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Hydrophobic carbon dots with blue dispersed
emission and red aggregation-induced emission
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Chaofan Hu1

Carbon dots (CDs) have been studied for years as one of the most promising fluorescent

nanomaterials. However, CDs with red or solid-state fluorescence are rarely reported. Herein,

through a one-pot solvothermal treatment, hydrophobic CDs (H-CDs) with blue dispersed

emission and red aggregation-induced emission are obtained. When water is introduced, the

hydrophobic interaction leads to aggregation of the H-CDs. The formation of H-CD clusters

induces the turning off of the blue emission, as the carbonized cores suffer from π-π stacking

interactions, and the turning on of the red fluorescence, due to restriction of the surfaces’

intramolecular rotation around disulfide bonds, which conforms to the aggregation-induced-

emission phenomenon. This on-off fluorescence of the H-CDs is reversible when the H-CD

powder is completely dissolved. Moreover, the H-CD solution dispersed in filter paper is

nearly colorless. Finally, we develop a reversible two switch-mode luminescence ink for

advanced anti-counterfeiting and dual-encryption.
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Many types of carbon dots (CDs) have been reported
because they are more eco-friendly and potentially a
carbon-based fluorescent nanomaterial; however, in

solution, most CDs show emission in the blue to green-light
regions only1–3. Therefore, there is an urgency to attain long-
wavelength and multicolor emission of CDs for further applica-
tions, particularly in biologically relevant and anticounterfeiting
fields1,2,4–9. The most common method for inducing long-
wavelength and multicolor emission is doping heteroatoms into
the lattices of carbon. The addition of heteroatoms leads to
defects with the framework of the CDs. Therefore, contraction of
the CDs’ band gaps further induces a redshift of the CDs’
fluorescence. Recently, Liu and coworkers fabricated red emission
B, N, S-codoped CDs using 2,5-Diaminobenzenesulfonic acid and
4-aminophenylboronic acid hydrochloride. Earlier, Ge et al.9

designed a series of Suzuki reactions to synthesize polythiophene
derivatives as precursors for red emission S-doped CDs.

However, previous studies on red emission CDs did not obtain
CDs that exhibit red fluorescence in the solid state. Most reported
CDs only fluoresce when dissolved in solution. The currently
accepted mechanism of this phenomenon is similar to the H-
aggregation of organic fluorescent molecules; CDs suffer from π–π
stacking in the solid state and the aggregation of large conjugated
systems consumes the transition energy, therefore, resulting in
the quenching of the CDs’ fluorescence. While the extinction of
the CDs’ luminescent solid-state has hindered their application
in LED and anticounterfeiting technology8,10–13. The current
method to maintain CDs’ solid-state-fluorescence (SSF) is to block
the CD monomers from direct contact. Most reported studies on
SSF CDs attempt to dope CDs into matrices or introduce polymer
chains into CDs8,11. For instance, Chen et al.13 prepared N-doped
CD’s (NCDs) with yellow-green SSF by hydrothermal treatment of
poly (vinyl alcohol) (PVA) and ethylenediamine (EDA). The
abundant surface PVA chains covered around the NCDs pre-
vented the graphitizing cores from π−π interactions; thus,
resisting the aggregation-caused-quenching (ACQ) of the NCDs’
fluorescence. However, these studies did not achieve red SSF of
CDs. Moreover, the introduction of matrices or polymer chains
restricted the concentration of the doped CDs; if too many CDs
are introduced, their ACQ will still take place.

Unlike the ACQ14 property of nanomaterials, B.Z Tang15–18

and coworkers discovered a series of organic fluorescent materials
and found that luminogen aggregation played a destructive role in
the light-emitting process. In their studies, a series of symmetrical
molecules were found to be nonluminescent in the dissolved state,
but emissive in the aggregated state. The term “aggregation-
induced emission” (AIE) was coined for this phenomenon, as the
nonluminescent symmetrical molecules were induced to emit via
aggregate formation. This theory has not been utilized in the SSF
of carbon dots yet.

