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The Lyapunov spectra of quantum thermalisation
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Thermalisation in closed quantum systems occurs through a process of dephasing due to

parts of the system outside of the window of observation, gradually revealing the underlying

thermal nature of eigenstates. In contrast, closed classical systems thermalize due to

dynamical chaos. We demonstrate a deep link between these processes. Projecting quantum

dynamics onto variational states using the time-dependent variational principle, results in

classical chaotic Hamiltonian dynamics. We study an infinite spin chain in two ways—using

the matrix product state ansatz for the wavefunction and for the thermofield purification of

the density matrix—and extract the full Lyapunov spectrum of the resulting dynamics. We

show that the entanglement growth rate is related to the Kolmogorov–Sinai entropy of

dynamics projected onto states with appropriate entanglement, extending previous results

about initial entanglement growth to all times. The Lyapunov spectra for thermofield

descriptions of thermalizing systems show a remarkable semi-circular distribution.
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The extra information required to specify a pure quantum
state compared with that required for a classical or thermal
state underpins many of the apparent paradoxes of quan-

tum mechanics1. These may be profoundly philosophical, such as
when attempting to apply quantum mechanics to the whole
universe, e.g. the black-hole information paradox, and the very
long-scale entanglement implied by the origin of microwave
background anisotropy in zero-point fluctuations2. Whilst there
are fewer philosophical difficulties in the description of finite
quantum systems, there are practical consequences.

Accurate numerical description of a quantum system evolving
from a weakly entangled initial state requires an exponentially
growing number of parameters. The eigenstate thermalisation
hypothesis implies that, beyond a certain point in time, an
accurate representation of this dynamics should require a redu-
cing number of parameters. The eigenstate thermalisation
hypothesis3–5 has made great strides in demonstrating how
thermal correlations present in local observations of eigenstates
are revealed through a process of dephasing due to entanglement
with regions of the system not directly under observation. The
ultimate consequence is that late-time, local observations are
characterised by just the energy density. The increase and then
reduction of parameters required to accurately describe a ther-
malising quantum system is akin to the Page curve6,7 for the
entanglement entropy of partitions of a system. The Page curve
appears in the context of the black hole information paradox. Its
appearance here is for similar reasons, except that the horizon for
observations is imposed by hand and does not evaporate.

Quantum chaos8 provides a link between classical thermali-
sation—which proceeds via dynamical chaos—and quantum
thermalisation. Studying few particle systems whose classical limit
is chaotic, or many-body systems whose many particle dynamics
is dominated by single-particle chaos, has lead to great insights
into the relationship between chaos and thermalisation9–15. It is
problematic to extend this to fundamentally many-body systems
—such as spin chains—that have no clear semiclassical limit.
Fortunately, the underlying chaos is reflected in the spectral
statistics, which provides a measure that can be extended to
many-body systems16–20 and is thoroughly accounted for by
random matrix theory21,22. However, the link between quantum
and classical chaos in many-body systems remains unclear.
Operator spreading as quantified by the out-of-time ordered
correlator23 is often related to the classical Lyapunov in its initial
exponential growth. However, such a behaviour and identification
is only found when there is a clear semiclassical limit. The link
between quantum and classical chaos in many-body systems
remains unclear.

Here, we demonstrate a new way to analyse quantum ther-
malisation that extends the connection between classical and
quantum thermalisation to fundamentally many-body systems.
The central idea is to project the quantum dynamics onto effec-
tive classical, Hamiltonian dynamics on a class of different var-
iational manifolds24,25. Thermalisation in these classical systems
occurs via dynamical chaos26–28. Every dynamical mode of the
system is chaotic, revealed on timescales given by the inverse of
its corresponding Lyapunov exponent. This distribution of
timescales is quantified by the Lyapunov spectrum. We apply this
reasoning to a translationally invariant spin chain, a system over
which we have analytical and numerical control using matrix
product state (MPS) representation of the wavefunction29 and the
thermofield double purification of the density matrix. In both
cases, we follow the dynamics using the time-dependent varia-
tional principle.

By bringing the study of many-body quantum chaos into con-
tact with that of classical chaos, our approach opens up the full
range of techniques available in the latter. For example, it allows
the potential to examine how the classical KAM theorem for
deformations from integrable behaviour and periodic orbits in
classically chaotic systems may manifest in quantum systems30–34.
It also suggests natural possibilities for efficient descriptions of late-
time dynamics. This complementary perspective brings the study
of quantum chaos full circle, recapitulating the characterisation of
few particle quantum chaos through its projection to classically
chaotic systems.

Our key results are, in the case of wavefunction MPS, we find a
zero-parameter fit between the Lyapunov spectrum and the time-
dependence of entanglement. In the thermofield MPS near the
centre of the spectrum, we recover a semi-circular distribution of
Lyapunov exponents for thermalising systems, as found pre-
viously in the case matrix models35,36, and a Gaussian distribu-
tion for integrable systems.

