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Real-time observation of X-ray-induced
intramolecular and interatomic electronic decay
in CH2I2
Hironobu Fukuzawa et al.#

The increasing availability of X-ray free-electron lasers (XFELs) has catalyzed the develop-

ment of single-object structural determination and of structural dynamics tracking in real-

time. Disentangling the molecular-level reactions triggered by the interaction with an XFEL

pulse is a fundamental step towards developing such applications. Here we report real-time

observations of XFEL-induced electronic decay via short-lived transient electronic states in

the diiodomethane molecule, using a femtosecond near-infrared probe laser. We determine

the lifetimes of the transient states populated during the XFEL-induced Auger cascades and

find that multiply charged iodine ions are issued from short-lived (∼20 fs) transient states,

whereas the singly charged ones originate from significantly longer-lived states (∼100 fs).

We identify the mechanisms behind these different time scales: contrary to the short-lived

transient states which relax by molecular Auger decay, the long-lived ones decay by an

interatomic Coulombic decay between two iodine atoms, during the molecular fragmentation.
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Understanding the details of the interaction between intense
X-ray free-electron laser (XFEL) pulses1,2 and matter is of
paramount importance for its numerous applications,

including single-particle structural determination by coherent
X-ray imaging3–5 and structural dynamics tracking in molecules
by time-resolved X-ray spectroscopy and diffraction6–12. Another
powerful method made available by the new XFELs is serial
femtosecond crystallography13–15. It allows structural determina-
tion of proteins, especially membrane proteins, which are difficult
to crystalize. However, an in-depth knowledge of the radiation
damage caused by the XFEL irradiation16–19 is necessary for the
implementation of the above-mentioned XFEL-based methods. In
imaging applications, the primary purpose of the XFEL pulses is to
probe the structure of the object, ideally as noninvasively as
possible. The impact of the extremely concentrated energy of the
XFEL pulses on the target materials is, however, although severe,
still not fully characterized. In particular, the changes induced in
the electronic structure of the sample in the course of the imaging
process are poorly known. A prominent example is the application
of XFEL imaging to complex molecular photocatalysts containing
heavy metal atoms. In such photocatalysts, the deep inner-shell
ionization of heavy atoms releases many electrons via cascading
electronic relaxation processes and, owing to the Coulomb
repulsion between highly charged atomic sites, eventually results
in the fast destruction of chemical bonds and consequently in
rapidly developing radiation damage at the molecular level.
Detailed knowledge of the underlying mechanisms is obtained
through real-time observations of the structural changes and of
the charge states, resulting from the interrogation of the sample by
the XFEL pulses.

The first studies of the decay processes triggered by the inter-
action of XFEL pulses with atoms and molecules have been per-
formed at both the Linac Coherent Light Source up to 2 keV
photon energy20–22 and at 7 keV photon energy23, and the SPring-
8 Angstrom Compact free-electron LAser (SACLA) in the 5–15
keV photon energy range24–28, and focused in particular on small
organic molecules and biomolecules containing iodine atoms as
strong X-ray absorption centers. Specifically, when iodine-
containing molecules are irradiated by high-energy 5.5 keV XFEL
pulses, iodine 2p subshell photoionization occurs first with the
highest probability26. Then, additional positive charges are pro-
duced locally at the iodine site by Auger decay cascades. In the final
stages of these cascades, involving delocalized molecular orbitals,
the positive charges redistribute over the entire molecule and a
highly charged molecular cation is formed. This molecular ion
undergoes Coulomb explosion into mostly atomic fragment ions.

Our former studies applied an empirical charge and nuclear
dynamics model to the experimental XFEL data and concluded
that the charge generation and redistribution are ultrafast, taking
place within the XFEL pulse duration (∼10 fs), in competition
with the Coulomb explosion26,27. These conclusions were drawn
indirectly, by comparing the asymptotic predictions of the model
with the final charge, energy, and momentum distributions of the
observed Coulomb explosion products. However, to directly
observe the time evolution of these quantities triggered by the
initial photoionization event, time-resolved pump-probe mea-
surements are indispensable.