Incidentally, we find another approach for maintaining a CDs’
SSF, in addition to introducing them into solid dispersed systems:
crowning the CDs’ graphitized cores with rotatable symmetric
surfaces, through a series of amidation and rearrangement during
a solvothermal carbonization process. When fully dispersed as a
homogeneous solution, our CDs exhibit similar PL characteristics
as the reported blue emission CDs. By adding water, the CDs
continuously assemble due to their hydrophobicity, the blue
fluorescence turns off while a red SSF turns on. Like AIE mole-
cules in solution, the surficial groups of CDs can rotate around
the intramolecular disulfide bonds and consume the absorbed
energy, thus, not producing fluorescence. However, in the solid
state, as a result of the intramolecular rotation being banned, the
excitation energy can transfer dominantly into fluorescence.
Therefore, we have designed a method to synthesize hydrophobic
N, S-doped CDs (H-CDs) with a two-switch-mode luminescence

between a blue dissolved fluorescence and a red AIE. Moreover,
the output of the H-CD powders is higher (after purification, the
mass ratio of H-CD powders to raw materials is approximately
80%) than prior methods. Several characterizations are taken to
determine the properties of H-CDs. When H-CD powder dis-
solves into certain organic solvents (ethanol or acetic acid), it
displays the same blue fluorescence as the as-prepared H-CD
solution. However, in DMF the H-CD displays both blue and red
fluorescence, due to the existence of mono-dispersed and aggre-
gated H-CDs. To confirm the fluorescence mechanism and the
relationship between the H-CD dispersed state and fluorescence,
we have designed a control experiment (replaced dithiosalicylic
acid with benzoate to remove the disulfide bonds). Finally, we fill
the as-prepared H-CD solution into a mark pen and conduct a
series of anticounterfeit and encryption experiments to develop
a reversible two-switch-mode luminescence ink.

Results
Preparation and characterization of the H-CDs. The H-CD
powder was easily prepared through a one-pot solvothermal
process of melamine (MA) and a dithiosalicylic acid (DTSA)/
acetic acid solution, followed by a simple purification (Fig. 1). It
should be noted that acetic acid plays a vital role during the
formation of H-CDs. In addition to being an environmentally
friendly solvent with low cost, it is also a catalyst for H-CDs’
carbonization and the constitution of H-CD surface (Supple-
mentary Fig. 1a). To further investigate the effect of acetic acid,
we applied a series of control experiments which replaced acetic
acid with formic acid, propionic acid and saturated aqueous
solution of oxalic acid. When propionic acid is added, the product
(named as PA-CDs) shows a similar PL property as the H-CDs:
blue emission in dispersion and yellow AIE in the powder state
(Supplementary Fig. 1b, c). However, propionic acid is much
more expensive and toxic than acetic acid, and the fluorescence of
PA-CD powder is yellow unlike the red AIE of the H-CDs.
Through continuous water addition, the transparent as-prepared
H-CD solution gradually turns into a turbid liquid, and the blue
emission fades away. Then, a red fluorescence emerges. H-CD
powder displaying red SSF under 365 nm UV irradiation can be
obtained with further purification and drying. Remarkably, under
2 nm UV, the red emission of the H-CD powder remains while
the H-CD dispersion displays nearly no fluorescence.

The as-prepared H-CDs have been characterized with
transmission electron microscopy (TEM), X-ray diffraction
(XRD) and Raman spectroscopy to confirm the nature of the
carbon nanoparticles. As shown in Fig. 2a, b, the TEM image of
the H-CDs presents size distributions between 4 and 10 nm, with
an average diameter of approximately 6.5 nm. High-resolution
TEM (HR-TEM) shows a lattice spacing of 0.21 nm correspond-
ing to the (100) facet of graphite and reveals that the H-CDs
contain graphite-like structures19–21. The XRD pattern of the H-
CDs (Fig. 2c) has an apparent peak at approximately 25°, which is
attributed to an interlayer spacing of 0.34 nm, while the peak near
41° represents the 0.21 nm interlayer spacing5,8,13,22. The Raman
spectrum in Fig. 2d displays two peaks at 1348 cm−1 (D band)
and 1584 cm−1 (G band), referring to areas of disordered surfaces
and sp2 carbon networks in the H-CDs’ frameworks, respectively.
The calculated intensity ratio ID/IG is 5.61, indicating the
amorphous surface of the H-CDs1,5,6,19.