Results
Transverse-field Ising model in a longitudinal field. We apply
the above reasoning to study the thermalisation of the Ising
model with longitudinal and transverse fields:

H ¼
X
i

Jσzi σ
z
iþ1 þ hzσzi þ hzσzi

� �
: ð1Þ

The properties of this model are well known; it is integrable
when the longitudinal field hz is zero and non-integrable
otherwise. This allows us to investigate: (i) integrable systems
(J = O(1), hx = O(1) and hz = 0), (ii) non-integrable/thermalising
systems J = O(1), hx = O(1) and hz = O(1)) and (iii) nearly
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Fig. 1 Lyapunov spectrum for a wavefunction MPS representation of Ising model dynamics. a Non-integrable case with J = 1, hx = 0.5, hx = 1. b Integrable
case with J = 1, hx = 0.5, hx = 0. c Nearly Integrable case with J = 1, hx = 0.5, hx = 0.1. In all cases, the spectrum is obtained for an MPS representation of
the wavefunction at bond order D = 20
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integrable systems J = O(1), hx = O(1) and hz ≪ hx). We apply
the machinery of the time-dependent variational principle to
determine trajectories, and the linearised time-dependent varia-
tional principle to determine Lyapunov spectra. Reflecting their
different encodings of the relevant physics and different regimes
of validity, we separate our discussions of the wavefunction MPS
and thermofield MPS.

Wavefunction MPS. We now consider the Lyapunov spectra
evaluated from the wavefunction MPS starting from an initial
product state |ψ(0)〉i = (0.382− 0.382i)|↑〉i + (−0.595 +
0.595i)|↓〉i near the bottom of the spectrum. The Lyapunov
spectrum for the non-integrable, integrable and nearly integrable
cases are shown in Fig. 1. All show a broad distribution of
exponents, with no strong differences apparent between integr-
able and non-integrable cases. Although there is a difference
apparent between the non-integrable and integrable or nearly
integrable cases, this is insufficient to provide a diagnostic of
integrability.

A translationally invariant MPS is parametrised by a set of D ×
D matrices, D is often called the bond order. Since the
nonlinearities and chaos of our dynamics arise from projection
to the variational manifold, the Lyapunov spectrum varies with
bond order. This situation is unlike the conventional use of
matrix product methods, where increasing bond order gives
increasingly accurate results. The dependence of the maximum
Lyapunov exponent, λmax, upon D is shown in Fig. 2. This shows
a decrease from D = 2 as D → ∞. The following discussion
demonstrates the consistency of these results with physical
observations. Note that in the translationally invariant case with
spin 1/2, the projected dynamics is not chaotic at D = 1 by the
Poincaré–Bendixson theorem, since the phase space is two-
dimensional. The Lyapunov exponents are therefore zero in this
case. Maldacena et al.37 have conjectured that the largest
Lyapunov exponent of a quantum system has an upper bound
related to its temperature λmax ≤ 2πkBT/ħ;. The behaviour of λmax

for initial states of different energy can be seen in Fig. 3. At low
energies, the exponent appears to increase as a power law before
saturating at E ≈ 0.6.

The dependence of the entanglement entropy, SE upon time is
shown in Figs. 4 and 5. For a given bond order, SE saturates. To a
good approximation, this saturation value corresponds
to drawing the Schmidt coefficients sn from a distribution
given by the modulus of the elements of a random O(D)
vector. The mean Schmidt coefficients then correspond to
sn ¼ n

ffiffiffi
6

p
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dð1þ DÞð1þ 2DÞp

, from which one may deduce a
saturation entanglement at large bond order given by

SSatE ðDÞ ¼ �
XD
n¼1

s2n log s
2
n � log½0:65ðD� 1Þ þ 1�: ð2Þ

With growing entanglement, the effective bond order of the
quantum state (the bond order required for an accurate
description) grows. We can use Eq. (2) to deduce this time-
dependence; at the point where SE crosses the bond order D
saturation value, the bond order must be increased. A continuous
approximation can be found by equating SSatE ðD� 1Þ ¼ SEðtÞ,
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Fig. 2 Maximum Lyapunov exponent versus bond order. The maximum
Lyapunov exponent depends strongly upon the projection nonlinearities at
different bond orders, tending to zero in the limit D → ∞. Here, we show
the largest exponent varying with bond order for non-integrable (circles),
integrable (crosses) and nearly integrable (pluses) systems. The largest
exponent decreases like λmax(D) = 0.32(D − 1)−0.21 for non-integrable
systems, λmax(D) = 0.54(D − 1)−0.27 for integrable systems and λmax(D) =
0.42(D − 1)−0.22 for nearly integrable systems
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Fig. 3 Maximum Lyapunov exponent versus energy density. It has
previously been conjectured that λmax ≤ 2πkBT/ħ, here, we observe that
λmax (D = 2) increases with energy density above the ground state, but
appears to saturated at E ≈ 0.6. The initial growth of λmax was fitted with a
power law 1.80E1.69
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Fig. 4 Entanglement entropy across a bond compared to randomly
distributed Schmidt coefficients. At a given bond dimension, the
entanglement entropy will saturate after a short time. The saturation value
for the entanglement entropy is in strong agreement with a random uniform
distribution of Schmidt coefficients
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from which we obtain

DðtÞ ¼ 1:54ðeSEðtÞ � 0:997Þ þ 2: ð3Þ
As we discuss presently, this dependence of bond order upon

time allow us to demonstrate the consistency of the Lyapunov
spectrum and its variation with D with the physically relevant
dependence of the entanglement entropy upon time.

