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Optimal control nodes in disease-perturbed
networks as targets for combination therapy
Yuxuan Hu 1,2, Chia-hui Chen2, Yang-yang Ding2, Xiao Wen1, Bingbo Wang1, Lin Gao1 & Kai Tan2,3,4

Most combination therapies are developed based on targets of existing drugs, which only

represent a small portion of the human proteome. We introduce a network controllability-

based method, OptiCon, for de novo identification of synergistic regulators as candidates for

combination therapy. These regulators jointly exert maximal control over deregulated genes

but minimal control over unperturbed genes in a disease. Using data from three cancer types,

we show that 68% of predicted regulators are either known drug targets or have a critical

role in cancer development. Predicted regulators are depleted for known proteins associated

with side effects. Predicted synergy is supported by disease-specific and clinically relevant

synthetic lethal interactions and experimental validation. A significant portion of genes

regulated by synergistic regulators participate in dense interactions between co-regulated

subnetworks and contribute to therapy resistance. OptiCon represents a general framework

for systemic and de novo identification of synergistic regulators underlying a cellular state

transition.
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Complex diseases arise from multiple deregulated pathways.
Given the diversity of biological processes underlying
pathogenesis, monotherapy is unlikely to be curative as

single agents. There are also multiple redundancies or alternative
pathways that may be activated in response to the inhibition of a
pathway, which is often due to the crosstalk among pathways.
Crosstalk promotes the emergence of resistant cells under the
selective pressure of a targeted agent, resulting in drug resistance
and clinical relapse1.

Combination therapy, by exerting effects on more than one
pathogenic pathway, is an effective strategy to combat drug
resistance and disease heterogeneity. Ever since the first success
with combination chemotherapy on childhood acute lympho-
blastic leukemia2, combination therapy has been developed to
treat many complex diseases, including cancers3, infectious dis-
eases4, and neurodegenerative diseases5. Traditionally, develop-
ment of combination therapy has been pursued one agent at a
time, with the investigational drug(s) tested for efficacy in add-on
trials. In recent years, a number of computational methods have
been developed for discovering combination therapeutic
targets6,7, including network-based approaches8–10. These
network-based approaches are motivated by the observation that
multiple disease relevant genes, rather than a single gene, often
interact within a complex gene network, resulting in a disease
phenotype and drug resistance. A representative network-based
method is the ranking-system of anti-cancer synergy (RACS)
algorithm9. It predicts synergistic anticancer drugs using drug-
treated transcriptome profiles and protein–protein interaction
network and KEGG pathways. DrugComboRanker10 is another
representative network-based method to identify known drug
combinations using drug-treated gene expression profiles. The
majority of existing methods focused on identifying synergistic
combinations of existing drugs. However, targets of existing drugs
are limited to a small group of proteins. There are only 667
human proteins as targets of approved drugs11 as of 2016. Thus, a
large number of genes and their combinations remain unexplored
as potential combinatorial therapeutic targets. In addition,
requirement of drug-treated experimental data as input limits the
applicability of the methods. An exception is the virtual inference
of protein activity by enriched regulon analysis (VIPER) algo-
rithm12. VIPER uses the principle in the Master Regulator
Inference algorithm13 to identify synergistic master regulators for
phenotypic transitions, which are considered as candidate com-
binatorial targets in the context of drug discovery.

Recently, network controllability theory has emerged as an
attractive theoretical framework for developing network-based
algorithms14–16. The theory provides a mathematically validated
framework for identifying a minimal set of driver nodes that can
drive the transition of the network between any two states.
Controllability theory has been successfully applied to predict
drug targets or driver molecules using human metabolic net-
works17, protein–protein interaction networks18 and transcrip-
tional regulatory networks19. However, these studies only applied
controllability theory to binary networks without considering the
activities of the genes or levels of metabolites, which under-
estimates the ability of a node to control the dynamics of the
network. As a result, previous studies typically identify a large
portion of the input network as driver nodes due to the sparsity
and degree heterogeneity of molecular networks14. The large
number of driver nodes presents a daunting challenge for can-
didate prioritization and experimental follow-up.

Here, we describe the Optimal Control Node (OptiCon)
algorithm, a general framework for systematic and de novo
identification of synergistic key regulators in a gene regulatory
network. By using gene expression as a constraint in the standard
network controllability framework, OptiCon first identifies a set

of optimal control nodes (OCNs) in a disease-perturbed gene
regulatory network. The identified OCNs exert maximal control
over deregulated pathways but minimal control over pathways
that are not perturbed by the disease. Next, using a synergy score
that combines both genetic mutation and gene functional inter-
action information, OptiCon identifies a set of synergistic OCNs
as key regulators in the disease-perturbed network, which can
serve as candidate targets for combination therapy.

Results
Use of network controllability for identifying drug targets. In
network controllability theory, a structural control configuration
(SCC) of a network characterizes a topological skeleton for con-
trolling the dynamics of the network from any initial state to any
desired final state using a minimal set of driver nodes14,20. Given
a gene regulatory network G, its SCC can be identified by finding
a maximum matching in the bipartite graph representing G
(Fig. 1a; Supplementary Methods). SCC is a spanning subnetwork
of the network G consisting of the same node set as G, a max-
imum matching of G and an additional link set20 (Fig. 1a, right
panel). The matching links divide the original network G into
several elementary paths and elementary cycles. The additional
link set includes remaining links (i.e., directed edges in the ori-
ginal network excluding edges in elementary paths and elemen-
tary cycles) that start at the nodes (excluding the terminal nodes)
of the elementary paths and end at the nodes of the elementary
cycles. As an example in Fig. 1a, there are 10 maximum matching
links that divide the network G into six elementary paths (i.e.,
g1 ! g4 ! g9 ! g12f g, g10 ! g13f g, g14f g,
g2 ! g7 ! g11 ! g15f g, g5 ! g16f g, and g8f g) and one ele-

