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Critical fluctuations and slowing down of chaos
Moupriya Das1,4 & Jason R. Green1,2,3

Fluids cooled to the liquid–vapor critical point develop system-spanning fluctuations in

density that transform their visual appearance. Despite a rich phenomenology, however,

there is not currently an explanation of the mechanical instability in the molecular motion at

this critical point. Here, we couple techniques from nonlinear dynamics and statistical physics

to analyze the emergence of this singular state. Numerical simulations and analytical models

show how the ordering mechanisms of critical dynamics are measurable through the hier-

archy of spatiotemporal Lyapunov vectors. A subset of unstable vectors soften near the

critical point, with a marked suppression in their characteristic exponents that reflects a

weakened sensitivity to initial conditions. Finite-time fluctuations in these exponents exhibit

sharply peaked dynamical timescales and power law signatures of the critical dynamics.

Collectively, these results are symptomatic of a critical slowing down of chaos that sits at the

root of our statistical understanding of the liquid–vapor critical point.
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F luctuations are sovereign in critical phenomena1,2. They rule
fluids at the liquid–vapor critical point, a unique instability
that punctuates the space of thermodynamic states3. First

established experimentally by Andrews4, the liquid–gas critical
point was given a molecular explanation shortly thereafter by van
der Waals5. In van der Waals’ picture, now a paradigm in liquid
state theory6,7, repulsive forces largely determine the structural
arrangements of molecules in non-critical liquids, not the
attractive forces. Near the liquid–vapor critical point, however,
their roles reverse and the paradigm shifts8; dynamical fluctua-
tions reach macroscopic magnitude and overrule molecular size,
shape, and interactions in dictating bulk behavior. These fluc-
tuations are generated by the nonlinear dynamics of classical
critical fluids. Yet, the relationship between the microscopic
instability of the dynamics and the thermodynamic singularity
has never been entirely clear9.

While the field of critical phenomena continues to absorb
increasingly diverse systems10, the basic phenomenology is firmly
established1. Its taxonomy is built on scaling and universality, the
similar behavior of dissimilar systems. Despite the early discovery
of their critical points, fluids were somewhat resistant to classi-
fication5. Simulations11 and theory12 were, and continue to be,
integral in providing mechanistic insights, the location of the
critical point, and estimates of static critical exponents13–16.
Through simulations, the classical atomistic dynamics of fluids
are known to be chaotic17, a part of the machinery of nonlinear
dynamics. Measuring deterministic chaos has given insights into
the physical mechanisms of the jamming transition in granular
materials18, self-organizing systems19, evaporating collections of
nuclei20,21, and the phase changes of atomic clusters22–25. In
addition, the dynamics of model spatially-extended systems have
recently begun to collect into dynamic universality classes26.
These findings are part of efforts to coalesce statistical physics and
nonlinear dynamics, and they reinvigorate the question of how
fluids, specifically the properties of their molecular dynamics, fit
within this phenomenological architecture of critical phenomena.

At the liquid–vapor critical point, how do correlations in
molecular positions overcome the destabilizing force of deter-
ministic chaos in the molecular dynamics? Here, we resolve the
instability of the molecular motion that generates this critical
phenomenon. Because of the absence of long-range order—and
an inability to make a small vibration approximation, as in solids,
or a molecular randomness hypothesis, as in gases27—the dyna-
mical instability in critical fluids has been largely grounded in
purely statistical terms. However, critical correlations imply
structural organization that is intrinsically opposed by a chaotic
dynamics. Both numerical simulations and analytically tractable
models show here that the critical dynamics carry signatures of
this internal tension between order and chaos. We find that
Lyapunov exponents28, a measure of chaos and dynamical
instability, are minimal at the liquid–vapor critical point. Sig-
natures also appear in the finite-size scaling of fluctuations in
these observables. The fluctuations decay as a power law towards
the thermodynamic limit with the slowest rate at the critical
point. Overall, these results suggest this singular state is a limit of
dynamical order that long-range correlations can impose on the
dynamics.

Results
Dynamics of a simple fluid. To analyze the molecular dynamics
at the liquid–vapor critical point, we numerically simulate a
homogeneous, single-component, non-associated, equilibrium
fluid (Fig. 1a) and apply techniques from nonlinear dynamics.
The fluid consists of N molecules interacting pairwise through
van der Waals forces, repelling (attracting) at distances of a (few)