The Kolmogorov–Sinai entropy SKS is a measure of how
quickly knowledge of a system’s initial state is lost in a chaotic
system. It determines the growth rate of the volume of a region of
phase space and, following Pesin’s theorem38, is given by the sum
of the positive Lyapunov exponents.

Studies of single-particle quantum chaos have shown the
relationship _SEðt ¼ 0Þ ¼ SKS, provided that starting wavefunction
is as classical as possible23,39,40. Here, we find—as indicated in
Fig. 5—that _SEðt ¼ 0Þ ¼ SKSðD ¼ 2Þ. D = 2 corresponds to the
most classical, non-trivial (recall that D = 1 has vanishing
Lyapunov exponents) projected dynamics and is the many-body
equivalent of the single-particle result. We speculate the following
extension of this result:

_SEðtÞ ¼
SKSðDðtÞÞ
ðDðtÞ � 1Þ2 : ð4Þ

Our main justification is the very good, zero-parameter fit that
it gives between our results for the entanglement and Lyapunov
spectrum. A derivation may be possible from the entangled path
integral41, where a similar result is obtained for the growth rate of
bosonic fluctuations at a particular bond order. Figure 6 shows
the Kolmogorov–Sinai entropy scaled by (D − 1)2 and its
dependence upon bond order. At long times we expect SE(t) ~ t
for thermalising systems, which using Eq. (4) suggests the fit

SKSðDÞ
ðD� 1Þ2 ¼ 0:14þ 1:6e�1:08ðD�1Þ: ð5Þ

Combining Eqs. (3)–(5), the Lyapunov data imply a differential
equation for SE(t) that we can integrate to find SE(t). Figure 5
shows the result plotted alongside entanglement obtained from a
high bond-order iTEBD algorithm. The Lyapunov spectra
underestimate the late-time linear growth rate of entanglement

by about 15%. Note that Fig. 5 is plotted to times that extrapolate
beyond times where our TDVP simulations are accurate.

It is apparent from these observations that the Lyapunov
spectrum extracted from mapping the quantum dynamics of the
wavefunction to classical Hamiltonian dynamics is not unique.
There is no sense in which spectra collected in this way show
numerical convergence, with increasing bond order. A moments
reflection about the way in which the wavefunction MPS captures
the physics of thermalisation shows why. At low bond order, the
dynamics is very non-linear and thermalisation occurs via chaotic
classical dynamics. Thermal averages are recovered in temporal
averages of the simulated dynamics. As bond order increases, the
MPS ansatz make better and better approximation to the
underlying eigenstates and ultimately, thermalisation is captured
in the same way as the conventional picture of eigenstate
thermalisation. Thermal averages are obtained in instantaneous
measurements after an initial period of dephasing reveals
the intrinsic properties of the underlying eigenstates. However,
the Lyapunov spectrum does have physical meaning. We have
demonstrated how the physical quantity, SE(t), is related to the
Lyapunov spectrum obtained on a sequence of variational
manifolds.

Thermofield MPS. The above analysis allows us to relate the
chaos of projected quantum dynamics near to the edge of the
spectrum to the process of thermalisation. We now apply our
analysis of the Lyapunov spectrum to a matrix product-state
representation of the thermofield double. The thermofield double
represents the density matrix as a pure state in an enlarged Hil-
bert space [see the Methods section]. Expectations of operators
are the same as calculated with the original density matrix.
Techniques developed to study the dynamics of wavefunctions
can then be adapted to effectively describe the dynamics of the
density matrix. A particular benefit is that a matrix product-state
approximation to the thermofield can efficiently describe both
weakly entangled states and thermal states. It can therefore
potentially be used both near the centre of the spectrum and at
late times where the wavefunction MPS cannot. We consider an
initial pure state near to the middle of spectrum, |ψ(0)〉i =
0.448|↑〉i + 0.873|↓〉i. The late-time dynamics of this are similar
to the infinite-temperature state.
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Fig. 5 Entanglement entropy and Kolmogorov–Sinai entropy. The gradient
of the entanglement entropy is determined by the Kolmogorov–Sinai
entropy. The Kolmogorov–Sinai entropy at D = 2 accurately predicts the
gradient of the entanglement entropy at t = 0 (orange). Substituting fitted
forms for the Lyapunov spectrum and saturation entanglement into Eq. (4)
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may both be compared with the time evolution of SE(t) found using iTEBD
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The Lyapunov spectra for the thermofield MPS dynamics are
shown in Fig. 7. There is a clear distinction between the non-
integrable, and integrable and nearly integrable cases. The former
has a semi-circular distribution, whereas the latter are narrower
and fit a Gaussian distribution (with long tails that have been cut-
off in Fig. 7). For long-time averages, the Lyapunov spectrum for
the nearly integrable case is expected to crossover from a pre-
thermalisation Gaussian to a semi-circle distribution. There is a
narrowing of the tails of our spectra at late times, but a clear
demonstration of the emergence of a semi-circle is a subject for
further study. The semi-circular distribution in the non-
integrable case suggests a connection to random matrix theory.
Such a connection has previously been explored in the context of
matrix models35,36.