In the following, aiming to better understand the molecular-
level radiation damage in matter containing heavy atoms, we
study diiodomethane (CH2I2) by time-resolved ion momentum
spectroscopy. The CH2I2 molecule results the substitution of two
hydrogens with two iodine atoms in methane, and may be seen as
the simplest model system of that type. We experimentally
determine the lifetimes of the transient states populated during
the XFEL-induced Auger cascades and find that multiply charged
iodine ions are issued from short-lived (∼20 fs) transient states,

whereas the singly charged ones originate from significantly
longer-lived states (∼100 fs). Our investigation allows us to
identify the driving mechanisms behind: contrary to the short-
lived transient states which relax by molecular Auger decay, the
long-lived ones decay, during the molecular fragmentation pro-
cess, by an interatomic Coulombic decay (ICD) process involving
two iodine atoms.

Results
Investigated process. Figure 1a outlines the processes investigated
in the present pump-probe experiment. We used 5.5 keV XFEL
pulses to induce decay processes in CH2I2, and near-infrared (NIR)
optical laser pulses as a probe. The pulse durations of the XFEL and
NIR-laser are ∼10 fs and 32 fs, respectively. The quantity that can
be directly extracted for each charge state q of iodine from the
recorded ion yields is the delay-dependent variation of the popu-
lation of next-higher charge state q + 1, induced by the NIR probe.
The TIq→(q+1) curves defined in Fig. 1a directly reflect the temporal
evolution of the transient electronic states described by the popu-
lation time τp and the lifetime τd, allowing us to extract these
quantities directly from our time-resolved measurement.

Charge state distributions. In the present experiment, we
measured momentum vectors of the released fragments by a
time-of-flight (TOF) spectrometer equipped with a position-
sensitive detector as drawn in Fig. 1b. Details of the experiment
are described in Methods. Figure 2 shows the charge state dis-
tributions of iodine ions with and without the NIR-laser irra-
diation. In either case, the distribution peaks at a charge state
of +3. The relative abundance of I3+ does not change when the
NIR laser is added, whereas for the higher charge states it
increases when the NIR laser is added, and whereas the opposite
occurs for lower charge states, which are depleted by the NIR
pulse. This result is consistent with the overall picture that a
population transfer from lower to higher charge states occurs for
the iodine ions owing to the additional excitation by the NIR-
probe, as described in Fig. 1a. In the experiment, we also
observed carbon ions. However, as the XFEL-induced electronic
decay dynamics in Fig. 1a are observable mainly in the iodine
ion yields, we focused on the behavior of the iodine ions. For a
sake of completeness we present the charge state distributions
for carbon ions in the Supplementary Fig. 1 and comment them
in the Supplementary Note 1.

Time-evolution of ion yields. Figure 3a–f illustrates the pump-
probe delay (t) dependence of the Iq+ yields, YIq(t), where q
designates the charge state. Baselines, that is the Iq+ yields gen-
erated by single-pulses (either XFEL or NIR), BIq, are also shown
for reference. Deviations from the baseline, YIq(t)− BIq, are thus
attributed to the pump-probe combined effect and can be
represented as a dynamic balance of the inflow to and the outflow
from a given charge state Iq+:

YIqðtÞ � BIq ¼ TIðq�1Þ!qðtÞ � TIq!ðqþ1ÞðtÞ: ð1Þ

We can obtain the target quantities TIq→(q+1)(t) straightfor-
wardly from the measured yields YIq(t) and BIq as shown below.
From equation (1), we obtain