mentary cycle (i.e., g3 ! g6 ! g3f g). There is also one addi-
tional link g1 ! g3f g that starts at node g1 in the elementary
path g1 ! g4 ! g9 ! g12f g and ends at node g3 in the ele-
mentary cycle g3 ! g6 ! g3f g. The unmatched nodes (i.e., g1,
g10, g14, g2, g5, and g8) comprise the minimal set of driver nodes
that can control the dynamics of the entire network14. These
driver nodes thus represent candidate drug targets because of
their ability to guide the network from a diseased state to a
healthy state. However, when applying this basic framework to a
real, large-scale gene regulatory network comprising 5959 genes
and 108,281 regulatory links (Supplementary Data File 1), the
minimal set of driver nodes consists of 2754 genes that make up
46% of the input network. The large number of driver nodes is
due to the sparsity and degree heterogeneity of the gene reg-
ulatory network14, which are common features of molecular
networks21. This result suggests that it is not practical to apply the
basic theoretic framework to identify candidate drug targets
because of the high therapeutic cost (i.e., a large number of genes
need to be targeted). Moreover, some of the driver nodes iden-
tified above control genes that are not deregulated under the
diseased condition (e.g., g2 and g14 in Fig. 1b). It is not necessary
to control these genes because doing so may cause side effect.
These two challenges motivated us to develop the OptiCon
(Optimal Control Node) algorithm for identifying a set of OCNs
that maximize the control over the deregulated part of the gene
network and minimize the control over the unperturbed part of
the network. The set of OCNs are searched from all genes in the
network and can be considered as candidate drug targets.

Finding OCNs in a gene regulatory network. A schematic
overview of OptiCon is shown in Fig. 1b, c. For each gene in the
network, we first define its control region to quantify its ability to
control the dynamics of the gene regulatory network. The control
region consists of two parts: directly and indirectly controlled
regions. Based on structural controllability theory, a gene i can
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fully control the dynamics of its downstream genes (including
itself) located in the SCC of the network20. These genes are
considered directly controllable by gene i. Because the directly
controllable deregulated genes can influence their downstream
genes, gene i can also have indirect control over additional genes.
Related work on predicting gene functions using network data
has shown significant benefits of considering indirect network

connections22,23. We therefore identify the indirect control region
using expression correlation and a shortest path search algorithm
(see “Methods”).

Once the control region is defined for each gene in the
network, we proceed to identify the OCNs. Because the SCC of a
network is not unique (Supplementary Methods), the control
region of a gene is not unique. Thus, we should consider a large
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Fig. 1 Network controllability theory and overview of the OptiCon algorithm. a Identification of driver nodes in a directed graph based on structural
controllability theory. By converting a directed graph G into a bipartite graph, a structural control configuration (SCC) of the network can be identified by
finding a maximum matching in the bipartite graph. SCC consists of a spanning subgraph with the same node set as G, a maximum matching of G and an
additional link set. The matching links divide the network G into several elementary paths and elementary cycles. The additional links transmit signals from
the elementary paths to the elementary cycles. The unmatched nodes (in red) comprise the minimal set of driver nodes that can control the dynamics of
the entire network from any initial state to any desired final state. b, c Overview of OptiCon for identifying optimal control nodes (OCNs) and their
synergistic combinations. b Using gene expression data under two conditions (e.g., diseased vs. healthy) and a directed gene regulatory network as inputs
to OptiCon, a deregulation score (DScore)-weighted network can be obtained. The control region of a gene in the DScore-weighted network consists of a
direct control region and an indirect control region. Direct control region (highlighted in cyan) of a gene is identified by finding the structural control
configuration of the network. Indirect control region (highlighted in yellow) is identified by using the indirect control value (ICV) and a shortest path (SP)
search procedure. The candidate OCNs for combination therapy can be identified using a combinatorial optimization procedure. For clarity, only the control
regions of g1, g5 and g7 are shown instead of all genes. o, d, and u, the optimal influence, desired influence and undesired influence by the candidate OCNs,
respectively. c Identification of synergistic OCN pairs using synergy score. The synergy score consists of two parts. The mutation score measures the
enrichment of recurrently mutated cancer genes in the optimal control region (OCR) of each OCN. The crosstalk score measures the interaction density
between genes in the OCRs of the two OCNs under consideration. Norm, min-max normalization
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number of SCCs of a given network in order to identify the
optimal control region (OCR) for an OCN. We formulate the
identification of OCNs and their OCRs as a combinatorial
optimization problem. The objective function consists of three
variables: o, d and u, representing the optimal influence, desired
influence and undesired influence by the candidate OCNs,
respectively. The desired influence d is defined as the fraction
of the amount of deregulation (i.e., DScore, “Methods” section)
that can be controlled by OCNs, while the undesired influence u
is defined as the fraction of controllable genes that are not
deregulated in disease. The objective is to identify a set of OCNs
that maximizes the optimal influence o ¼ d � u. This optimiza-
tion problem can be solved using a greedy search algorithm
(Supplementary Methods). By comparing to a null distribution of
OCN occurrence frequency, a set of OCNs with a given false
discovery rate (FDR) cutoff can be identified (“Methods” section).
In this paper, we used 0.05 as the FDR cutoff.

Synergistic OCNs as candidate targets. Although OptiCon
identifies a set of OCNs, it does not explicitly reveal which pairs
of OCNs are synergistic. For this purpose, we introduce a metric
to quantify the synergy between a pair of identified OCNs
(Fig. 1c). The synergy score consists of two parts, a mutation
score and a crosstalk score. The mutation score measures the
enrichment of recurrently mutated cancer genes in the OCR of
each OCN. The crosstalk score measures the density of functional
interactions between genes in the OCRs of the two OCNs. By
comparing the observed synergy score to a null distribution of
expected synergy score generated based on 10 million randomly
selected gene pairs from the input network, OCN pairs with
significantly high synergy scores (empirical p-value < 0.05) can be
identified.

Performance evaluation. We first constructed a high-quality gene
regulatory network (Supplementary Data File 1) by combining
entries from three manually curated pathway databases, Reac-
tome24, Kyoto Encyclopedia of Genes and Genomes (KEGG)25,
and NCI-Nature Pathway Interaction Database26. We then com-
bined the network with gene expression data from three cancer
types, hepatocellular carcinoma (HCC), lung adenocarcinoma
(LUAD), and breast invasive carcinoma (BRCA) to construct
three deregulated networks as the input to the algorithms. As
baseline comparisons, we compared OptiCon to a method that is
also based on network controllability theory, TargetControl16 and
a method that is based on the in-degree and out-degree dis-
tribution of a network (see “Methods” for details). Similar to
OptiCon, TargetControl identifies a set of nodes that efficiently
control a pre-selected set of other nodes in a network. Target-
Control and the degree-based method do not predict synergistic
regulators. We therefore compared OptiCon to two additional
methods that do predict synergistic regulators, Virtual Inference of
Protein activity from Enriched Regulon Analysis (VIPER)12 and
RACS9. VIPER uses the Master Regulator Inference algorithm13 to
identify synergistic master regulators based on gene expression
data and a gene regulatory network. RACS is a semi-supervised
learning method that combines drug pharmacological character-
istics, drug-targeted networks and transcriptomic profiles to
identify potential synergistic combinations of existing cancer
drugs.