molecular diameter(s) according to the Lennard–Jones (LJ)
potential29. As order parameters, we use the hierarchy of 6N
spatiotemporal (Lyapunov) vectors. Each vector has an associated
exponent, λi indexed i= 1,…,6N28 and in descending order, that
measures the contribution of each vector to the global dynamics.
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Fig. 1 Slowing down the divergence of trajectories at the liquid–vapor
critical point. a Cross-sectional snapshot of the critical fluid and the periodic
boundaries of length L= Lx= Ly= Lz. b Spectra of positive Lyapunov
exponents λi and c Lyapunov times τi (log-linear scale) as a function of the
mean kinetic temperature, T. Every 30 λi are shown for N= 1000 particles
occupying a cubic simulation volume with a density ρ= ρc= 0.317.
Unstable spatiotemporal vectors that correspond to more disordered
motions (1/3N≤ i/3N≤ 0.18) have positive Lyapunov exponents (time)
with a minimum (maximum). Vertical dashed lines mark the critical
temperature, Tc. Inset illustrates compression of spectrum through the
critical point for data shown
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Larger exponents indicate more unstable phase space direc-
tions30. We calculate the full Lyapunov spectrum at the critical
density ρc and over a range of temperatures including the critical
temperature, and we choose the energy density to fix the mean
kinetic temperature, T. Each λi is a time-average of a 106 time step
trajectory.

Suppression of chaos at the critical point. When approaching
the liquid–vapor critical point from the supercritical regime, T >
Tc, the Lyapunov exponents decrease monotonically (Fig. 1). This
decline represents a “slowing down” in the divergence of trajec-
tories as T approaches Tc and accompanies the transient forma-
tion of spatial regions in the system that will separate into
coexisting vapor and liquid phases below Tc. What drives this
decrease in the largest exponent, λ1, is a suppression of the fastest
dynamical events31. Here, these events are molecular collisions
that sample the repulsive part of the intermolecular potential. As
the system “practices” phase separating, as Widom put it5, fewer
of these high-energy collisions occur32.

Away from the critical point, the van der Waals picture is the
foundation for the statistical-mechanics of liquids6. Perturbative
treatments, for example, assume the structure of a dense,
monatomic liquid resembles that of a hard sphere fluid and, to
a first approximation, the attractive interactions have little effect
on the liquid structure6. At the critical point, though, repulsive
intermolecular forces play a subordinate role compared to critical
fluctuations. While the van der Waals picture of fluids was only
recently shown to extend to the Lyapunov exponents and their
fluctuations33, it does not hold near the critical point8. A steady
7% decrease with temperature and the clear minimum near Tc in
the first Lyapunov exponent are direct evidence that critical
conditions inhibit the effect of repulsive forces on the dynamics,
consistent with the breakdown of the van der Waals picture.

Also evident from Fig. 1 is a minimum in the largest Lyapunov
exponent near the known34 critical point, (Tc, ρc). The minimum
in this exponent, and the maximum in the Lyapunov time, 1/λ1,
near Tc means the critical dynamics are predictable over longer
timescales because initially similar configurations do not diverge
as quickly (Fig. 1c). For the finite-size systems we simulate, the
doubling of the Lyapunov time is in accord with the doubling of
the characteristic time of the autocorrelations in the kinetic
energy (Supplementary Note 1). A suppression of the dynamical
instability in the critical regime aligns with the physical intuition
that long-range correlations are at play near Tc. However, for the
finite-size systems we simulate, the dynamics are not entirely
predictable at Tc; the first exponent has a non-zero value through
the temperature range including Tc, which suggests the
continuous liquid–vapor phase change remains chaotic through-
out and into the coexistence region for finite-size systems. These
chaotic critical dynamics differ from the jamming transition in
granular materials, which seems to be a transition from a chaotic
to a non-chaotic state18.

To more fully resolve dynamical instability across the critical
point, we also calculated the full spectrum of Lyapunov
exponents. From simulations of two and three-dimensional
liquids, the shape of the spectrum depends on the kinetic
temperature and density (Supplementary Fig. 2)32,35,36. Figure 1b
shows the long-time Lyapunov spectrum at the critical density for
temperatures spanning the critical temperature, Tc. These data for
N= 1000 converged to <1% and show all unstable vectors have
exponents that decrease when approaching the critical point from
above. But, only the most unstable vectors have exponents with
minima at the critical point. Critical correlations appear to have
the largest impact on the vectors with scaled index up to i/3N ≈
0.18 (Supplementary Fig. 3). Exponents beyond this point

decrease monotonically with temperature. The spectrum is also
compressed at the critical point (Fig. 1c inset), meaning there is a
weaker preference for trajectories to diverge in the direction of
any given vector.

Many models and molecular simulation techniques have been
used to probe the liquid–vapor critical point37,38. But, the long-
time Lyapunov exponents in Fig. 1 are the first glimpse of its
chaotic properties. These exponents are intensive observables in
the liquid and supercritical phases, but there is a slight
dependence of the spectrum on the N at ρc that affects the
location of the minimum (Supplementary Figs. 4 and 5). A
similar weak dependence of the leading Lyapunov exponent on N
was found for a two-dimensional LJ fluid39. To support our
numerical simulations and pinpoint the location of the minimum,
we analyze two analytically tractable approximations to a model
system. The Lyapunov exponents and the Lyapunov time τ at the
critical temperature Tc depend strongly on the nature of the
approximation.