Figure 8 shows the variation of the maximum Lyapunov
exponent with bond order for the non-integrable case. Symmetry
constraints that we impose upon the thermofield MPS tensor (See
Supplementary Note 2C for details) restrict the bond order to
D ¼ 1; 4; 9; 16 etc., and together with the rapid growth of the
number of Lyapunov exponents as 2ðd2 � 1ÞD 2 this leads to
rather few points in the figure. Note that since the dimension of
the local Hilbert space is d2, dynamical chaos occurs at D ¼ 1.
Our numerics are fit by 1:09D�0:373, or 1:17e�0:0173D , but are also

consistent with convergence 0:410þ 0:1740e�0:0116D . The latter
might be expected since the thermofield double (being a
purification of the density matrix) encodes a limited set of
observations corresponding roughly to a window of size 1

2 log2D .
When this window is larger than the correlation length,
timescales of the dynamics are expected to converge to values
characteristic of the observable thermalisation process.

The Kolmogorov–Sinai entropy for the thermofield MPS is
shown in Fig. 9. This is fit with 1:427D 1:58 to high accuracy.
This scaling is less than D

2 (the volume of phases space) of
a typical classical dynamical system. This is consistent
with unitary dynamics as D tends to infinity. Unlike
wavefunction MPS, we have been unable to find a simple
relationship between the Kolmogorov–Sinai entropy and
thermofield entanglement.

Discussion
The analysis presented above allows the thermalisation of local
observables in a many-body quantum system to be recast as a set
of chaotic classical Hamiltonian dynamics in two different ways:
using the time-dependent variational principle to evolve MPS
representations of the wavefunction and of the thermofield
double. This picture is complementary to the dephasing of
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eigenstates in the conventional picture of eigenstate thermalisa-
tion and brings the study of quantum chaos full circle. Original
studies of quantum chaos focussed upon single-particle quantum
systems whose semiclassical limit is chaotic, or on many-body
systems dominated by chaotic, single-particle dynamics9–15. The
impact of this upon the level statistics provides a convenient way
to discriminate between chaotic and non-chaotic behaviour that
can be extended to many-body systems that do not have a clear
semiclassical limit17–20. Our approach returns to a semiclassical
analysis for many-body systems. Albeit, the semiclassical
dynamics that we study describes entanglement structure whose
origin is quantum mechanical. We have applied this to the Ising
model with a longitudinal and transverse field using the time-
dependent variational principle applied to matrix product states.

This analysis suggests a new relationship between the
Komogorov–Sinai entropy (and its dependence upon bond order)
and the entanglement, Eq. (4). This relationship holds not just for
the initial entanglement growth but rather for the entire time-
dependence of the entanglement. Using the thermofield MPS
reveals a semi-circular distribution of Lyapunov exponents in the
non-integrable case and Gaussian distribution in the integrable
case. The former result has been anticipated in the context of
gravitation35,36, where it was hypothesised that it may be uni-
versal. Calculating the Lyapunov spectra for finite systems is a
natural extension of the present work and would enable com-
parison with calculations of the out-of-time ordered correla-
tors42–46.

The exponential increase of data required to describe the
dynamics of quantum systems presents an acute difficulty for
efficient numerical simulation. The necessary data should
decrease at late times for thermalising systems to allow for a
simple description of the long-time dynamics. Whilst this
decrease can be understood by dephasing, it is difficult to turn
this insight into a practical scheme. Chaotic dynamics of classical
projections give a possible route. Dynamical modes divide natu-
rally into those that have revealed their chaotic nature on a given
timescale and those that have not. The latter behave as quasi-
regular modes and the former as a chaotic bath for them. This
suggests a Langevin description, the crossover between early- and
late-time dynamics being one between inertial and diffusive
dynamics. An MPS Langevin equation can be constructed by
adding noise and dissipation to the time-dependent variational
principle and provides a suggestive link to random circuit ana-
lyses of thermalisation44,47–54. However, using the thermofield
MPS may obviate the need for it. The thermofield MPS efficiently
describes states at early and late times, and the time-dependent
variational principle gives the appropriate dynamics. The
remaining ingredient is to find a way of compressing the ther-
mofield description at late times, and the multiple equivalent
descriptions of an infinite-temperature state contains the seed of
how this might be achieved (see Supplementary Note 2D).

Classical integrable systems show a remarkable robustness to
perturbation. The KAM theorem shows that aspects of integr-
ability remain through the presence of residual invariant tori
(essentially periodic motions of action angle variables) when
perturbations away from integrability are below some threshold.
There has been speculation recently of whether such effects could
be apparent in a quantum system31. It is inevitable that they are
possible when quantum dynamics is projected to classical
dynamics by observing on a finite window. This is a promising
direction for future study, for example in the context of many-
body localisation.