OptiCon identified 15, 23 and 15 OCNs for HCC, LUAD and
BRCA, respectively. In contrast, TargetControl and VIPER
identified much larger numbers of control nodes, 593, 727, and
660 in HCC, LUAD, and BRCA by TargetControl and 250, 453,
and 442 by VIPER (Fig. 2a). Such large numbers of control nodes

represent a formidable challenge for follow-up studies, in
particular for identifying synergistic gene pairs.

We next used three additional sets of orthogonal data to
further evaluate the predicted regulators by the methods,
including known cancer drug targets, cancer vulnerability genes
identified by loss-of-function screening, and known proteins that
contribute to therapeutic side effect. First, using the Therapeutic
Target Database27, we found that predictions by OptiCon have
higher enrichment for known cancer drug targets than predic-
tions by other methods for HCC, LUAD, and BRCA (hypergeo-
metric test p-values= 0.067, 0.002 and 0.013, respectively,
Fig. 2b). Second, Meyers et al.28 recently conducted a large-
scale screening for cancer vulnerability genes using the CRISPR-
Cas9 system. Using their data, we found that predictions by
OptiCon are more enriched for essential genes than predictions
by other methods in LUAD and BRCA (Kolmogorov-Smirnov
test p-values < 0.05, Fig. 2d). Finally, to evaluate potential side
effect of targeting the predicted regulators, we used a list of 237
proteins that are reported to be associated with treatment side
effects in various diseases from a published study29 (Supplemen-
tary Data File 9). We found that OptiCon predictions are depleted
of side effect-causing proteins in all three cancers studied. In
contrast, targets predicted by VIPER and RACS are enriched for
side-effect causing proteins in LUAD and BRCA (Fig. 2c).

Using OptiCon, we identified 77, 192, and 63 synergistic gene
pairs (i.e., OCN pairs) for HCC, LUAD and BRCA, respectively.
In contrast, VIPER identified a larger number of synergistic gene
pairs, 283 for HCC, 894 for LUAD, and 1554 for BRCA. Due to
the limited number of existing cancer drugs, RACS only identified
55 and 33 synergistic drug pairs for LUAD and BRCA and HCC
was not studied by the authors of RACS. We found that gene
pairs predicted by OptiCon have significantly higher synergy
scores than those predicted by either VIPER or RACS (Wilcoxon
test p-values < 0.05, Fig. 3a–c).

Functional synergy between two regulators is mediated
through interactions among their downstream genes. We there-
fore further evaluated the performance of the methods using
synthetic lethal interactions. We downloaded experimentally
derived cancer-type-specific synthetic lethal interactions curated
in the Synthetic Lethality Database (SynLethDB, Supplementary
Data File 3)30 and the study by Shen et al.31. Clinically relevant
synthetic lethal interactions were downloaded from a recent study
by Lee et al.32. Compared to VIPER and RACS, we found that
OCRs controlled by OCN pairs predicted by OptiCon have
significantly higher enrichment (Wilcoxon test p-values < 0.05)
for both experimentally derived (Fig. 3d–f) and clinically relevant
synthetic lethal interactions (Fig. 3g–i).

Taken together, these results demonstrate significant improve-
ment of OptiCon over three state-of-the-art methods, Target-
Control, VIPER and RACS. Moreover, the enrichment of
synthetic lethal interactions among genes downstream of the
predicted OCN pairs implies that targeting them can not only
control oncogenic pathways but also their functional buffering
pathways.

Case study 1: liver cancer. HCC is the most common form of
liver cancer. Using OptiCon, we identified 15 OCNs (Supple-
mentary Data File 4). Among them, three (NCSTN, APH1A and
MAPKAPK2) are known drug targets for HCC (hypergeometric
test p-value= 0.067). Seven additional OCNs have been shown to
play an important role in the progression or metastasis of HCC
(Supplementary Notes). The remaining five OCNs are novel
predictions.

We identified 77 synergistic OCN pairs as candidate targets for
combination therapy (empirical p-values < 0.05, Fig. 4a,
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Supplementary Data File 5). As supporting evidence for the
predicted synergy, we found that both experimentally derived30,31

and clinically relevant32 synthetic lethal interactions are more
enriched between OCRs of synergistic OCNs than non-synergistic
OCNs (Fisher’s exact test p-values= 0.001 and 1.1E–9, Fig. 4c
and Supplementary Fig. 4b). In total, OCRs of 53 (69%) and 52
(68%) synergistic OCN pairs are enriched for known experi-
mental and clinically relevant synthetic lethal interactions
between them, respectively (Fig. 4b and Supplementary Fig. 4a).

To further evaluate the clinical relevance of the predicted OCN
pairs, we performed survival analysis using the predicted OCN
pairs as co-variates in the Cox proportional hazards model.

Overall, we found that 56% of the synergistic OCN pairs have
significant interaction (Cox p-value < 0.1) that is associated with
survival time of liver cancer patients (Supplementary Data File 5).

An interesting OCN pair consists of NCSTN and OGT (Fig. 5a).
NCSTN encodes a subunit of the gamma-secretase complex in the
Notch signaling pathway, whose activation promotes the forma-
tion of HCC in vivo33. Knockdown of NCSTN significantly
inhibited HCC cell growth in vitro34. OGT encodes an enzyme for
the addition of O-linked N-acetylglucosamine (O-GlcNAc) to
protein substrates. Knockdown of OGT was demonstrated to
reduce the survival, migrating and invasive ability of HCC cell
in vitro and inhibit HCC tumorigenesis and metastasis in vivo35.
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Case study 2: lung cancer. LUAD is the most common form of
non-small cell lung cancer. Using OptiCon, we identified 23
OCNs (Supplementary Data File 4). Among them, six (PARP1,
HIF1A, S1PR1, FGFR2, MKNK1, and PTP4A1) are known drug
targets for LUAD (hypergeometric test p-value= 0.002). Seven
additional OCNs have been shown to play a role in LUAD pro-
gression (Supplementary Notes). The remaining ten OCNs are
novel predictions.