Because the liquid–vapor critical point is generally considered
to belong to the Ising universality class14,16, we consider a
continuous analog of the Ising model. The model is one-
dimensional system of N interacting, classical particles of mass m
in a bistable potential. Two approximations of this model capture
the features of the heat capacity at the liquid–vapor critical point:
the singularity and the finite-jump discontinuity8. To analyze the
effect of a diverging heat capacity on the Lyapunov exponents, we
treat the average effects of the anharmonic term in the
Hamiltonian9 by imposing a temperature-dependent weakening
of the anharmonic restoring force on each particle. The Lyapunov
exponents are given by

λ± ðTÞ ¼ ±

ffiffiffiffiffi
κ2
m

r jT � Tcj
Tc

� �1=2

: ð1Þ

There is a conjugate pair of exponents for each of the N particles.
Approaching the critical point, the first Lyapunov vector will
generate the instability that leads to the phase transition; the
Lyapunov exponents become degenerate and their associated
Lyapunov vectors become linearly dependent. From the last
expression, we see that λ±→ 0 as T→ Tc. That is, all Lyapunov
exponents vanish at the critical temperature according to the
power law |λ±|∝ |T−Tc|1/2 (Fig. 2). The corresponding Lyapunov
time diverges τ±= 1/λ±∝ |T−Tc|−1/2 at Tc and coincides with the
divergence in the isochoric heat capacity.

Applying another (mean-field) approximation to the coupled-
particle system, we can analyze the Lyapunov exponents when the
heat capacity has a simple discontinuity and further confirm that
the critical point is a limit of dynamical order (Supplementary
Fig. 6)40–42. As an order parameter, we use the mean particle
displacement. This order parameter is nonzero for T < Tc and zero
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Fig. 2 Analytical model of nonlinear oscillators with a dynamically stable
critical point. At the critical temperature Tc, a the N conjugate pairs of
Lyapunov exponents, |λ±|, vanish and b the single-particle heat capacity,
CV,1/kB, and Lyapunov time, |τ±|≡ 1/|λ±|∝ |T−Tc|−1/2, diverge
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for T ≥ Tc (Supplementary Fig. 7). While the Lyapunov exponents
are nonzero, they have a minimum at Tc. The Lyapunov times have
a maximum. The rate of change of the Lypaunov exponents and
times with temperature have a finite-jump discontinuity at Tc
mirroring the jump in the isochoric heat capacity, a typical feature
of mean-field theories. It is well known that this jump in the heat
capacity predicted by mean-field theory is embedded in a
logarithmic divergence when fluctuations are included. Also known
is that the exact scaling of observables at the critical point is strongly
affected by statistical correlations in molecular positions.

Overall, this model of nonlinearly coupled particles gives
evidence that the minima in the Lyapunov exponents are at Tc for
pure fluids. The minima also support the sensitivity of the most
unstable Lyapunov vectors to the critical dynamics and motivate
a closer look at their finite-time fluctuations in our simulations.

Suppression of approach to the thermodynamic limit. Cooling
the fluid towards the critical point, there are long wavelength
fluctuations in density that cause the correlation length to diverge.
In our simulations, though, the correlation length saturates at the
size of our simulation cell, L, truncating longer wavelength fluc-
tuations; only replicating periodic fluctuations through our
boundary conditions may be a source of the shallowness of the
minima in the largest Lyapunov exponents (Fig. 1b). Fleeting
clusters of all sizes up to L, which will eventually become liquid,
begin to appear. These clusters’ ephemeral existence affects
instability in the critical dynamics on short timescales. As the
structure evolves, the dynamics continues to temporarily sample
phase space domains where trajectories diverge more quickly and
more slowly than the average, domains that will determine the
Lyapunov vector directions and the finite-time estimates of
the Lyapunov exponents. To analyze the fluctuations in finite-
time Lyapunov exponents λi(t), we divided trajectories of 106 time
steps uniformly into windows of 100 time steps. Distributions of
λ1(t) are shown in Fig. 3a.

Non-trivial43 power laws are apparent in the decay of finite-
time Lyapunov exponent fluctuations with system size. At
thermodynamic equilibrium, the precise scaling of relative
fluctuations is often called self-averaging44. Loosely, a system is
self-averaging with respect to a given property, X, if the value of
the thermodynamic observable corresponds to the average over
independent subsystems or, in this case, time windows. More
precisely, the relative fluctuations of an observable X are RX ¼

ΔX2h i= Xh i2� DX= Xh i2� N�γ with ΔX= X−〈X〉, the wandering
exponent γ, and a generalized diffusion coefficient DX. If the
observable is self-averaging, the relative variance RX of the
property X vanishes in the thermodynamic limit: RX→ 0 when
N→∞. The wandering exponent γ can have values between 0
and 1—a value of one meaning the observable is strongly self-
averaging. Weakly self-averaging observables have γ < 1 and non-
self-averaging observables have γ= 0.