Fourier transform infrared (FT-IR) spectra, X-ray photoelectron
spectra (XPS) and nuclear magnetic resonance (NMR) spectro-
scopy were taken to further analyze the chemical structure of the
H-CDs. The FT-IR spectrum (Fig. 2i) uncovers that the surface of
the H-CDs contains methylene (2876 and 2973 cm−1), C≡N
(2034 cm−1), S−H (2650 cm−1), amide carbonyl (1682 cm−1),
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C=C (1469 cm−1), C−N (1407 cm−1), C−S (685 cm−1), S−S
(491 cm−1), aromatic C−NH (1261 cm−1) and C−O (1124 cm−1)
functional groups or chemical bonds. Additionally, the FT-IR
spectra of MA and DTSA exhibit that these raw materials contain
an hydroxyl or amino (3064 and 3411 cm−1)1,4,8. Furthermore,
after the amidation and carbonization, these hydrophilic groups
almost disappear in the H-CDs, thus, contributing to the
hydrophobic properties of the H-CDs23–34. The full XPS spectrum
presented in Fig. 2e shows four peaks at 284.81, 399.62, 532.22, and
163.89 eV, suggesting that the H-CDs consisted of C, N, O, and S
elements, and the atomic ratios were calculated to 79.28%, 6.47%,
10.99%, and 3.26%, respectively. In Fig. 2f, the high-resolution XPS
spectrum of the C 1s band was separated into three peaks at
284.81, 286.41, and 288.95 eV, which are assigned to C–C/C=C,
C–N and C=O/C=N, respectively. The N 1s band (Fig. 2g)
exhibits two peaks at 399.07 and 400.27 eV, respectively, which
correspond to pyridinic C3–N and pyrrolic C2–N–H groups. The S
2p band in Fig. 2h contains three peaks at 163.35 eV for S−C,
163.81 eV for S–H and 164.57 eV for S–S. These three high-
resolution spectra collectively indicate the successful insertion of S
and N atoms into the H-CDs. Furthermore, NMR spectra (1H and
13C) were employed to distinguish the sp3-hybridized carbon
atoms from the sp2-hybridized carbon atoms (Fig. 2j, k).
Deuterium-labeled DMSO-d6 (CD3SOCD3) was used as a solvent.
In the 1H NMR spectra, sp2 carbons were detected. The peak at
9.99 ppm in Fig. 2j is the chemical shift of the carboxyl protons.
Furthermore, signals from the aromatic rings are detected at
8.3 ppm, which can be attributed to graphitized cores’ proton
resonances. The emergence of the –NH2 protons at 5.75 ppm
implies the introduction of primary amines into the heterocyclic
surface19,22,35. In the 13C NMR spectrum, signals in the range of
30−45 ppm are associated with the aliphatic (sp3) carbon atoms,
and signals from 100 to 185 ppm are indicative of sp2 carbon

atoms. Signals in the range of 170−185 ppm correspond to
carboxyl/amide groups36–38. Based on the aforementioned char-
acterizations, which support the reaction mechanism proposed in
Supplementary Fig. 1a, a molecular model for the H-CDs can be
constructed: a nanoscale graphite-like skeleton with defects caused
by pyridinic nitrogen atoms and disulfide bonds, covered with C,
N, O and S containing symmetrical heterocycle rotatable
structures. Notably, there are few amino and hydroxyl functional
groups on the surface of the H-CDs, which is quite different from
the water-soluble CDs reported in prior works. This model
explains the hydrophobicity and optical properties.

