5′-CTTCCTGCAGAAGTGCACAA-3′

P9 Forward 5′-GGGCAAGTCGTCAAGTATGC-3′
Reverse 5′-GCAGGCAGATTCCCTTCTAA-3′

P10 Forward 5′-TTAATCACCCAACCCGAAAA-3′
Reverse 5′-GGGATAGACCTGGGGAGAAG-3′
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cell lines; however, since SETD1A dependency was only measured in a subset of
285 cell lines, only this subset was analyzed56. Gene dependencies were ranked by
Pearson correlation coefficient with SETD1A dependency across 285 lines, and
false discovery rate (FDR) was controlled by the Benjamini and Hochberg method.
The overlap of positively correlated gene dependencies (FDR < 0.01) with GO gene
sets was evaluated using Gene Set Enrichment Analysis (GSEA, MSigDB v6.1, c5
gene sets)55,57. For gene dependencies represented in multiple enriched and related
GO gene sets, a heatmap was generated to depict the association with SETD1A
dependency, comparing the gene dependency z-scores in cell lines that are
SETD1A-dependent (z-score < -2) and SETD1A-independent (z-score >+ 2).

Immunofluorescence analysis. Cells were plated overnight on a 4 or 8-well
chamber slide (Millipore or LAB-TEK) coated with poly-L-lysine (Sigma), fixed
with 4% paraformaldehyde and washed with PBS. Fixed cells were then permea-
bilized with 0.5% Triton X-100 in PBS, blocked with 5% BSA, and stained with
mouse anti-Tubulin antibody (NOVUS; 1:200 dilution) or human anti-Centromere
antibody (Antibody Inc; 1:200 dilution) for 1 h, and incubated with secondary
antibodies conjugated with Alexa Fluor dyes (1:500 dilution) for 1 h. Coverslips
were then mounted with anti-fade agent Prolong with 4′,6-diamidino-2-pheny-
lindole (DAPI) (Invitrogen). Photomicrographs were taken with the NIKON 90i
microscope or with the confocal Zeiss LSM170. Analysis and quantification of the
mitotic events of interest were performed with ImageJ software (NIH).

Statistics. The statistical analyses performed is described in the figure legends. The
differences between the means were considered to be statistically significant at P <
0.05.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Microarray data has been deposited in the NCBI Gene Expression Omnibus database
under accession code GSE71498. The proteomics data have been deposited to the
ProteomeXchange Consortium via the MassIVE partner repository with the dataset
identifier MSV000083763. The source data underlying Figs. 1a, 1c, d, 2a–c, 3d, 4a–i, 5a–e,
6a, 6c–g and Supplementary Figs. 1a–d, 2a, 3c, 5, 6a–c, 6e–gd, 7 and 8 are provided as a
Source Data file. All the other data supporting the findings of this study are available
within the article and its Supplementary Information files and from the corresponding
author upon reasonable request.
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