We predicted 192 synergistic OCN pairs (empirical p-values <
0.05) as candidates for combination therapy (Fig. 4d, Supple-
mentary Data File 5). As supporting evidence for the predicted
synergy among OCNs, we found that both experimentally derived
and clinically relevant synthetic lethal interactions are more
enriched between OCRs of synergistic OCNs than non-synergistic
OCNs (Fisher’s exact test p-values= 2.2E–8 and 2.0E–9, Fig. 4f
and Supplementary Fig. 4d). In total, OCRs of 138 (72%) and 89
(46%) synergistic OCN pairs are enriched for known lung cancer-
specific and clinically relevant synthetic lethal interactions

between them, respectively (Fig. 4e and Supplementary Fig. 4c).
Furthermore, we found that 55% of the synergistic OCN pairs
have significant interaction (Cox p-value < 0.1) that is associated
with survival time of lung cancer patients (Supplementary Data
File 5). An example pair consists of PARP1 and HIF1A (Fig. 5b).
PARP1 inhibition results in accumulation of DNA double strand
breaks and a potent anti-proliferation effect on ERCC1 or PTEN-
deficient LUAD cells since these cells have DNA damage repair
defects36. Functional interactions between HIF1A and DNA-
damage response pathway have been reported37. In addition,
HIF1A was reported to confer protection against chemotherapy-
induced DNA damage, resulting in drug resistance38. Our result
showed that PARP1 and HIF1A have 41 known lung cancer-
specific (hypergeometric test p-value < 1.0E–20) and 30 clinically
relevant (p-value= 0.04) synthetic lethal interactions between
their OCRs. Taken together, these results strongly suggest that
PARP1 and HIF1A are effective combinatorial therapeutic targets
for lung cancer.
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Case study 3: breast cancer. Among the 15 OCNs predicted by
OptiCon (Supplementary Data File 4), four (PLK1, EGFR,
PTP4A1 and PSENEN) are known drug targets for BRCA
(hypergeometric test p-value= 0.013). Eight additional OCNs
also play critical roles in BRCA. We also identified three novel
key regulators for BRCA, such as DGKG, a member of the

diacylglycerol kinase family (DGKs). DGKs can modulate sev-
eral oncogenic signaling pathways (e.g., RAS and the extra-
cellular signal-regulated kinase cascade) and are considered
important regulators of cancer progression39. A recent study
also suggests that DGKG is a tumor suppressor in colorectal
cancer40.
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We identified 63 synergistic OCN pairs (empirical p-values <
0.05) as candidates for combination therapy (Fig. 4g, Supple-
mentary Data File 5). Similar to liver and lung cancers, we also
found that both experimentally derived and clinically relevant
synthetic lethal interactions are more enriched between OCRs of
synergistic OCNs than non-synergistic OCNs (Fisher’s exact test
p-values= 3.0E–12 and 1.7E–4, Fig. 4i and Supplementary
Fig. 4f). In total, OCRs of 61 (97%) and 49 (78%) synergistic
OCN pairs are enriched for known breast cancer-specific and
clinically relevant synthetic lethal interactions between them,
respectively (Fig. 4h and Supplementary Fig. 4e). Furthermore, we
found that 63% of the synergistic OCN pairs have significant
interaction (Cox p-value < 0.1) that is associated with survival
time of breast cancer patients (Supplementary Data File 5).

Two known drug targets, PLK1 and PTP4A1, represent a novel
synergistic gene pair (Fig. 5c). There are 55 known breast cancer-
specific (hypergeometric test p-value < 1.0E–20) and 66 clinically
relevant (p-value= 0.1) synthetic lethal interactions between their
OCRs. Based on these results together with their known
inhibitory effects on cancer cell proliferation and metastasis41,42,
combined treatment with both PLK1 and PTP4A1 inhibitors
could be an effective therapy for metastatic breast cancer.

Experimental validation of predicted synergistic OCN pairs. To
experimentally test the predicted synergistic regulators, we used a
CRISPR-based knockout growth assay43. The protocol uses
fluorescent reporter genes to track the growth of cells carrying
single or double knockout constructs (Fig. 6a; Supplementary
Fig. 5). The growth phenotypes of the mutant cells are calculated
as the relative depletion of fluorescent signals compared to wild
type cells. A genetic interaction score (GI score, either of two-
gene knockout or of gene-safe knockout, see “Methods” for
details) is determined by comparing their observed and expected
growth phenotypes. Finally, synergy between two genes is
determined by comparing their GI score to those of gene-safe
knockouts. We tested two predicted OCN pairs in each cancer
type, including NCSTN and DNM1, and NCSTN and OGT in liver
cancer; CCNA2 and PTP4A1, and HIF1A and PARP1 in lung
cancer; and CCNA2 and PTP4A1, and PLK1 and PTP4A1 in
breast cancer. For all six OCN pairs tested, we demonstrated that
targeting them has a significantly synergistic anti-tumor effect
than targeting each gene individually (Student’s t-test p-values <
0.05, Fig. 6b–d).

Crosstalk genes play an important role in therapy resistance. In
order to better understand the interactions between synergistic
OCNs, we examined the OCRs of the synergistic OCNs. Speci-
fically, we focused on genes that are involved in the interactions
bridging two OCRs, hereby termed crosstalk genes. Since high
interaction density among genes increases the chance of pathway
rewiring, which has been suggested as a potential mechanism for
the development of drug resistance1, we ranked all crosstalk genes
in each cancer type based on their effect on the interaction
density between two OCRs. The effect is quantified as the
decrease in interaction density of two OCRs after a crosstalk gene
is removed from an OCR, hereby termed ΔD. We conducted a
comprehensive literature search of the crosstalk genes with sig-
nificant ΔD (empirical p-value < 0.1) controlled by synergistic
OCNs. We found that 21 (50%), 26 (41%), and 10 (91%) of these
genes (Fig. 7) are known to play important roles in drug resis-
tance in the treatment for liver, lung and breast cancers, respec-
tively (Supplementary Data File 6). For example, RAC1, a top-
ranked crosstalk gene in all three cancer types, was demonstrated
to contribute to multidrug resistance in liver cancer44, gefitinib
resistance in non-small-cell lung cancer45 and trastuzumab

resistance in breast cancer46. In contrast to genes controlled by
synergistic OCNs, only 0, 7 (28%) and 2 (17%) of crosstalk genes
controlled by non-synergistic OCN pairs have a known role in
drug resistance in the three respective cancer types (Supple-
mentary Data File 6).