Optical properties and fluorescence mechanism of the H-CDs.
The UV−Vis absorption, PL excitation, and emission of the as-
prepared H-CD solution and powder were examined to evaluate
their optical properties. As shown in Fig. 3a, the UV−Vis
absorption of the as-prepared H-CDs has two peaks at λmax1 ≈
280 nm and λmax2 ≈ 360 nm due to the π–π* transitions of the
C=C in the core of the H-CD. While the H-CD powder exhibits
a different broad absorption, with a dominating band at λmax ≈
560 nm (Fig. 3b), which is attributed to the n–π* transitions of the
surface states containing C=N/C=O, C–O and C−S structures.
Figure 3d represents the PL emission of the H-CD powder under
different excitation wavelengths, showing a stable red emission
at λmax ≈ 620 nm, with a different excitation wavelength that is
more similar to traditional inorganic phosphors than reported
CDs. However, the as-prepared H-CD solution (Fig. 3c) exhibits
excitation-dependent PL features; similar to most CDs in prior
works, the optimal excitation and emission are near 360 and
467 nm1,6,10,11,20,39, respectively. The computational process
of the H-CDs’ molecular orbital energy level and fluorescence
lifetime (4.56 ns) is described in the “Methods” section. The
quantum yield of the H-CDs can be calculated as 5.96%,
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due to their photon absorption and emission (Supplementary
Fig. 2b, c)4,7,11,21,40,41. Visually, bright field and fluorescence
microscopy images (Supplementary Fig. 3) of excess H-CD
powder in ethanol indicate that thick stacking H-CD powder
produces red fluorescence, and the dissolved H-CD solution
displays blue emission. At the thin periphery of the H-CD powder
infiltrated with the solution, the red and blue emission hybridize
together, giving rise to a pink hybrid fluorescence8,10,13.

More intuitively, the photographs in Fig. 4a show that the pure
as-prepared H-CD solution and the solution with an addition of
less than 50% water (volume ratio) are orange to red
homogeneous and transparent liquids. When the volume ratio
of the water is greater than 50%, the as-prepared H-CD solution
starts to separate the red powder out and turns into a turbid
liquid with a suspension. Under a 365 nm UV excitation (Fig. 4b),
the aforementioned transparent liquids display blue fluorescence,
while the turbid liquid with the suspension glows red. In addition,

correlated to the variation trend of the size distribution by adding
more water, the intensity of the H-CD solution’s blue emission
decreases, while the red emission is heightened (Fig. 4c). The H-
CDs in solvents with different polarities exhibit a similar
fluorescence phenomenon (Fig. 4d) to the as-prepared H-CDs
with varying ratios of water. The red emission increases when the
polarity of the solvent decreases. The UV−Vis absorption spectra
and absorbance trend of the H-CD solutions with varying ratios
of water (Fig. 4e, f) reveal that with the injection of water, the
absorbance at 360 nm continues decreasing, while a redshifted
absorbance at 559 nm appears and continues increasing. This
trend provides strong evidence for the presence of π−π stacking
in the H-CDs. Conjugated systems can form two distinct types of
π−π aggregates, a sandwich-type arrangement (H-aggregates)
and a head-to-tail arrangement (J-aggregates)42. According to the
molecular exciton coupling theory, the spectral redshift indicates
that the H-CDs form J-aggregates, with a head-to-tail
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arrangement43–46. Based on the red SSF of the H-CD powders, a
fluorescent organic glass was fabricated and assembled into a
WLED with a cyan LED-chip (Supplementary Fig. 4).

As mentioned above, when the H-CD powders dissolve into
DMF, an orange transparent liquid is obtained (Fig. 5c, left inset).
Under 365 nm UV excitation, the H-CD powder DMF solution
exhibits a pinkish red fluorescence (Fig. 5c, right inset). The PL
mapping spectrum (Fig. 5c) reveals that there are both blue and
red emission centers in the H-CD powder DMF solution.