X6
q¼1

YIqðtÞ � BIq

� �
¼ TI0!1 tð Þ � TI6!7ðtÞ: ð2Þ

Figure 3g depicts the left side of equation (2). There, we do not
see any significant delay dependence and the values are close to
zero, indicating that both TI0→1(t) and TI6→7(t) are negligibly
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small. One can then obtain all other curves TIq→(q+1)(t): if
TI6→7(t)= 0, then YI6(t)− BI6= TI5→6(t) and

TIq!ðqþ1ÞðtÞ ¼
X6
n¼qþ1

YInðtÞ � BInð Þ; ð3Þ

for q ≤ 5. If TI0→1(t)= 0, then YI1− BI1(t)=−TI1→2(t) and

TIq!ðqþ1ÞðtÞ ¼
Xq
n¼1

BIn � YInðtÞð Þ; ð4Þ

for q ≥ 1. In Fig. 3h–l, we plot TIq→(q+1)(t) for q= 1− 5 obtained
using both equations (3) and (4). The good agreement between
these two plots within the error bars confirms that we successfully
extracted the target quantities TIq→(q+1)(t).

Discussion
There are two components in the temporal behavior of
TIq→(q+1)(t) in Fig. 3h–l: one is a peak structure that appears near
0 fs and the other one is a step-increase at positive delay. The
peak structure is related to the interaction of the NIR probe with
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Fig. 1 Schematics of the experiment. a Diagram of the XFEL-induced processes and the NIR-induced effects. The process starts from iodine 2p ionization by
the XFEL-pump pulse irradiation, creating the short-lived 2p−1 state. This moment is defined as the time origin. The molecular cation then starts to
dissipate energy by an Auger cascade, which is a step-wise process populating intermediate transient electronic states of increasingly higher charge. The
cascade, if uninterrupted, continually lowers the electronic internal energy of the molecule. However, a NIR-probe pulse can interfere with the normal
course of the cascade decay and excite the molecule (CH2I2**) to a higher energy level (CH2I2***). This process, in order to occur with high probability, may
require the molecule to be in a suitable electronically excited state when the NIR-probe pulse arrives. We denote the population time and the lifetime
(depopulation time) of such an excited state as τp and τd, respectively. After such a NIR-induced step-up in energy, the Auger cascade can proceed via
higher energy levels, eventually resulting in a higher total charge than would have been reached without the additional NIR-probe energy. Also, the NIR-
pulse can directly ionize the molecule to the next-higher charge state, from where the Auger cascade continues, again reaching a higher final charge. We
denote as TIq→(q+1) the increase of the I(q+1)+ ion yield owing to the NIR-laser absorption by the transient states (CH2I2**) that would yield Iq+ without NIR-
laser interruption. In addition, if a pair of an excited I+* and a neutral iodine atom is produced, ICD may be possible and two I+ ions are resulting. When
excited I+* is ionized by the NIR-probe, an I2+ ion is produced and the neutral iodine remains. b Experimental configuration. The XFEL-pump pulse and NIR-
laser probe pulse cross at a focal point of both lasers. The molecular beam crosses both lasers at the focal point. The ions released from the molecule by
the XFEL/NIR-laser irradiations are accelerated by an electric field and detected by a position-sensitive detector
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transient electronic states formed in the intermediate stages of the
Auger cascade, that is, the target process described in Fig. 1a. The
step-increase maintaining the NIR-induced effect at the asymp-
totic limit is, on the other hand, a result of the NIR probe
interacting with the Coulomb explosion ionic fragments. We
carried out curve-fitting analysis taking into account these two
contributions. The details are provided in Methods. In the dis-
cussion below, we focus on the peak structures to which the target
processes contribute. For completeness, the step structures are
also explained in the Supplementary Note 1.