Because of the statistical independence of spatial domains in
the system, equilibrium observables are often strongly self-
averaging with γ= 1. However, these domains become statisti-
cally dependent near a critical point because of the divergence of
the correlation length1. Statistical signatures of dynamical
observables, like the Lyapunov exponents, are still being
elucidated26,45. Deep in the liquid state, for example, the
fluctuations for all but the first Lyapunov exponent (the “bulk”)
are strongly self-averaging. The first exponent fluctuations,
however, self-average weakly with a rate of decay γ < 1 that
depends on the length scale of the interparticle interactions and
captures the van der Waals picture of dominant repulsive
forces33. How does this dynamical version of the van der Waals
picture change at the critical point?

Numerical calculation of the entire Lyapunov spectrum comes
at significant computational cost, cost that increases significantly
when scaling with system size46. However, to quantify the scaling
behavior of the finite-time Lyapunov exponent fluctuations with
system size, we simulated 11 systems ranging from N= 100 to
2000 over the same range of temperatures at fixed density ρc.
Over this range of system sizes, fluctuations in the first finite-time
Lyapunov exponent, λ1(t), as measured by the diffusion
coefficient Dλ1

ðN;T; ρÞ, decay with system size as N−γ. This
scaling holds over the temperature range T= 0.8–1.4 spanning
the critical point (Fig. 3a). The wandering exponent varies
between 0.9 and 0.6 (with its smallest value near Tc), showing
temperature controls the magnitude of the wandering exponent
through the structural changes and spatial correlations it brings
about near Tc. A higher-order statistical analysis indicates this
weak self-averaging is, at least in part, due to the non-Gaussian
features of the distributions (Supplementary Note 2). Distribu-
tions of the kinetic energy per particle have a strong Gaussian
character under all conditions we simulate.

Most prominent in the temperature dependence of the
wandering exponent of the first exponent is the peak at T =
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0.962 (Fig. 3b). It shows the critical dynamics self-average most
weakly in the direction of the first Lyapunov vector. As a
reference, the fluctuations in kinetic energy per particle also decay
with system size; the wandering exponent peaks at T= 0.937,
further confirming the location of Tc and further quantifying the
decay of global fluctuations (Fig. 3b). This critical temperature
agrees with that found from grand canonical Monte
Carlo simulations34. The peak in −γ for the first Lyapunov
exponent is just above the critical temperature. However, the
wandering exponent −γ and its maximum are affected by the
range of system sizes and the statistical error in the linear fits of
Fig. 3b. Near the maximum, −γ values appear to converge from
below and, so, we take them as a lower bound (Supplementary
Fig. 9).

The order of the thermodynamic limit and the time limit in the
definition of the Lyapunov exponents can determine whether a
dynamics is chaotic or not45,47. Because of the subtleties of the
time and thermodynamic limit order, fluctuations in the finite-
time Lyapunov exponents of both dissipative and conservative
dynamical systems have recently been subject to a finite-size
scaling analysis26,33,45. In all cases reported to date, the self-
averaging of the first exponent is distinct from that of the bulk,
the set of 3N−1 positive exponents that exclude the first. In
spatially-extended dynamical systems where it is known, the
scaling of fluctuations is homogeneous across the bulk of the
spectrum26,48,49. Liquids show this behavior, for example, and all
the bulk exponents are strongly self-averaging33. However, the
critical dynamics break this scaling symmetry—a significant
fraction of the bulk exponents self-average weakly as shown in
Fig. 4. This scaling feature is so far unique to the liquid–vapor
critical point. It is also apparent in the self-averaging of the entire
Lyapunov spectrum through the average diffusion coefficient
hDðλÞi ¼P6N

i¼1 DðλiÞ=6N , which contrasts that of the largest
exponent (Fig. 4a). The corresponding wandering exponent has
an inflection point around T= 0.962. Increasing the fraction of
exponents included in the average shows that a portion of the

more unstable vectors have a γ-peak that vanishes with increasing
index.

While fluctuations appear to decay with system size in all
unstable phase space directions on our accessible time and length
scales, the rate of decay is far from homogeneous. The γ-spectrum
quantitatively resolves the rates at which this unique thermo-
dynamic equilibrium state emerges from the molecular dynamics
(Fig. 4a). The good data collapse in Fig. 4c reveals clear scaling
functions for the diffusion coefficient spectrum, ~DðT; ρ ¼ ρcÞ;
only three representative temperatures are shown. This scaling
function is a system-size independent measure of the finite-time
fluctuations in the Lyapunov spectrum, fluctuations caused by the
local heterogeneities in phase space sampled by our simulated
trajectories. The basic form of this scaling function is similar to
that seen for simple liquids33 and Hamiltonian lattices45. Our
calculation of Dλ1

, a dynamical invariant in the long time limit,
leads directly to a dynamical timescale for λ1(t) fluctuations,
τD ¼ 1=Dλ1

Nγ. This timescale peaks just above the critical
temperature34. Although these vectors are highly active on short
timescales, the fluctuations destructively interfere on longer
timescales (showing a net suppression, Fig. 1). The peak in the
correlation time of the kinetic energy per particle is evidence of
critical slowing down (Fig. 4b), and confirms the location of the
critical temperature.