Relatively, the H-CD powder acetic acid solution (Fig. 5a) has
only a blue emission center, and the H-CD powder (Fig. 5b)
solely obtains a red emission center. TEM images (Fig. 5d–f)
indicate that the H-CD aggregates, with an average diameter of
approximately 56 nm, exist in the DMF solution around the H-
CD monomers. The HR-TEM images (Fig. 5g–i) of the H-CD
aggregates, and the FFT diffraction pattern (inset of Fig. 5i) of the
carbon lattice reveals there are different carbon lattice planes in
the H-CD aggregates, meaning that the H-CDs assemble with
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random orientation47–49. Therefore, the H-CD aggregates gen-
erate red SSF and the monomers contribute to the blue emission,
which reveals the relationship between the H-CDs’ luminous
mechanism and their dispersed state.

To further verify the structure and fluorescence mechanism of
the H-CDs, we carried out two control experiments, the first
displaced DTSA with benzoate to remove the effect of the
disulfide bonds. The produced CDs are named B-CDs. As shown
in Supplementary Fig. 5a, c, the as-prepared B-CDs solution
displays similar blue emission to the H-CDs. However, the B-CDs
in the solid state exhibit no fluorescence (Supplementary Fig. 5b,
d). Moreover, the solid-state B-CDs can easily dissolve into water
(Supplementary Fig. 5e). According to the FT-IR spectra of B-
CDs and H-CDs, the chemical structure of the B-CDs is similar to
the H-CDs, except for the disulfide bonds. Thus, the relationship
between the symmetrical surface around the disulfide bonds and
the H-CDs’ hydrophobicity and red AIE can be affirmed.

The second control experiment used a postmodification
method to synthesize dithiosalicylic acid-modified CDs, which
are named P-CDs. First, MA is dissolved into acetic acid and
undergoes a solvothermal pretreatment. The P-CD intermediate
is water-soluble and displays blue fluorescence (Supplementary
Fig. 6a). The TEM image of this intermediate in Supplementary
Fig. 6d and its inset indicates that a carbonized dot structure with
a 0.25 nm lattice spacing (111 lattice plane of carbon), which can
further verify that the blue emission of the H-CDs comes from its
carbonized core. P-CDs were then fabricated by mixing DTSA
with the aforementioned intermediate and acetic acid, after a

post-solvothermal processing. As shown in Supplementary
Fig. 6b, c, e, f, P-CDs exhibit same hydrophobicity and PL
properties as the H-CDs, which confirms the root of the H-CDs’
hydrophobicity and red AIE is the DTSA-modified surface.

Therefore, we can build a model comprised of the core formed
by MA with an N, S, O-containing, rotatable symmetrical
heterocyclic surface. Optical properties and calculated energy
level transitions reveal the correspondence of blue emission to the
core and red emission to the surface. Photoluminescence videos
(Supplementary Movies 1, 2, 3) of the H-CDs in different
dispersed-states suggest that H-CDs show blue emission in a
dissolved state, and red emission in a solid state. The H-CD
ethanol solution was added onto a copper grid and dried, then
deionized water was sprayed onto the copper grid. The TEM
image (Supplementary Fig. 7) of the copper grid revealed that the
H-CD monomers were becoming closer than H-CD solution
displayed in Fig. 2a. Thus, a convincible aggregate and luminous
mechanism can be proposed: in solution, H-CDs’ graphitized
cores are dominant while the rotatable symmetrical heterocycles
around the disulfide bond is recessive; therefore, the H-CD
solution exhibits excitation-correlated blue fluorescence, similar
to reported carbon dots. When the H-CD monomers contact
water, the hydrophobicity of their surfaces cause them to
approach each other. Then the conjugated system of the surfaces
conducts π−π stacking to overlay each other. Finally, the H-CDs
take the shape of J-aggregates. Due to this aggregation, the
graphitized cores will suffer a π−π stacking interaction and
further turn off the blue emission via ACQ. Furthermore, the
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axisymmetric heterocycles shown in Supplementary Fig. 2 suffer
from the restriction of intramolecular rotation (RIR) of
symmetrical heterocycles about their disulfide bonds axes, like
other reported symmetrical molecules with AIE17,18,50, resulting
in red AIE15,16,51.