We used a fitting model with the short populating times τp as
pre-determined parameters, allowing also to investigate the sen-
sitivity and variability of the other fitted parameters. The popu-
lation of the transient state can be treated as being completed
within the XFEL pulse duration28. Therefore, τp was considered
to be ≤10 fs. Figure 3 illustrates the fitted curves when τp is set to
be 10 fs. Figure 4 shows the decay times τd obtained from the
fitting using τp= 2, 5, 10, and 20 fs. The τd extracted from the
fitting for each q should not be considered as lifetimes of specific
electronic states but rather as representative values for all tran-
sient states contributing to each TIq→(q+1)(t) channel. One can see
that τd is not sensitive to the choice of τp. Notably, τd becomes
much smaller for TI2→3(t) compared with TI1→2(t), and then
remains unchanged for higher charge states. This sensible
shortening of the decay time constant of the molecular transient
states indicates that a significant change occurs in the electronic
decay pathway of these states as the charge state increases.

Whereas the pump-probe delay dependence of the carbon ions
yields may include information about the charge transfer from
the iodine to the carbon site as shifted step structures29, we were
unable to extract such information because of the overlap
between peak and step structures. We present the time evolution
of the carbon ions yields in the Supplementary Fig. 2 and explain
it in the Supplementary Note 1, for completeness.

Let us now concentrate on the remarkable feature that for
TI1→2(t), τd is significantly longer than any other (q ≥ 2) decay
time constant. For the latter, τd are consistent with the typical
electronic state lifetimes in the intermediate stages of the Auger
cascades23,24. For the former, however, τd is too long to be
associated with typical inner-shell vacancy lifetimes. Instead, the
NIR-pulse interaction with these long lifetime transient states
producing low-charge iodine ions may be affected by the mole-
cular dissociation process. In the 100-fs timescale, both hydrogen
and carbon atoms may be significantly away (≥10 Å) from the

two iodine atoms, whereas the two iodine atoms may still be close
to each other (≤6 Å)28. We therefore interpret this slow decay as
an ICD process30 where an electronically excited iodine ion (e.g.,
I+(5p35d)) decays, whereas the neutral neighbor iodine is ionized.
See the Supplementary Fig. 3 for detail. ICD following Auger
decay was first observed in argon dimers31, investigated for var-
ious systems since then, and recognized as an ubiquitous phe-
nomenon in clusters irradiated with high-energy photons32. The
arrival of the NIR-probe pulse quenches this ICD channel, the
excited iodine ion being further ionized, whereas the neutral
iodine remains untouched. Such an ICD channel is energetically
open even at equilibrium I–I distance in the neutral CH2I2, and
its rate slows down as the separation of the two sites increases33.
The measured lifetime of ∼100 fs is comparable with the previous
direct measurements of the ICD decay time34,35. Therefore, the
very different decay time scales of the transient states probed here
can be attributed to either fast molecular Auger cascades or to
slow ICD between fragments.

To further confirm our conclusion, we performed ab initio
calculations of the ICD decay widths of three excited cationic
states of the system I+*–I as a function of the interatomic distance
(see Supplementary Fig. 4). The results show that the lifetimes
vary from 2–20 fs, at the I–I distance of 3.5 Å (close to the
equilibrium I–I distance in the neutral CH2I2), to a few hundred
fs when the distance becomes 6 Å. In view of the large number of
such states populated in the cascade and along the dissociation
dynamics, an averaged ICD lifetime ∼100 fs is, therefore, very
reasonable. Our calculations indicate that ICD processes in the
I+*–I system producing two I+ are indeed possible and that the
experimentally observed time constant of ∼100 fs matches well
these decay mechanisms.

When we consider the contribution of ICD, deviations from
the baseline for I+ need to include the outflow from I+ to neutral
iodine, TI1→0(t): YI1(t)− BI1= TI0→1(t)− TI1→2(t)− TI1→0(t). As
the sum of (YIq(t)− BIq) for q= 1–6 is zero, indicating that
TI0→1(t)− TI1→0(t) is negligible, ICD does not change equation
(4) and thus does not affect the above discussions.