Discussion
We introduce a network controllability-based method, OptiCon,
to discover synergistic key regulators as candidate targets for
combination therapy. Directly searching for synergistic gene pairs
is not a good strategy because the combinatorial search space is
huge and thus the burden of multi-testing correction is large.
OptiCon tackles this problem in two steps. First, it identifies a set
of OCNs. Unlike previous network controllability-based approa-
ches17–19, OptiCon considers gene activities as additional con-
straints when searching for OCNs. The identified control nodes
exert maximal control over deregulated genes but minimal con-
trol over unperturbed genes in a disease, which could minimize
drug side effect when the control nodes are targeted by drugs.
Using literature evidence, including known cancer drug targets27,
cancer essentiality genes28, a database of mutated cancer genes47,
we demonstrate that the identified OCNs are strongly supported
by multiple lines of literature evidence. In the second step,
OptiCon uses the synergy score to identify significantly syner-
gistic OCN pairs. The synergy score is motivated by our current
understanding of drug resistance mechanisms and captures both
recurrently mutated genes and crosstalk between the pathways
controlled by a pair of OCNs. Synergistic pairs predicted by
OptiCon is supported by synthetic lethal interactions and
experimental testing using a CRISPR-Cas9-based growth assays.
To further evaluate if the gene-gene synergy predicted by Opti-
Con is a valid approach to nominate targets of synergistic drugs,
we used data from a recent large-scale screen for drug synergy in
melanoma. The authors screened for drug synergy using 108 ×
108 drug combinations in the melanoma cell lines SK-MEL-28
and LOXIMVI48. By applying OptiCon to a melanoma gene
expression dataset, we found significant overlap between our
predicted synergistic gene pairs and target genes of synergistic
drug pairs by the drug synergy study (hypergeometric test p-
value= 1.4E–11, Supplementary Notes, Supplementary Data
File 8). This result suggests that indeed OptiCon could identify
targets of synergistic drugs although it does not use drug
treatment data.

Certain genetic lesions are only observed in a subset of patients
or subclones in the same tumor. Such inter- and intra-tumor
genetic heterogeneities pose a significant challenge in cancer
therapy49. As shown in Supplementary Fig. 6, the OCRs of
synergistic OCNs are not only significantly enriched for known
recurrently mutated cancer genes, but also have higher interac-
tion densities between them than expected by chance. The higher
interaction density increases the chance of pathway rewiring
and development of drug resistance. Indeed, many genes in
the OCRs that significantly contribute to the high interaction
density are known to be involved in cancer therapy resistance
(Fig. 7). Therefore, co-targeting synergistic OCNs could be an
effective strategy to combat both disease heterogeneity and drug
resistance.

Another interesting finding of our study is that experimentally
derived cancer-type-specific and clinically relevant synthetic
lethal interactions are enriched between OCRs of synergistic
OCNs. Because synergistic OCNs can control both cancer genes
and their synthetic lethal partners in the OCRs, co-targeting of
the OCNs provides an effective way to combat both oncogene
addiction and functional buffering due to synthetic lethal inter-
actions. Moreover, because synthetic lethal interactions are

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-10215-y ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:2180 | https://doi.org/10.1038/s41467-019-10215-y | www.nature.com/naturecommunications 9

www.nature.com/naturecommunications
www.nature.com/naturecommunications


enriched between OCRs of synergistic OCNs, genes in the OCRs
are good candidates for a targeted screen for synthetic lethal
interactions in a specific type of cancer.

Combination therapy is an effective therapeutic strategy not
only for cancer, but also for other complex diseases. Because
OptiCon only requires gene expression data, it is generally
applicable to many complex diseases. For diseases not cancer,
genes with disease-associated variants documented in the Online
Mendelian Inheritance in Man (OMIM) database50 can be used
for computing mutation scores in the identification of synergistic
OCN pairs. Moreover, since OptiCon performs de novo predic-
tion of targets for combination therapy, it is not limited to
knowledge of existing drugs, which is far from comprehensive.
Because the number of identified synergistic OCN pairs is small,
they are suitable for targeted screen using RNAi and CRISPR/
Cas9-based screening technologies31,43. Compared to genome-
wide screen, such targeted screens are more cost-effective and
versatile.

Besides gene expression data, other types of omics data should
also be integrated in future development of OptiCon. For
example, epigenetic information (e.g., DNA methylation and
noncoding RNA expression) can be used to discover epigenetics-
based51 combination therapy targets. It is also worth noting that
the current limitation of all network-controllability-based meth-
ods is the inability of enumerating all SCCs for large networks. In
this study, we used a set of 1000 SCCs for identifying direct
control regions. Although most of the identified OCNs based on
this set of SCCs are supported by multiple lines of evidence
(HCC, 67%; LUAD, 61%; BRCA, 80%), more SCCs should be
considered, if high-performance computing resources are avail-
able, in order to further improve the performance of OptiCon.

In summary, OptiCon represents a promising approach for
identifying optimal and synergistic key regulators of deregulated
pathways. Such regulators can serve as candidate targets for
combination therapy to combat drug resistance and disease
heterogeneity.
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Fig. 6 Experimental validation of predicted synergistic pairs. a Representative FACS plot of cells infected with lentiviruses expressing OGT-targeting (GFP)
and NCSTN-targeting (mCherry) sgRNAs. Day 0 (4 days post-transduction) and Day 5 data are shown. Value in each quadrant indicates the percentage of
cells expressing a given reporter in the culture. The growth phenotype is calculated by measuring the relative depletion of the single-infected and double-
infected cells between the start and the end of the growth assay. KO, single knockout. DKO, double knockout. RFU, relative fluorescence unit. Synergistic
optimal control nodes validated in liver cancer (b), lung cancer (c), and breast cancer (d). Safe indicates non-targeting control sgRNA. GI score, genetic
interaction score. Data represent mean ± s.d. from three replicate cultures. P-values were computed using one-sided t-test. Source data are provided as a
Source Data file
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Methods
Construction of gene regulatory network. We constructed a human gene reg-
ulatory network by integrating annotations from three high-quality pathway
databases: Reactome (1597 pathways)24, KEGG (195 pathways)25, and NCI-Nature
Pathway Interaction Database (745 pathways)26. All pathways were downloaded in
the Simple Interaction Format from Pathway Commons 252. After removing
undirected, redundant, and small-molecule-associated interactions, we obtained a
regulatory network comprising 5959 nodes (genes) and 108,281 directed edges
(regulatory links). The list of genes and their regulatory interactions is provided in
Supplementary Data File 1.