H-CD-based two-switch-mode luminescence ink. As shown in
Fig. 6a, the as-prepared H-CD solution was painted on a filter
paper. Under white light, it is almost colorless and shows a blue
fluorescence under 365 nm UV excitation. At 254 nm the UV
irradiation cannot produce any fluorescence, which conforms to
the PL property of the H-CD monomers shown in Fig. 5. By
adding water and air-drying, its fluorescence under 365 nm UV
turns to pink. Furthermore, it appears as a red fluorescence,
which suggests the H-CDs on the filter paper contains both
H-CD monomers and H-CD aggregates, compared with the
former data. With the addition of ethanol and air-drying, the
liquid H-CD displays the same optical properties as the H-CD

monomers. Furthermore, the addition of water can turn on the
red emission again. This phenomenon suggests that the as-
prepared H-CD solution can be utilized as a reversible two-
switch-mode ink. A schematic mechanism for the ink is shown in
Fig. 6b. The square frames in Fig. 6b represent the filter paper, the
wavy lines represent the paper’s fibers. Blue dots represent the H-
CD monomers dispersed in the filter paper due to the restriction
of the paper’s fibers. As mentioned above, H-CD monomers
cannot be excited at 254 nm but can be excited at 365 nm. When
water is introduced, some of the H-CD monomers aggregate and
surface. Furthermore, the other monomers remain joint to the
fibers. Therefore, under 365 nm irradiation, both the monomers
in the filter paper and the aggregates on surface can be excited to
glow blue and red emission, which display as a hybrid pink
fluorescence. While under 254 nm irradiation, the monomers are
not excited further, resulting in the red emission only. Once
ethanol is applied, the aggregates will dissolve into the filter paper
as monomers again; therefore, this process is reversible. A video
has been taken to show this reversible process (Supplementary
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Movie 4). In this video, we observed that the transfer of the
different fluorescence is extremely fast. The excellent reversibility
of the process makes the H-CDs promising candidates for prac-
tical anticounterfeiting and encryption applications.

Finally, the as-prepared H-CD solution was filled into an
empty mark pen to form a convenient anticounterfeiting and
encryption tool. Two school badges painted with a commercially
available highlighter pen (CAHP) and an H-CD as-prepared
solution-filled mark pen (HMP) (Fig. 7a) based on the filter
papers were fabricated. The badges underwent the same
treatments as Fig. 6a, c in order. Under white light, the badges
are as white as empty filter papers. The CAHP-painted badge

exhibits cyan fluorescence under 365 nm UV and blue emission
under 254 nm UV. Additionally, water addition does not make
an obvious change. While under the different treatments and
irradiation, the HMP-painted badge can display four different
luminescence characteristics (with HMP, under 365 nm UV,
blue emission; under 254 nm UV, no emission; with HMP and
water, under 365 nm UV, pink emission; under 254 nm UV,
red emission). Evidently, the H-CD as-prepared solution-filled
mark pen manifests distinctly unique luminescent properties
and stability through the injection of different solvents. The
HMP dual-encryption utilization is presented in Fig. 7b. “SC”,
“US” and “NU” are painted by HMP; moreover, “C”, “S” and
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“U” are covered with wax after the ink is air-dried. With
365 nm UV excitation, with or without water, only a series of
meaningless fake-codes are shown in blue fluorescence. With 254
nm UV irradiation and no water addition, only darkness is
observed. Specifically, the true code “SUN” appears as red
fluorescence with simultaneous water treatment and 254 nm UV
excitation.