Although we could extract time scales of XFEL-induced elec-
tronic decay dynamics using only the iodine ion yields, it was
important to also include carbon ions to fully understand how the
NIR-probe influences ion yields. As a result of the NIR-probe, not
only increments in the ionic charge states, but also energy shifts of
the fragment ions owing to the increase of the Coulomb repulsion
were observed. To investigate variations in energy, kinetic energy
filtered ion yields have been plotted as a function of the pump-
probe delay (Supplementary Note 2 and Supplementary Fig. 5).
The complete details of the role of the NIR-probe described in
Fig. 1a are given in the Supplementary Note 3 with the help of
Supplementary Fig. 6. This detailed understanding of the role of the
NIR-probe pulse enforces and validates the present analysis.

In conclusion, we measured charge and kinetic energy selected
ion yields obtained from the CH2I2 molecule in an XFEL–NIR-
laser pump-probe experiment. We extracted the lifetimes of the
transient states produced by the interaction with the XFEL pulse
and we found that the lifetimes become notably shorter when the
iodine ion charge state increases above q= 1. We further revealed
the underlying mechanism, and namely that the transient states,
which produce I+ decay slowly, reflecting an I–I ICD process,
whereas the shorter lifetimes measured for the higher charge
states are the fingerprint of faster Auger decay cascades. Note that
we already established an approach to probe molecular structures
by ion momentum correlation measurements using the same
apparatus as used here26–28. The general approach and the pre-
sent success in directly probing in real-time XFEL-induced
transient states surviving only tens of femtoseconds indicate that
we established a tool to observe ultrafast XFEL-induced reactions
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Fig. 2 Charge state distributions of iodine ions. Green bars indicate the yield
of various iodine ions charge states produced by XFEL radiation only,
normalized to the sum of the I+–I6+ yields. Magenta bars show the yields
obtained when the NIR probe was added to the XFEL pulse, within a delay
time window between −45 fs and +125 fs. The figure thus does not yet
differentiate between the various delay times, but presents the overall
effect of adding the NIR pulse
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when we combine time-resolved ion momentum measurements
and ion momentum correlation measurements, thus inducing a
research scope in XFEL science.

Methods
Experiment. The experiments were carried out at the experimental hutch 4 (EH4)
of beamline 3 (BL3) of SACLA36–38. The XFEL pulse and optical laser pulse were
used as pump and probe pulses, respectively.

The XFEL beam was focused by a Kirkpatrick–Baez mirror system39 to a focal
size of ∼1 μm (full width at half maximum; FWHM) in diameter. The repetition
rate of the XFEL pulses was 30 Hz. The photon energy was set at 5.5 keV and the
photon bandwidth was ~20 eV (FWHM). The pulse duration of the XFEL was not
measured but was estimated to be ~10 fs (FWHM)40. XFEL pulse energies were

measured using a beam position monitor41 located upstream of the beamline. That
beam position monitor was calibrated by a calorimeter, so that output signals from
the monitor could be transformed into the absolute value of the pulse energy42. The
measured value during this experiment was 5.7 × 102 μJ per pulse on average. The
shot-to-shot pulse energy fluctuation was about ± 10% (21% FWHM). Note that
the pulse energy is not measured at the reaction point but upstream, and that losses
occur due to the beam transport and diagnostics. The peak fluence of the XFEL
pulse at the reaction point was 30 μJ μm−2 on average. The absolute value of the
peak fluence was calibrated just before the experiment by a well-established
calibration procedure using argon24,43.

The optical laser system synchronized with the XFEL pulses is permanently
installed at the beamline37. We used NIR pulses with 800-nm wavelength (1.55-eV
photon energy). The pulse duration of the NIR laser was measured to be 32 fs
(FWHM) and the peak fluence was 11 nJ μm−2 (3.3 × 1013W cm−2 peak intensity).