Gene expression datasets. RNA-Seq data used in this study were generated using
tumor tissues and matched normal tissues from 50 HCC patients, 57 LUAD
patients and 112 BRCA patients by The Cancer Genome Atlas consortium. For all
three cancer types, read counts, fragments per kilobase of transcript per million
mapped reads (FPKM) values and clinical information were downloaded from
Genomic Data Commons (GDC, https://gdc-portal.nci.nih.gov/). Read counts and
FPKM values were generated using GDC RNA-Seq pipeline (https://gdc.cancer.
gov/about-data/data-harmonization-and-generation/genomic-data-harmonization/
genomic-data-alignment/rna-seq-pipeline). We removed the batch effects on
FPKM values using the ComBat function53 based on batch numbers extracted from
the clinical information.

Gene expression data for melanoma was downloaded from Gene Expression
Omnibus (GSE31909), which were generated using two melanoma cell lines SK-
MEL-28 and LOXIMVI and two normal melanocyte lines, HEMn and HEMa. Each
cell line has three replicates.

Gene deregulation score (DScore). Genes whose expression are significantly
perturbed in diseased cells were identified using the edgeR algorithm54 and a false
discovery rate cutoff ≤ 0.05. The DScores of these genes were defined as
� log10ðadjusted p-valueÞ. The p-value was adjusted for multiple testing using the

method of Benjamini–Hochberg55. For genes whose expression are not sig-
nificantly perturbed, their DScores were set to zero.

Control region of a gene. We define a control region for each gene to quantify the
ability of the gene to control the dynamics of its downstream regulatory network.
The control region can be divided into two parts, direct control region and indirect
control region. For a gene i in the network, its direct control region includes itself
and its downstream genes located in the SCC of the network. The downstream
genes of gene i are genes to which there is a path from gene i in an SCC. There are
multiple alternative SCCs for a given network20. For large networks (i.e., thousands
of nodes), it is computationally intractable to examine all SCCs because enumer-
ating all maximum matchings of a network is NP-hard. However, we noticed that
the proportion of genes that have new direct control regions levels off when the
number of different SCCs reaches 500 (Supplementary Fig. 1). The same trend was
also observed for other real-world networks20. Therefore, the maximum matching
algorithm was used here to obtain 1000 different SCCs for the regulatory network,
which in turn were used to identify direct control regions of each gene (Supple-
mentary Methods).

Because the directly controllable deregulated genes can influence their
downstream genes, gene i can also have indirect control over additional genes. For
identifying the indirect control region of gene i, we introduce an indirect control
value (ICV) motivated by information flow theory56. For each deregulated gene j
that is directly controlled by gene i, we first weight each edge <u, v> between genes
u and v in the downstream subnetwork of gene j as below:

wj
<u;v> ¼ maxððjcorrðFPKMj; FPKMuÞj þ jcorrðFPKMj; FPKMvÞjÞ=2; εÞ ð1Þ

where jcorrðFPKMj; FPKMuÞj and jcorrðFPKMj; FPKMvÞj are the absolute values
of the Pearson correlation coefficients between the FPKM values of genes j and u
and of genes j and v. Following the study by Shih et al.56, we apply a minimum
weight ε since not all genes in the control region necessarily correlate with gene j in
their expression. Given the sample size of each data set, we choose the value of ε
that corresponds to a p-value of 0.05 based on the theoretical distribution of the
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Fig. 7 Crosstalk genes play an important role in therapy resistance. Effect of crosstalk genes on the interaction density between optimal control regions
(OCRs) of an optimal control node (OCN) pair is quantified as the decrease in interaction density of two OCRs after a crosstalk gene is removed from the
OCR, herein termed ΔD. For each cancer type, crosstalk genes with significant ΔD (empirical p-value < 0.1) are shown. Empirical p-value was calculated
using a null distribution of crosstalk genes controlled by one million randomly selected gene pairs from the input network. Gene symbols are ordered from
top to bottom in ascending statistical significance. 21 (50%), 26 (41%), and 10 (91%) of the crosstalk genes controlled by synergistic OCN pairs (magenta
dots) have a known role in drug resistance in liver cancer (a), lung cancer (b) and breast cancer (c), respectively (Supplementary Data File 6). In contrast,
0, 7 (28%) and 2 (17%) of the crosstalk genes controlled by non-synergistic OCN pairs (yellow triangles) have a known role in drug resistance in the
respective cancer types. HCC hepatocellular carcinoma, LUAD lung adenocarcinoma, BRCA breast invasive carcinoma
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Pearson correlation coefficient. The sample sizes for the three cancer types are 100,
114, and 224 for liver, lung and breast cancer, respectively. The corresponding ε
values are 0.2, 0.18, and 0.13, respectively.

Given edge weights, the ICV of each gene (e.g., gene k) in the downstream
subnetwork of gene j, denoted as ICVj

k , can be calculated as

ICVj
k ¼ 1=

X
e2SPj!k

ð�logwj
e þ 1Þ ð2Þ

where wj
e denotes the weight of an edge e in the downstream subnetwork of gene j

computed as above and SPj!k represents the shortest path from gene j to gene k. If

ICVj
k is significantly high (above a given threshold λ), the genes in the shortest path

from gene j to gene k are considered to be indirectly controlled by gene i due to the
strong expression-correlated path from gene j to gene k. To determine the
threshold λ, we generated a null distribution of ICVs using 100 randomized
regulatory networks by randomly shuffling node labels. For all three cancer types,
we used λ= 0.3 (empirical p-values < 0.01, Supplementary Fig. 2).