Discussion
Based on early foundational work, there are known connections
between hydrodynamics and Lyapunov vectors with small, but
finite, exponents50. The dynamics of these so-called hydro-
dynamic modes can characterize macroscopic transport36,51.
Here, above the liquid–vapor critical point, the Lyapunov expo-
nents of these modes depend strongly on temperature but show
no clear signs of the critical dynamics. Recently, though, it was
found that hydrodynamics can shape the most unstable directions
as well; numerical simulations of two prototypical Hamiltonian
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lattices, the FPU-β and the Φ4 models, demonstrated that long-
range correlations can have a dramatic effect on the fluctuations
of the leading finite-time Lyapunov exponent and even cause
them to diverge with system size45. The minima we observe in the
long-time exponents of fluids near Tc show the most unstable
Lyapunov vectors are also sensitive to the correlations induced by
critical phenomena.

Dynamical systems have begun to collect into universality
classes through the finite-size scaling of Lyapunov exponent
fluctuations. Numerical estimates of the wandering exponent γ
reported26,48,49 so far in the literature suggest the Lyapunov
exponents of dissipative systems are weakly self-averaging, γ < 1,
with the dynamics of the first Lyapunov vector belonging to the
Kardar–Parisi–Zhang (KPZ) universality class52. Fluctuations of
the maximum Lyapunov exponent in Hamiltonian lattice models,
FPU-β and the Φ4, however, are not self-averaging and each
belong to their own universality class45,53. There is mounting
evidence that their non-KPZ behavior is a consequence of long-
range spatiotemporal correlations and not a more universal fea-
ture of Hamiltonian dynamics33. The weakening of the self-
averaging behavior and peak in −γ near the liquid–vapor critical
point is further support for this hypothesis. Because the molecular
dynamics at the liquid–vapor critical point and in the liquid
state33 are Hamiltonian, however, the dynamic universality class
of the Lyapunov vector dynamics remains an open question.

Though distinct from the fluids here, models for non-additive
systems with long-range (gravitational or electrostatic) forces
have shed some light on the relationship between microscopic
chaos at phase transitions. The dynamics of the Hamiltonian
mean-field model, for example, are chaotic for finite-size systems
but not for an infinite size system47. The dynamics and ther-
modynamics that have been studied both numerically54–57 and
analytically58. And, in contrast to the results here, near the
second-order phase transition, both the largest Lyapunov expo-
nent and kinetic energy fluctuations have a maximum near the
critical temperature55.

Here, by treating the nonlinear dynamics directly with
numerical simulations and analytical models, we have resolved
the phase space directions responsible for the thermodynamic
instability and the breakdown of the van der Waals picture at the
liquid–vapor critical point. The long-time Lyapunov spectra show
that critical dynamics of finite-size fluidic systems are less sen-
sitive to the detailed features of intermolecular forces but also
initial conditions. Through numerical simulations and analytical
models, critical conditions appear to constrain the dynamics so
that different phase space directions have a relatively homo-
geneous degree of instability and scaling features in finite-time
Lyapunov exponent fluctuations that are so far unique to critical
dynamics.

Correlations in molecular positions at the critical point span
the length scales of intermolecular forces to the entire system.
They imply structural organization that is intrinsically opposed
by the chaotic dynamics. The mechanisms balancing this internal
tension between order and dynamical instability, however, are
subtle. As a result, theoretical explanations for the mechanical
origins of critical phenomena are uncommon. Continuous tran-
sitions in crystals are a notable exception, where structural
changes arise through the instability of a lattice vibration9. There,
the mode responsible for the phase transition is a collective
excitation whose frequency decreases anomalously during an
approach to the transition point. For example, in SrTiO3 the
frequency of a soft phonon mode decreases substantially and,
ultimately, freezes at the transition temperature when approached
from below59.

Unlike continuous crystal–crystal phase transitions, there is not
one unique unstable vector with a vanishing frequency at the

liquid–vapor critical point. Instead, the whole spectrum softens
with a subset that have extrema near the critical point; both the
long-time Lyapunov exponents and their fluctuations on short
times reflect their high sensitivity to long-range correlations of
molecular positions. These vectors do not appear to completely
freeze, at least not in finite-size systems, but do exhibit large
fluctuations with a peak in dynamical timescales indicating the
critical slowing down of chaos, the stabilization of unstable vec-
tors, and a longer memory of initial conditions. In short, the
relative mechanical stability of molecular motion underlies the
bulk behavior of fluids at this thermodynamic instability.