1.10

1.15

1.20

1.25

1.45

1.50

1.55

1.65

1.70

1.75

1.55

1.60

1.65

1.20

1.25

1.30

–200 0 200 400 600 800

0.65

0.70

0.75

–0.1

0.0

0.1

0.0

0.1

0.2

0.3

0.0

0.1

0.2

0.3

0.0

0.1

0.2

0.3

0.0

0.1

0.2

–200 0 200 400 600 800
–0.1

0.0

0.1

0.2

a

b

c

d

Io
n 

yi
el

d 
(c

ou
nt

s/
sh

ot
)

e

Pump-probe delay (fs)

f I6+

I5+

I4+

I3+

I2+

I+ g

h

i

j

k

l

Sum

TI1→2

TI2→3

TI3→4

TI4→5

TI5→6

In
te

ns
ity

 (
co

un
ts

/s
ho

t)
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In the XFEL–NIR-laser pump-probe measurement, the arrival timing
monitor44, a kind of cross-correlator between the XFEL and NIR-laser pulses, was
used. Originally, the difference between the XFEL pulse and the NIR-laser pulse
arrival times had ∼700 fs (FWHM) temporal jitter. After correcting the jitter by
using the arrival timing monitor, we binned the data points every 20 fs. In this way,
we could achieve a total time resolution of ∼100 fs. Only when such a jitter
correction is applied, real-time observation of the ultrafast intramolecular
electronic decay processes by using XFEL and optical laser pulses can become
reality.

CH2I2 vapor seeded in helium gas was introduced to the focal point of the XFEL
pulses as a pulsed supersonic molecular beam. CH2I2 with 99.7% purity was
purchased from Nacalai Tesque, Inc. and used without further purification. The
molecular beam was crossed with the focused XFEL and NIR-laser beams at the
focusing point (Fig. 1b). The yields and the three components of the momentum
vectors of released ions were measured as a function of pump-probe delay by the
TOF type ion spectrometer equipped with a delay-line type position-sensitive
detector45. We used velocity-map-imaging electric field conditions46, in order to
obtain high momentum resolution. Signals from the detector were recorded by a
digitizer and analyzed by a software discriminator47.

Curve fitting. From Fig. 1a, the peak structure is expected to be formed by the
transition to a certain transient electronic state and its decay process48. The rising
time of the peak corresponds to the population time τp, which is necessary to
populate a certain transient electronic state during the Auger cascade after iodine
2p photoionization. The tail of the peak structures reflects the decay time τd of this
transient electronic state. We performed fitting by considering a Gaussian instru-
mental response function g(t) with σ being the width of the Gaussian. The temporal
trace of the population of the transient state was represented by a populating and
depopulating double exponential function f(t) with two time constants τp and τd,
respectively:

f ðtÞ ¼
0 t < t0ð Þ;
Ap 1� exp � t�t0

τp

� �h i
exp � t�t0

τd

� �
t � t0ð Þ;

(
ð5Þ

where t0 is the origin of the pump-probe delay and Ap is a constant. From our
previous study28, the population of the transient state can be treated as being
completed within the XFEL pulse duration. Therefore, τp was considered to be
≤ 10 fs. The double exponential function f(t) was convoluted with a Gaussian
function g(t). Finally, the fitting function F(t) can be described as the sum of
the above convoluted function and one error function E(t) to take into account
the difference of baseline between the positive and the negative delay regions. The
width of the error function is fixed to the one of g(t). The explicit forms of F(t), g(t),
and E(t) are given by:

FðtÞ ¼ ðf � gÞðtÞ þ EðtÞ þ C; ð6Þ

gðtÞ ¼ 1ffiffiffiffiffi
2π

p
σ
exp � t2

2σ2

� �
; ð7Þ

EðtÞ ¼ As

2
1þ erf

t � t0ffiffiffi
2

p
σ

� �� �
; ð8Þ

where C and As are constants.
By treating τp as pre-determined parameter, we could determine the other

parameters from global fitting to TI1→2(t), TI2→3(t), TI3→4(t), TI4→5(t), and
TI5→6(t) in Fig. 3. The fitting procedures with τp= 10 fs allowed us to determine
the origin of the time delay with an accuracy of 14 fs as a standard deviation and
the width of the instrumental function of 141 ± 14 fs (FWHM, that is σ= 60±6 fs).
For comparison, the zero-delay positions were obtained to be −4 ± 18 fs, +4 ± 18 fs
and +12 ± 13 fs and the width of the instrumental function to be 139 ± 15 fs, 135 ±
15 fs and 141 ± 31 fs when we used τp= 20 fs, 5 fs and 2 fs, respectively. τd is not
sensitive to the choice of τp, as shown in Fig. 4.

Calculation of ICD decay widths. The Fano–Stieltjes procedure we used for
computing the ICD widths of ionization satellite (two-hole one-particle) states of I2
is described in detail in refs. 49,50. In this approach, the electronic configuration
space of the problem is divided into the subspace P that comprises of continuum-
like configurations, which correspond to a free electron and an energetically
accessible final state of the dication, and the subspace Q, which comprises of
bound-like configurations corresponding to an electron moving in the field of the
energetically forbidden final state of the dication. The decay width is given by

ΓðEÞ ¼ 2π
X
β

jhχβεjĤPQjΦij2 ð9Þ

where Ĥ is the electronic Hamiltonian, |Φ〉 is the bound-like part of the resonance,
and |χβε〉 is the continuum part of the resonance, which describes an outgoing free
electron of energy ε in the channel β. Both the bound and continuum parts of the
resonance are obtained by numerical diagonalization of the projected Hamiltonians
ĤQQ and ĤPP . As square-integrable Gausssian type orbitals are used in representing
the many-electron wavefunctions, we used the Stieltjes imaging procedure51,52 to
ensure the proper normalization of |χβε〉 to energy.

To partition the configuration space, we first used the non-relativistic second-
order algebraic diagrammatic construction [ADC(2)] method for the two-particle
propagator53 to compute the spectrum of doubly ionized I2þ2 states. In this way, we
determined the number of the two-site I+(5p−1)− I+(5p−1) states, which represent
the open ICD channels, as well as of the one-site I− I2+(5p−2), I− I2+(5p−1 5 s−1),
and I− I2+(5 s−2) states, which are not accessible in ICD. This information is used
by the Fano–Stieltjes routine to construct the continuum and bound parts of the
resonance state. The construction was done using extended ADC(2) method for the
Green’s function54. The width was then computed for a number of adiabatic
resonance I− I+*(5p−2nl) states. We used the restricted Hartree-Fock reference
state in our ADC calculations. The molecular orbitals and two-electron integrals
were computed using Molcas55 quantum chemistry program suite. The calculations
were performed with cc-pwCVTZ-PP/ECP basis sets56,57, augmented by one s-type,
one p-type, and one d-type Kaufmann–Baumeister–Jungen functions58.

The large number of and the mutual interactions among the resonance states of
I− I+*(5p−2nl) character, as well as the limited accuracy of the ADC(2)x method
in computing the energies of ionization satellites, preclude their precise assignment
at the interatomic distances of interest. For example, in the 2Π symmetry we
obtained 22 one-site satellite states whose ionization energies lie below the lowest
one-site double ionization I− I2+ threshold and which can decay by ICD. We
selected three states and computed their ICD widths. The width of the state with
the lowest energy is one order of magnitude larger than the one of the two higher
excited satellites, which was previously observed for the ICD of ionization satellites
in rare gas dimers59–61. The computed ICD lifetime of the lower energy state in the
3.5 Å to 7 Å range is 2 fs to 82.5 fs, whereas for the higher energy satellites it is 20 fs
to 1.7 ps. Importantly, the widths noticeably decrease with the interatomic distance
as they ought to do for an interatomic decay process.

Data availability
All relevant data are available from the corresponding author on request.
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