Matters of thermalisation and chaotic dynamics come to a head
in quantum critical systems. These are the most rapidly dis-
sipating and dephasing of quantum systems55, and it is no
coincidence that recent years has seen their mapping to black

holes—through the AdS/CFT correspondence—themselves the
most rapidly scrambling (classically chaotic) of objects56. The
semi-circle distribution of Lyapunov exponents that we have
uncovered already makes links to works carried out in this
context35,36. A direct application of MPS methods has limitations
for the study of quantum criticality, however, because of diver-
ging correlation lengths. It may be that other variational schemes
such as MERA can do a better job, although in that case,
dynamics are trickier. The view of quantum dynamics that we
present should give an interesting complementary view of
dynamical transitions observed after quenches and sweeps
through quantum critical points.

To conclude, we have uncovered fundamental links between
eigenstate thermalisation of many-body quantum systems and
the chaos of related many-body classical systems, and demon-
strated how techniques developed in the latter may be applied
fruitfully to the study of fundamentally many-body quantum
thermalisation.

Methods
Projecting quantum to classical dynamics. We have used two different methods
to map quantum dynamics to classical Hamiltonian dynamics: by approximating
both the wavefunction and the thermofield double purification of the density
matrix by matrix product states and evolving them using the time-dependent
variational principle. The numerical implementation of these two protocols is very
similar—indeed, we use the same code (mutatis mutandis) for both cases—but
both their regime of applicability and the manner in which they encode the physics
is rather different.

A variational parametrisation of a system’s wavefunction picks out a sub-
manifold of Hilbert space. The time-dependent variational principle projects
quantum dynamics onto this manifold by mapping an updated quantum state—
which in general lies outside of the manifold—onto the state on the manifold with
which it has the highest fidelity. Remarkably this maps the Schrödinger equation to
Hamiltons equations for a related classical system24. In particular, a quantity
conserved by the exact dynamics will also be conserved by the projected dynamics,
provided that the symmetry transformation generating it can be captured on the
manifold. This permits sensible results to be obtained even at very long times25.

Consider a variational parametrization with a set of complex parameters {Xi}.
The time derivative of the wavefunction may be written ∂t jψi � j∂Xi

ψi _Xi . It is
tempting to substitute this into the Schrödinger equation, but the result is not
correct since the action of the Hamiltonian on the state |ψ(X)〉 will generally take
the state out of the variational manifold. Contracting with a tangent vector h∂�Xi

ψj
fixes this and permits us to write

∂�Xi
ψj∂Xj

ψ
D E

_Xj ¼ i ∂�Xi
ψjĤjψ

D E
: ð6Þ

Using a particular basis for the tangent space, one may fix the Gramm matrix

∂�Xi
ψj∂Xj

ψ
D E

¼ δij after which identifying positions and momenta qi �
ffiffiffi
2

p ImXi

and pi �
ffiffiffi
2

p ReXi reduces Eq. (6) to Hamilton’s equation for a classical system.
Even though the parameters {Xi} may quantify aspects of the entanglement
structure of the wavefunction, they nevertheless provide a (semi-) classical
description. This extends the notion of classical chaos considered in ref. 57 to
semiclassical properties present even without the strict limit of �h ! 0. The
technical details of applying this to matrix product states was developed in a
seminal work of Jutho Haegeman et al.24. Application of the time-dependent
variational principle to the wavefunction is standard. Details of our
implementation are given in the Supplementary Note 2A and 2B.

The thermofield double58 is a purification of the density matrix. In the
eigenbasis of the density matrix ρ̂ ¼ P

α
γαjαihαj, it may be written as

jψψi ¼ P
α

ffiffiffiffiffi
γα

p jαi � jαi, where γα are real positive weights that correspond to the

Gibbs weights in thermal equilibrium, and α labels the eigenstates, jαi. Physical
operators act on the first copy of the state only, so that expectations with the
thermofield double are identical to those obtained from the density matrix:
hψψjθ̂jψψi ¼ Trðρ̂θ̂Þ. The time evolution of the thermofield double is determined by
the Hamiltonian HH ¼ H� 1þ 1�H, which acts symmetrically on the doubled
space. We also use a matrix product state parametrization of the thermofield
double and evolve it using the time-dependent variational principle. The details of
how to do this are given in the Supplementary Note 2C.

These two schemes for projecting quantum dynamics to classical Hamiltonian
dynamics capture the physics in rather different ways and have different regimes of
validity. The MPS approximation for a state is efficient near the top and the bottom
of the spectrum. The bond order required to accurately describe a thermal state at
temperature T scales as a double exponential59. The thermofield MPS is efficient
both at the edges and near to the centre of the spectrum. These differences are also
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revealed in correlation lengths and the factorisation of averages such as hσxnσxnþN i
for N greater than the thermal correlation length. The wavefunction MPS at low
bond order captures such properties in explicit time averages. The instantaneous
correlation length of the wavefunction MPS extracted from its transfer matrix29

can be longer than the thermal correlation length, reflecting the long-distance
entanglement of its constituent eigenstates. The thermofield MPS captures the
thermal correlation length in a rather different way. Since it is a purification of the
density matrix, the thermofield MPS is directly related to observations and already
includes the effects of dephasing.