Given SCC and ICV, the control region of gene i, CRSCC
i , can be formulated as

following:

CRSCC
i ¼ fig∪ fDownstream genes of i in SCCg

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Direct control region

∪

fgenes in the shortest path from j to k; if ICVj
k � λg|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Indirect control region

ð3Þ

where j is a deregulated gene that is directly controlled by gene i and k is a gene
located in the downstream subnetwork of gene j. Note that genes in a control
region are unique while direct and indirect control regions may overlap. Here, we
only consider indirect control regions of deregulated genes because we attempted
to identify an OCR (see below) that maximizes the deregulation in both direct and
indirect control regions. If indirect control regions are also considered for non-
deregulated genes, we might obtain an OCR with large amount of deregulation in
the indirect control part but small amount of deregulation in the direct
control part.

A greedy search algorithm to identify OCNs. Since control regions of different
genes may overlap, we formulate the identification of OCNs and their OCRs as a
combinatorial optimization problem. The objective function consists of three
variables: o, d and u, representing the optimal influence, desired influence and
undesired influence by the candidate OCNs, respectively. The desired influence d is
defined as the fraction of deregulation that can be controlled by OCNs, while the
undesired influence u is defined as the fraction of controllable genes that are not
deregulated in disease.

d ¼
P

i2OCRs
DScoreiP

i2G
DScorei

ð4Þ

u ¼ jfijDScorei ¼ 0; i 2 OCRsgj
jfijDScorei ¼ 0; i 2 Ggj ð5Þ

where G represents a gene regulatory network. The objective is to identify a set of
OCNs that maximizes the optimal influence o ¼ d � u.

We employ a greedy search algorithm to solve this optimization problem. The
pseudo code for the algorithm is provided in Supplementary Methods. For each
candidate gene, the algorithm accepts it as an OCN if its addition leads to an
improved optimal influence value. We calculate the growth rate of optimal

influence as
onew � oprevious

oprevious

� �
for each candidate OCN. We found that the growth rate

does not change significantly once it drops below 5% (Supplementary Fig. 3). We
thus used 5% as the stopping criterion of the greedy search. To determine if the
result of a greedy search is a suboptimal solution, we initiate multiple searches from
the control nodes of the top 0.01% of all control regions in a network
(see Supplementary Methods for details, Supplementary Fig. 3a, c, e).

False discovery rate of OCNs. We compute the false discovery rate of identified
OCNs based on OCN occurrence frequencies in real and randomized regulatory
networks (Supplementary Fig. 3b, d, f). Occurrence frequency of an OCN is
computed as the number of greedy search solutions containing this OCN divided
by the total number of greedy searches. The null distribution of OCN occurrence
frequency was generated using 10 randomized regulatory networks.

Identifying synergistic OCN pairs. We introduce a metric, synergy score, to
measure the synergistic interaction between two OCNs. Motivated by our current
understanding of the mechanisms of synergistic drug combinations57 and acquired
drug resistance1, the synergy score between two OCNs (e.g., OCNp and OCNq)
consists of two parts. The mutation score measures the enrichment of recurrently
mutated cancer genes in the OCR of each OCN. The crosstalk score measures the

interaction density between genes in the two OCRs.

Synergy score ¼ NormðMutation scoreÞ ´NormðCrosstalk scoreÞ ð6Þ

Mutation score

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�log Enrichment p-valueOCRp

Þ´ ð�log Enrichment p-valueOCRq
Þ

q ð7Þ

Crosstalk score ¼ Interaction densityðOCRp;OCRqÞ ð8Þ
Annotation for cancer (driver) genes were downloaded from the Cancer Gene
Census database58, which were confirmed to have recurrent somatic mutations in
the specific cancer type using data from the Catalogue of Somatic Mutations in
Cancer (COSMIC) database47 (Supplementary Data File 2). Interaction density
between OCRp and OCRq is defined as the ratio of the number of observed links
over all possible directed links between the nodes in OCRp and OCRq . The synergy
score equals the product of the min-max normalized mutation and crosstalk scores.
To identify significantly synergistic OCN pairs, we generated a null distribution of
synergy scores based on 10 million randomly selected gene pairs from the input
regulatory network. The OCN pairs with an empirical p-value < 0.05 were pre-
dicted as significantly synergistic. p-values were adjusted for multiple testing using
the method of Benjamini–Hochberg55.

Performance comparison with TargetControl, VIPER, and RACS. TargetCon-
trol16 is a network controllability-based method for identifying a minimal set of
control nodes that can efficiently control a pre-selected set of nodes in a network.
However, it only predicts a minimal set of control nodes in a network, instead of
synergistic gene pairs. We included TargetControl as a baseline comparison. To
run TargetControl, we selected a subset of top deregulated genes based on their
deregulation scores as the pre-selected node set, which has the same size as the
deregulated gene set in OCRs identified by OptiCon. Since TargetControl requires
a directed acyclic network as the input, we generated 10 acyclic regulatory networks
by removing 10 different minimum feedback edge sets from our constructed
regulatory network. Because multiple maximum matchings of a network exist, 100
different control node sets were identified in each acyclic regulatory network.
Taken together, for each cancer type, 1000 control node sets were identified by
TargetControl and compared with OCNs identified by OptiCon.

VIPER12 uses the Master Regulator Inference algorithm13 to identify synergistic
master regulators based on gene expression data and a gene regulatory network.
For each cancer type, we used the same gene expression data and network as inputs
to VIPER. Master regulators were first identified using the msviper function and
adjusted p-values < 0.05. Identified master regulators were used as input to the
msviperCombinatorial and msviperSynergy functions for synergy analysis.
Synergistic master regulators with adjusted p-values < 0.05 and their target
subnetworks were identified for comparison.

RACS9 is a semi-supervised learning method that combines drug
pharmacological characteristics, drug-targeted networks and transcriptomic
profiles to identify potential synergistic combinations of existing cancer drugs. The
synergistic gene pairs for comparison were defined as the pair-wise target
combinations of RACS-predicted synergistic drugs. Since RACS does not identify a
target subnetwork like OptiCon and VIPER, we used the OCR for each target of
RACS-predicted drugs as the target subnetwork.