Methods
Model non-associated fluid. Our system is the three-dimensional, periodic
Lennard–Jones (LJ) fluid29. The Hamiltonian of this collection of N particles is
Hðrij; pkÞ ¼

P3N
k p2k=2mþPN

i<j VðrijÞ. The pairwise interaction potential between
particles i and j a distance ~rij apart is given by

Vð~rijÞ ¼ 4ϵij
σ

~rij

 !12

� σ

~rij

 !6" #
: ð2Þ

The parameter εij corresponds to the well depth at the equilibrium distance and
measures the strength of the interaction between particles i and j. For the single-
component fluid we consider, all interactions are identical (εij= ε). The first term
of the potential energy function takes into account short-range repulsive interac-
tions. The second term corresponds to the attractive part of the interaction, which
acts over a comparatively longer range. The parameter σ stands for the distance at
which the attractive and the repulsive forces are equal and can serve as a measure
of the particle size. We work in LJ reduced units with the distance r ¼ ~r=σ, density
ρ ¼ ~ρσ3, temperature T ¼ kB ~T=ε, time t ¼ ~t=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
mσ2=ε

p
, and Lyapunov exponents

λ ¼ ~λ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
mσ2=ε

p
. All particles have unit mass m= 1, ε= 1, and σ= 1.

Numerical simulation methods. All numerical data are from molecular dynamics
simulations of constant energy trajectories. The initial conditions were sampled
from a constant temperature trajectory using the Berendsen thermostat with a time
constant of 0.5. Subsequent NVE trajectories are updated with the velocity
Verlet algorithm using a time step of 10−3. Their total energy is well conserved and
the kinetic temperature fluctuates around the temperature of the sampled NVT
trajectory. We shift and truncate the interparticle potential60 and use a Verlet list
with a 2.5σ cutoff and a “skin” of 0.1σ. All data are from single-precision
calculations.

At fixed number of particles N, volume V, and energy E, we simulate
deterministic trajectories of this equilibrium fluid and the dynamics of Lyapunov
vectors in tangent space46. The ith Lyapunov vector components are first variations
in position and momentum (δqij, δpij)T with i, j= 1,…, 6N and evolve according to
their own linearized Hamiltonian equation of motion. We numerically solve this
equation of motion with the linearized form of the velocity Verlet algorithm used
to evolve trajectories and orthonormalization at every time step46. The initial basis
sets are random and orthonormal. During a transient, that we discard, the first
vector orients itself parallel to the maximally changing tangent space direction.
Regular orthonormalization restricts the collapse of the remaining vectors onto the
most expanding tangent space direction. The algorithm requires the second
derivatives (Hessian) of the interaction potential at every time steps. We use
forward differences of the analytical gradients with a displacement of 10−4.

Within the linearized limit, the expansion or the compression factor along the
phase-space direction of the ith Lyapunov vector over time t is eΓiðtÞ . The
corresponding finite-time Lyapunov exponent is λi(t)= Γi(t)/t. The complete finite-
time Lyapunov spectrum, {λi(t)} is calculated from the set of Gram–Schmidt
vectors with standard methods61,62. We evaluate the full Lyapunov spectrum at

each time step using the norm δxiðt′Þ
�� �� ¼ P6N

j δqijðt′Þ2 þ δpijðt′Þ2
h i1=2

. The ith

finite-time exponent over a time interval t= t′−t0 has the form:

λiðtÞ ¼ t′ � t0
�� ���1

ln
δxiðt′Þ
�� ��
δxiðt0Þj j : ð3Þ

At each thermodynamic condition, simulations of long trajectories are 106 time
steps and span a time of tfinal= 1000 in reduced time units. For each long trajectory
we obtain estimates of the long-time exponents {λi}.

Each trajectory is also used to calculate the finite-time Lyapunov exponents by
dividing the long trajectory into constant time intervals of size of 0.1. Every time
segment has a unique initial condition, so the partitioning of the long-time
trajectory produces an ensemble of 10,000 finite-time trajectories. Finite-time
Lyapunov exponents are fluctuating variables. We estimate the magnitude of their
fluctuations over a time interval, t, with the diffusion coefficients {D(λi)}26,33,45 and
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the variance, χ2i ðtÞ, of {Γi(t)}
tDðλiÞ ¼ χ2i ðtÞ ¼ ΓiðtÞ � λih itð Þ2� �

: ð4Þ
Averages 〈⋅〉 are over an ensemble of 104 trajectories, each having time span t= 0.1
in reduced time units. The average 〈λi〉= λi is the average of the ith Lyapunov
exponent over an entire long trajectory. While the finite-time Lyapunov exponents
depend on the chosen norm, the diffusion coefficient is a dynamical invariant45.