Lyapunov spectrum of projected dynamics. To extract the Lyapunov spectrum,
we must characterise the divergence between nearby trajectories. Consider two
trajectories both in the vicinity of a point on the MPS manifold with tensor Aσ

ij . Let
these trajectories have parametrisations in terms of Xσ

ijðtÞ and Xσ
ijðtÞ þ dXσ

ijðtÞ,
respectively. Substituting each of these into the time-dependent variational prin-
ciple Eq. (6) and subtracting, we obtain the following equation for the evolution of
the difference between trajectories

d _Xσ
ijðtÞ ¼ i ∂Xσ

ij
∂Xγ

kl
ψjĤjψ

D E
dXγ

klðtÞ

þi ∂Xσ
ij
ψjĤj∂Xγ

kl
ψ

D E
d�Xγ

klðtÞ:
ð7Þ

With the minor modification of allowing complex parameters, this equation is
analogous to the linearised equations of motion used to extract the Lyapunov
spectrum for classical trajectories. Similar structures have been used by Haegeman
et al. in order to construct the excitation ansatz60, and form the zero-wavevector
part of the kernel of a quadratic expansion of MPS path integral about its saddle
point41. Extraction of the Lyapunov spectrum now proceeds as in the classical case,
using Eq. (7) to find the instantaneous Lyapunov spectrum at each point along a
trajectory given by Eq. (6) and averaging.

A final addition to this procedure—not usually used in calculating Lyapunov
exponents for classical dynamical systems—is to parallel transport displacements
between nearby trajectories along the variational manifold (see the Supplementary
Note 3). This enables us to satisfy some constraints of projected quantum dynamics
to numerical precision. The Lyapunov spectra of classical Hamiltonian systems are
constrained by time-reversal invariance to have all of the exponents in positive/
negative pairs with the same modulus. This property is inherited by the spectrum
of projected quantum dynamics. An additional important property follows from
using fidelity to determine the measure on the variational manifold. Fidelity is not
changed by unitary time evolution. As a result, Lyapunov exponents calculated for
unitary evolution must be identically zero. Evolution under a purely local
Hamiltonian provides a useful test case, since it does not change the entanglement
structure of a quantum state and the time-dependent variational principle Eq. (6)
reproduces the full Schrödinger equation under projection onto any manifold. The
Lyapunov exponents in this case must be identically zero.

Data availability
The datasets generated during and/or analysed during the current study are available
from the corresponding author on reasonable request. The corresponding author can be
contacted at andrew.hallam.10@ucl.ac.uk.

Code availability
All code used to generate the Lyapunov spectra in this article is available at https://
github.com/JGMorley/mps-miscellany.

Received: 23 July 2018 Accepted: 30 April 2019

References
1. Gogolin, C. & Eisert, J. Equilibration, thermalisation, and the emergence of

statistical mechanics in closed quantum systems. Rep. Prog. Phys. 79, 056001
(2016).

2. Maldacena, J. & Susskind, L. Cool horizons for entangled black holes. Fortschr.
Phys. 61, 781–811 (2013).

3. Deutsch, J. M. Quantum statistical mechanics in a closed system. Phys. Rev. A.
43, 2046–2049 (1991).

4. Rigol, M., Dunjko, V. & Olshanii, M. Thermalization and its mechanism for
generic isolated quantum systems. Nature 452, 854 (2008). EP –, 04.

5. Srednicki, M. Chaos and quantum thermalization. Phys. Rev. E 50, 888–901
(1994).

6. Page, DonN. Average entropy of a subsystem. Phys. Rev. Lett. 71, 1291–1294
(1993).

7. Page, DonN. Information in black hole radiation. Phys. Rev. Lett. 71,
3743–3746 (1993).

8. Gutzwiller M. C. Chaos in classical and quantum mechanics. Interdisciplinary
Applied Mathematics (Springer-Verlag New York, New York, 1990).

9. Altland, A. & Haake, F. Quantum chaos and effective thermalization. Phys.
Rev. Lett. 108, 073601 (2012).

10. D’Alessio, L., Kafri, Y., Polkovnikov, A. & Rigol, M. From quantum chaos and
eigenstate thermalization to statistical mechanics and thermodynamics. Adv.
Phys. 65, 239–362 (2016).

11. Richter, K. & Sieber, M. Semiclassical theory of chaotic quantum transport.
Phys. Rev. Lett. 89, 206801 (2002).

12. Sieber, M. & Richter, K. Correlations between periodic orbits and their rôle in
spectral statistics. Phys. Scr. 2001, 128 (2001).

13. Tanner, G., Richter, K. & Rost, J.-M. The theory of two-electron atoms:
between ground state and complete fragmentation. Rev. Mod. Phys. 72, 497
(2000).