Enrichment of synthetic lethal interactions between OCRs. Experimentally
derived cancer-type-specific synthetic lethal interactions were downloaded from
the SynLethDB database30 and a recent study using CRISPR-Cas9 screen31 (Sup-
plementary Data File 3). Clinically relevant synthetic lethal interactions were
downloaded from a recent study32. The enrichment p-value of synthetic lethal
interactions between the OCRs of an OCN pair was computed using the hyper-
geometric distribution based on the following four numbers: (1) the number of
synthetic lethal interactions between two OCRs; (2) the total number of gene pairs
between two OCRs; (3) the number of all synthetic lethal interactions in the input
regulatory network; (4) the total number of gene pairs in the network. P-values
were adjusted for multiple testing using the method of Benjamini–Hochberg55.

Crosstalk genes affecting interaction density between OCRs. Crosstalk genes
are defined as those that are incident on interactions between OCRs of two OCNs.
The effect of a crosstalk gene on the interaction density between two OCRs (ΔD) is
quantified as the decrease in interaction density of two OCRs after the crosstalk
gene is removed from the OCR. Empirical p-value of ΔD is calculated using a null
distribution of ΔD of crosstalk genes controlled by one million randomly selected
gene pairs from the input regulatory network.

Cell lines and cloning of CRISPR-based knockout constructs. SkHep1 and A549
cell lines stably expressing Cas9 endonuclease (SkHep1-Cas9+ and A549-Cas9+)
are gifts from Junwei Shi (University of Pennsylvania). MCF7 cell line stably
expressing Cas9 (MCF7-Cas9+) was purchased from Applied Biological Materials
(Cat # T3257). Both SkHep1-Cas9+ and A549-Cas9+ cells were maintained in
DMEM media and MCF7-Cas9+ cells were maintained in PriGrowIII media
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(TM003, abm). All cell culture media was supplied with 10% FBS, 100 unit/ml
penicillin and 100 μg/ml streptomycin.

sgRNAs targeting test genes were designed using the DESKGEN software
(https://www.deskgen.com/landing/), and sequences for non-targeting control
sgRNAs were chosen from published literature59. The sgRNAs targeting test genes
or control sgRNAs were individually cloned into a lentiviral vector, either
pMCB306 (Addgene: #89360) which expresses the GFP reporter gene or pMCB320
(Addgene: #89359) which expresses the mCherry reporter gene. All cloned sgRNA
constructs were verified by Sanger sequencing.

Lentivirus production and transduction. Lentiviruses were produced by trans-
fecting HEK293FT cells with the packaging plasmids pMD2.G and psPAX2, and
individual sgRNA constructs. Lentivirus-laden supernatant was harvested 48 h after
transfection. Viral supernatant was filtered through 0.45 μm polyvinylidene
difluoride filter (Millipore), aliquoted and frozen at −80 °C.

CRISPR-based double knockout growth assay. To make double and single
knockouts, we used the sgRNA-based double infection protocol43 with minor
modifications. The Cas9-expressing cells were double infected with pooled viral
supernatant (pMCB306 + pMCB320 vectors carrying individual sgRNAs) with 8
μg/ml polybrene (Millipore) by spin-infection. sgRNA sequences are listed in
Supplementary Data File 7.

Four days after viral transduction, cells were detached with 0.25% Trypsin-
EDTA (ThermoFisher) and seeded into three replicate wells, each with equal
number of cells. For each replicate, the fraction of each group of cells (GFP+,
mCherry+, GFP+ mChery+, and GFP− mCherry−) was counted by FACS and
designated as the Tb data. At the end of culturing for another 5–10 days, fraction of
each group of cells was counted again by FACS and designated as the Te data.

The following equation was used to calculate the growth phenotypes of both
single or double knockout populations:

log2
f eko=f

e
wt

f bko=f
b
wt

 !
=d ð9Þ

where f bwt is the fraction of wild-type cells at the beginning of the assay; f bko is the
fraction of knockout cells (either single or double knockout) at the beginning of the
assay; f ewt is the fraction of wild-type cells at the end of the assay; f eko is the fraction
of knockout cells at the end of the assay; d is the number of doublings of either the
single or the double knockout cells.

The number of doublings is calculated using the following formula,

dko ¼ dwt= 1� x
T
dwt

� �
ð10Þ

where dko and dwt are the doubling times of knockout and wild-type cells,
respectively; T is the total amount of time of the assay; and x is a normalizing
factor. x is calculated as following: x ¼ log2ðf bko � f ewt=f bwt � f ekoÞ. The doubling time of
SkHep1 cells (30 h), A549 cells (22 h), and MCF7 cells (50 h) were obtained from
either ATCC or DSMZ.

Genetic interaction (GI) score was calculated as the difference between the
observed growth phenotype of the double positive population (the GFP+mCherry+

population) and the expected growth phenotype of the double positive population
(the sum of GFP+ only and mCherry+ only populations). Finally, to determine if
significant synergy exists between a gene pair, the GI score of gene-gene double
knockout population was compared to the safe-gene single knockout populations,
using one-sided Student’s t-test.

Degree-based method for identifying control nodes. We define a regulatory
value for each node in the input network as the difference between the out-degree
and the in-degree of the node. For identifying the regulatory nodes with sig-
nificantly large regulatory values, we construct a null distribution of regulatory
values using 100 randomized networks. The nodes that can change the number of
regulatory nodes in a network play an important role in controlling the degree
distribution of the network and thus can be considered as degree-based control
nodes. Based on this assumption, we remove each node in the network and re-
compute the set of significant regulatory nodes. The set of control nodes is iden-
tified as those whose elimination from the network increases the number of reg-
ulatory nodes in the network.

Survival analysis of OCN pairs. We downloaded RNA-Seq and clinical infor-
mation of HCC patients, LUAD patients and BRCA patients from The Cancer
Genome Atlas data portal (TCGA). For each OCN pair, we used the coxph function
from the survival R package to fit a Cox proportional hazards model60 with the
time to death as the event. Seven covariates were considered in the Cox model,
including gene expression levels of two OCNs, an interaction term for the two
OCNs, patient age, tumor subtype, tumor stage and gender. The p-value of the
regression coefficient for the interaction term was used to evaluate clinical rele-
vance of an OCN pair to patient survival.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The authors declare that the main data supporting the findings of this study are available
within the article and its Supplementary Information. All other relevant data are available
upon request.

Code availability
A software package implementing the OptiCon algorithm has been deposited at GitHub
(https://github.com/tanlabcode/OptiCon).
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