To probe the self-averaging property of finite-time Lyapunov exponent
fluctuations, we ran trajectories over a range of system sizes. From N= 100 up to
N= 2000, we calculated the diffusion coefficient of the finite-time {λi(t)} over the
trajectory ensemble for each system size. We scaled the number of molecules N and
the volume V to ensure the thermodynamic limit of the microcanonical ensemble:
N, V→∞ keeping the number density ρ=N/V and energy density e= E/V
constant. According to the equipartition theorem, the kinetic temperature of the
system is given by T= 2〈Ekin〉/3NkB. We analyze the scaling of fluctuations in
dynamical variables with system-size N for a range of T with ρ fixed at ρc= 0.317.
From the scaling of {D(λi)} with N, we estimate the values of the wandering
exponents γ. Estimates of the wandering exponent with up to N= 1000 or N=
2000 particles does not affect the location of maximum in−γ or qualitative features
of its temperature dependence, suggesting our estimates are well converged. The
power-law decay of the diffusion coefficient of the finite-time Lyapunov exponents
with system size was also found to be robust to changes in the chosen time interval.

Analytical model of nonlinearly coupled oscillators. We consider a one-
dimensional system of N interacting, classical particles of mass m in a bistable
potential VðxiÞ ¼ Ax4i þ Bx2i . The single-particle Hamiltonian is

H1ðxi; piÞ ¼
p2i
2m

þ Ax4i þ Bx2i þ
X
ijh i

Jxixj ð5Þ

where 〈ij〉 indicates all pairwise particle interactions with interaction strength J.
Here, we use A= κ4/4 and B=−κ2/2 with positive constants κ2, κ4 > 0. We drop
the particle index in what follows. The minima of the potential wells are at x= ±x0
with x0= κ2/κ4 with potential energy V0 ¼ �1

4κ2x
2
0 . The interaction energy for

particles at their minima is Jx20 . The Ising limit is when the barrier separating the
two wells is high relative to the interaction energy, jV0j=Jx20 � 1, so that each
particle is localized in the left (0 state) or right (1 state) well. Particles may ran-
domly occupy these 0 and 1 states.

Two approximations of this model capture the singularity and the finite-jump
discontinuity of the isochoric heat capacity at the liquid–vapor critical point. Both
approximations decouple the oscillators. Let δxi= (δqi, δpi) be a variation of a
single-particle phase point. Its equation of motion is

δ _xi ¼ ΩD2H1δxi ð6Þ
where Ω is the symplectic matrix, D2H1 is the second derivative of the relevant
single-particle Hamiltonian, and

ΩD2H1 ¼
0 T

�D2
xH1 0

� �
: ð7Þ

The submatrix T is diag(1/m) and D2
xH1 is the Hessian matrix. The eigenvalues of

ΩD2H1 satisfying the characteristic polynomial λ2 þm�1D2
xH1 ¼ 0 are the local

Lyapunov exponents λ± ¼ ±Re
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�D2

xH1=m
p

. In both approximations below, each
particle contributes one Lyapunov exponent. As a result, the Lyapunov spectrum
and the Kolmogorov–Sinai entropy are system-size extensive, hKS=Nλ+.

Soft-mode approximation: To analyze the effect of a diverging heat capacity on
the Lyapunov exponents, we treat the average effects of the anharmonic term in
Eq. (5) by imposing a temperature-dependent weakening of the anharmonic
restoring force on each particle9. We set J= 0 and x4→ x2〈x2〉0, using the
canonical average of the displacement squared for the harmonic oscillator 〈x2〉0=
kBT/κ2. The Hamiltonian of a single particle becomes

H′
1ðx; pÞ ¼

p2

2m
þ A x2

� �
0þB

� 	
x2: ð8Þ

The critical temperature is kBTc ¼ 2κ22=κ4, which we can use to express the free
energy of a single particle

βF1ðTÞ ¼ βF0;1ðTÞ � ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tc

T � Tc

s
ð9Þ

for T > Tc with the free energy of a single harmonic oscillator F0,1. Using the
thermodynamic relation CV=−T∂2F/∂T2, the isochoric heat capacity of each
particle is

CV ;1 ¼ kB � kBT
T � 2Tc

2 T � Tcð Þ2 ð10Þ

and CV,1→∞ as T→ Tc from above.
The canonical ensemble average Lyapunov exponents are

λ ± ¼ λ±h i ¼
Z 1

�1

Z 1

�1
λ ± ðxÞ ρðx; pÞ dx dp ð11Þ

where ρðx; pÞ ¼ Z�1e�βH′
1ðx;pÞ is the canonical probability density with partition

function ZðβÞ ¼ R1�1
R1
�1e�βH′

1ðx;pÞ dx dp. Because the local exponents do not
depend on position x, the global exponents are explicitly given by