14. Weiss, D. et al. Quantized periodic orbits in large antidot arrays. Phys. Rev.
Lett. 70, 4118 (1993).

15. Wintgen, D., Richter, K. & Tanner, G. The semiclassical helium atom. Chaos:
Interdiscip. J. Nonlinear Sci. 2, 19–33 (1992).

16. Berry, M. Quantum chaology, not quantum chaos. Phys. Scr. 40, 335–336
(1989).

17. Berry, M. V. Quantizing a classically ergodic system: Sinai’s billiard and the
kkr method. Ann. Phys. 131, 163–216 (1981).

18. Berry, M. V. & Tabor, M. Level clustering in the regular spectrum. Proc. R.
Soc. Lond. A 356, 375–394 (1977).

19. Bohigas, O., Giannoni, M.-J. & Schmit, C. Characterization of chaotic
quantum spectra and universality of level fluctuation laws. Phys. Rev. Lett. 52,
1 (1984).

20. McDonald, S. W. & Kaufman, A. N. Spectrum and eigenfunctions for
a hamiltonian with stochastic trajectories. Phys. Rev. Lett. 42, 1189
(1979).

21. Beenakker, C. W. J. Random-matrix theory of quantum transport. Rev. Mod.
Phys. 69, 731–808 (1997).

22. Guhr, T., Müller-Groeling, A. & Weidenmüller, H. A. Random-matrix
theories in quantum physics: common concepts. Phys. Rep. 299, 189–425
(1998).

23. Rozenbaum, E. B., Ganeshan, S. & Galitski, V. Lyapunov exponent and out-of-
time-ordered correlator’s growth rate in a chaotic system. Phys. Rev. Lett. 118,
086801 (2017).

24. Haegeman, J. et al. Time-dependent variational principle for quantum lattices.
Phys. Rev. Lett. 107, 070601 (2011).

25. Leviatan, E., Pollmann, F., Bardarson, J. H. & Altman, E. Quantum
thermalization dynamics with matrix-product states. Preprint at: https://arxiv.
org/abs/1702.08894 (2017).

26. Benettin, G., Galgani, L., Giorgilli, A. & Strelcyn, J.-M. Lyapunov characteristic
exponents for smooth dynamical systems and for Hamiltonian systems—A
method for computing all of them. I—Theory. II—Numerical application.
Meccanica 15, 9–30 (1980).

27. Eckmann, J. P. & Ruelle, D. Ergodic theory of chaos and strange attractors.
Rev. Mod. Phys. 57, 617–656 (1985).

28. Geist, K., Parlitz, U. & Lauterborn, W. Comparison of different methods for
computing lyapunov exponents. Prog. Theor. Phys. 83, 875–893 (1990).

29. Orús, R. A practical introduction to tensor networks: matrix product states
and projected entangled pair states. Ann. Phys. 349, 117–158 (2014).

30. Bernien, H. et al. Probing many-body dynamics on a 51-atom quantum
simulator. Nature 551, 579 (2017).

31. Brandino, G. P., Caux, J.-S. & Konik, R. M. Glimmers of a quantum kam
theorem: Insights from quantum quenches in one-dimensional bose gases.
Phys. Rev. X 5, 041043 (2015).

32. Labuhn, H. et al. Tunable two-dimensional arrays of single rydberg atoms for
realizing quantum ising models. Nature 534, 667 (2016).

33. Schauß, P. et al. Observation of spatially ordered structures in a two-
dimensional rydberg gas. Nature 491, 87 (2012).

34. Turner, C. J., Michailidis, A. A., Abanin, D. A., Serbyn, M. & Papić, Z. Weak
ergodicity breaking from quantum many-body scars. Nature Physics
14, 745–749 (2018).

35. Gur-Ari, G., Hanada, M. & Shenker, S. H. Chaos in classical d0-brane
mechanics. J. High. Energy Phys. 2016, 91 (2016).

36. Hanada, M., Shimada, H. & Tezuka, M. Universality inchaos: Lyapunov
spectrum and random matrix theory. Phys. Rev. E. 97, 022224 (2018).

37. Maldacena, J., Shenker, S. H. & Stanford, D. A bound on chaos. J. High. Energy
Phys. 8, 106 (2016).

38. Pesin, Y. B. Characteristic lyapunov exponents and smooth ergodic theory.
Russ. Math. Surv. 32, 55–114 (1977).

39. Rozenbaum, E. B., Ganeshan, S. & Galitski, V. Universal level statistics of the
out-of-time-ordered operator. Preprint at: https://arxiv.org/abs/1801.10591
(2018).

40. Zurek, W. H. & Paz, J. P. Quantum chaos: a decoherent definition. Phys. D.
83, 300–308 (1995).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-10336-4 ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:2708 | https://doi.org/10.1038/s41467-019-10336-4 | www.nature.com/naturecommunications 7

https://github.com/JGMorley/mps-miscellany
https://github.com/JGMorley/mps-miscellany
https://arxiv.org/abs/1702.08894
https://arxiv.org/abs/1702.08894
https://arxiv.org/abs/1801.10591
www.nature.com/naturecommunications
www.nature.com/naturecommunications


41. Green, A. G., Hooley, C. A., Keeling, J. & Simon, S. H. Feynman path integrals
over entangled states. Preprint at: https://arxiv.org/abs/1607.01778 (2016).