λ±h i ¼ λ ± ðTÞ ¼ ±

ffiffiffiffiffi
κ2
m

r jT � Tcj
Tc

� �1=2

: ð12Þ

If the space and time averages are equivalent, then λ ± ¼ λ±h i ¼ limt!1λ± ðtÞ.
The right eigenvectors of ΩD2H′

1 are (1/m, λ+)T and (1/m, −λ+)T. At the critical
point, the Lyapunov exponents are degenerate and these eigenvectors are linearly
dependent. Notice that because λ±= λ±(x), there are no spatial fluctuations:
λ2±
� �� λ±h i2¼ 0. The precise form of the critical exponent will depend on the
nature of the correlations near the transition temperature. While this
approximation neglects these correlations, the heat capacity does diverge at Tc,
which is also a feature of the liquid–vapor critical point, with a concomitant
divergence in the Lyapunov time and degeneracy of the Lyapunov spectrum.

Mean-field approximation: Applying a mean-field approximation to the original
Hamiltonian40–42, leads to an isochoric heat capacity with a finite-jump
discontinuity (Supplementary Fig. 7). We replace the bilinear interaction between
particles by −J 〈x〉 x, where 〈x〉 is the ensemble average displacement. The addition
of J 〈x〉2/2 avoids double counting interactions. The Hamiltonian of a single
particle is then

HMF ¼
p2

2m
þ VðxÞ � J xh ix þ 1

2J xh i2: ð13Þ

For our choice of A= κ4/4 and B=−κ2/2, the potential V(x) is a double well. We
neglect the kinetic energy in what follows. The equilibrium free energy of each
particle is

FMFðTÞ ¼ �kBTlnTr½ρMFðxÞ� þ 1
2J xh i2 ð14Þ

where ρMF(x)= exp{−βV(x)+ βJ〈x〉x} and Tr[⋅] is the configuration integral. The
free energy is bistable for T < Tc and monostable for T ≥ Tc. Taking 〈x〉 to be a free
parameter, the minimum of the free energy at

∂FMF T; xh ið Þ
∂ xh i ¼ 0 ð15Þ

gives a constraint on the possible microstates consistent with this macrostate.
Using the mean displacement as an order parameter, subject to the constraint
above, the free energy is a minimum only when 〈x〉 satisfies the self-consistency
condition

xh i ¼ Tr½xρMFðxÞ�
Tr½ρMFðxÞ�

: ð16Þ

The minimum value M is the mean displacement of a particle at equilibrium. This
order parameter is nonzero when T < Tc (the ordered phase) and is zero when T ≥
Tc (the disordered phase).

The critical temperature is found by making contact with the Landau free
energy for continuous phase transitions. At equilibrium, the free energy becomes
FMFðT;MÞ ¼ �kBTlnTr½ρMFðxÞ� þ 1

2JM
2. We consider symmetric potential

functions V(x)= V(−x) so that only even terms survive in the cumulant expansion

ln exh i0¼
X1
n¼1

xnh i0
n!

ð17Þ

where 〈O〉0 represents Tr[O(x)ρ0(x)]/Tr[ρ0(x)] and ρ0(x)= e−βV(x). Up to second
order, the expanded free energy is

FMFðT;MÞ ¼ F0ðTÞ þ 1
2JM

2 1� βJ x2
� �

0

� 	
: ð18Þ

The second term vanishes at the critical temperature kBTc= J 〈x2〉0 (Supplementary
Fig. 6).

Taylor expanding the coefficient of the second term in the free energy when T is
near Tc gives an expression that agrees with the Landau free energy to second order

FMFðT;MÞ ¼ F0ðTÞ þ 1
2M

2 J � J2

kB

d x2h i0
dT

� �
T � Tcð Þ
Tc

: ð19Þ

This expression does not explicitly use the form of the potential V(x), only that it is
symmetric42. At a given β= 1/kBT, we self-consistently solve for M to find the
optimal approximation of the original Hamiltonian. The canonical
ensemble average of each observable O is Tr[OρMF(x)]/Tr[ρMF(x)] with 〈x〉=M.
Assuming ergodicity, the ensemble average Lyapunov exponent λ±= 〈λ±〉 is equal
to the time average limt!1λ ± ðtÞ.

The susceptibility diverges at the critical point (Supplementary Fig. 7).
Following a standard procedure in Landau–Ginzburg theory63, the order parameter
is coupled to an external field, ξ. In this case, the minimization of the free energy

~FMFðT;M; ξÞ ¼ FMFðT;MÞ � ξM: ð20Þ
determines the equilibrium value M. We see that ∂~FMF=∂M ¼ 0 when
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JM 1� βJ x2h i0

 � ¼ ξ. From this expression, the inverse susceptibility is

χ�1 ¼ ∂ξ

∂M
¼ J 1� βJ x2

� �
0

� 	
ð21Þ

and χ−1→ 0 as T→ Tc.

Data availability
The data are available from the corresponding author upon request.
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