42. Bohrdt, A., Mendl, C. B., Endres, M. & Knap, M. Scrambling and
thermalization in a diffusive quantum many-body system. New J. Phys. 19,
063001 (2017).

43. Chen, X., Zhou, T., Huse, D. A. & Fradkin, E. Out-of-time-order correlations
in many-body localized and thermal phases. Ann. der Phys. 529, 1600332
(2017).

44. Rakovszky, T., Pollmann, F. & von Keyserlingk, C. W. Diffusive
hydrodynamics of out-of-time-ordered correlators with charge conservation.
Phys. Rev. X 8, 031058 (2018).

45. Tarkhov, A. E. & Fine, B. V. Estimating ergodization time of a chaotic many-
particle system from a time reversal of equilibrium noise. New J. Phys. 20,
123021 (2018).

46. von Keyserlingk, C. W., Rakovszky, T., Pollmann, F. & Sondhi, S. L. Operator
hydrodynamics, OTOCs, and entanglement growth in systems without
conservation laws. Phys. Rev. X 8, 021013 (2018).

47. Brandão, F. F. G. S. L. et al. Convergence to equilibrium under a random
hamiltonian. Phys. Rev. E 86, 031101 (2012).

48. Brown, W. & Fawzi, O. Scrambling speed of random quantum circuits.
Preprint at: http://arxiv.org/abs/1210.6644.

49. Cramer, M. Thermalization under randomized local hamiltonians. New J.
Phys. 14, 053051 (2012).

50. Hamma, A., Santra, S. & Zanardi, P. Quantum entanglement in random
physical states. Phys. Rev. Lett. 109, 040502 (2012).

51. Jonay, C., Huse, D. A. & Nahum, A. Coarse-grained dynamics of operator
and state entanglement. Preprint at: http://arxiv.org/abs/1803.00089
(2018).

52. Nahum, A., Ruhman, J., Vijay, S. & Haah, J. Quantum entanglement growth
under random unitary dynamics. Phys. Rev. X 7, 031016 (2017).

53. Nahum, A., Vijay, S. & Haah, J. Operator spreading in random unitary
circuits. Phys. Rev. X 8, 021014 (2018).

54. Žnidarič, M. et al. Subsystem dynamics under random hamiltonian evolution.
J. Phys. A 45, 125204 (2012).

55. Zaanen, J. Superconductivity: why the temperature is high. Nature 430, 512
(2004).

56. Yasuhiro & Susskind, L. Fast scramblers. J. High. Energy Phys. 2008, 065–065
(2008).

57. Srednicki, M. The approach to thermal equilibrium in quantized chaotic
systems. J. Phys. A. Math. Gen. 32, 1163 (1999).

58. Takahasi, Y. & Umezawa, H. Thermo field dynamics. Collect. Phenom. 2,
55–80 (1974).

59. Berta, M., Brandão, F. G. S. L., Haegeman, J., Scholz, V. B. & Verstraete., F.
Thermal states as convex combinations of matrix product states. Phys. Rev. B
98, 235154 (2018).

60. Haegeman, J., Osborne, T. J. & Verstraete, F. Post-matrix product state
methods: to tangent space and be-yond. Phys. Rev. B. 88, 075133 (2013).

Acknowledgements
We are indebted to Ehud Altman, Robert Konik, Vadim Oganesyan, Anatoli Polk-
ovnikov and Frank Pollmann for useful discussions.

Author contributions
The research was based upon ideas conceived by A.G.G. A.H. was responsible for writing
the code to calculate the Lyapunov spectra and generating the data used in this article.
J.G.M. was responsible for writing the time-dependent variational principle code. A.H.
and A.G.G. lead the analysis and interpretation of the data obtained.

Additional information
Supplementary Information accompanies this paper at https://doi.org/10.1038/s41467-
019-10336-4.

Competing interests: The authors declare no competing interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

Peer review information: Nature Communications thanks the anonymous reviewers for
their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2019

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-10336-4

8 NATURE COMMUNICATIONS |         (2019) 10:2708 | https://doi.org/10.1038/s41467-019-10336-4 | www.nature.com/naturecommunications

https://arxiv.org/abs/1607.01778
http://arxiv.org/abs/1210.6644
http://arxiv.org/abs/1803.00089
https://doi.org/10.1038/s41467-019-10336-4
https://doi.org/10.1038/s41467-019-10336-4
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications

	The Lyapunov spectra of quantum thermalisation
	Results
	Transverse-field Ising model in a longitudinal field
	Wavefunction MPS
	Thermofield MPS

	Discussion
	Methods
	Projecting quantum to classical dynamics
	Lyapunov spectrum of projected dynamics

	References
	References
	References
	Acknowledgements
	Author contributions
	Competing interests
	ACKNOWLEDGEMENTS