Discussion
In summary, H-CDs with reversible two-switch-mode lumines-
cence (blue dissolved fluorescence and red AIE) are attained from
an eco-friendly, low-cost one-pot solvothermal treatment. TEM,
XRD and Raman spectra were taken to confirm the nature of
the H-CD carbon nanoparticles. Afterwards, the hydrophobic
disulfide bond, containing a symmetrical heterocyclic surface of
H-CDs was confirmed by XPS, FT-IR spectra and NMR. The
hydrophobicity stems from the abundance of pyridinic and epoxy
groups on their symmetrical heterocyclic surfaces. As dispersed
monomers in organic solvents, such as AC and ethanol, the as-
prepared CDs display a “traditional” ultraviolet absorption
(λEX= 315 nm) and blue emission (λEM= 467 nm). The as-
prepared CDs are extremely hydrophobic because of the epoxy
and pyridyl groups on their surfaces. Thus, the as-prepared CDs
will precipitate if water is injected. The precipitations show no
blue emission, as the CDs aggregate into J-aggregates and the
carbonized cores suffer from aggregation-caused-quenching
(ACQ) due to the π−π stacking interaction of their vast con-
jugated system. Furthermore, the dominated surficial energy
transition turns into the production of fluorescence, as the

intramolecular rotation of the symmetrical heterocycles about the
disulfide bonds is restricted, leading to red AIE (λEM= 621 nm,
λEX= 559 nm). This mechanism is confirmed by the aforemen-
tioned characterization methods as well as experiments on
monomers and aggregates of H-CDs in a DMF solution: pure H-
CD monomers in AC or ethanol solutions solely exhibit blue
emission; pure H-CD powder only show red AIE; in a DMF
solution, when the monomers and aggregates of H-CD coexist,
the blue dissolved fluorescence and red AIE take place. Two
control experiments were conducted to further confirm this
theory. The turning off of the H-CDs’ blue emission and turning
on of the red AIE is reversible. As a result, an anticounterfeiting
fluorescence ink for advanced anticounterfeiting and dual
encryption has been fabricated based on the two-switch-mode
luminescence of H-CDs.

Methods
Materials. Melamine, dithiosalicylic acid, and benzoate were obtained from
Shanghai Adamas Reagent Co., Ltd. Acetic acid was purchased from Guangdong
Guanghua Sci-Tech Co., Ltd. All reagents were of analytical grade and used directly
without further purification. Deionized water was produced through a Millipore
water purification system (Milli-Q, Millipore) and used throughout the study.

Instruments and measurements. UV−Vis absorption spectra of the powder
samples were performed using a Shimadzu UV-2550 ultraviolet-visible spectro-
photometer. PL spectra were measured using a Hitachi FL7000 fluorescence
spectrophotometer instrument apparatus. The XRD pattern was collected using a
XD-2×/M4600. The HR-TEM images were recorded using a JEOL-2010 electron
microscope. FT-IR spectra were taken on a Nicolet Avatar 360 FT-IR spectro-
photometer. X-ray photoelectron spectroscopy (XPS) experiments were performed
using a Kratos AXIS Ultra DLD X-ray photoelectron spectrometer with a mono-
chromatic Al Kα X-ray source. Raman spectra were obtained by a Renishaw via a
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HMP HMP + water
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Fig. 7 Application of H-CDs ink. a H-CD as-prepared solution-filled mark pen (HMP) utilized as an anticounterfeiting badge compared with commercially
available highlighter pen (CAHP); b HMP utilized as a dual-encryption badge. H-CD, hydrophobic carbon dot
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microspectrometer with an excitation wavelength of 785 nm laser. Particle size
analysis is achieved from a Malvern Nano 2SE laser particle size analyzer. NMR
measurements were taken by AVANCEIII500 (Bruker). The absolute quantum
yield and lifetime are respectively measured by a Hamamatsu C11347 and a
Quantaurus Tau C11367.

Synthesis of the H-CDs. 201.6 mg MA and 544 mg DTSA were dissolved into 40
mL acetic acid with ultrasonic treatment, then the solution was transferred into an
80 mL Teflon reactor and kept at 180 °C for 10 h in an air oven. After the sol-
vothermal treatment, the as-prepared H-CD solution was added into 1 L boiled
water to form H-CD powder and wash out the residual raw materials and solvent.
Finally, purified H-CD powder was achieved through vacuum filtration. To con-
firm the reliability of this water-wash method, we applied column chromatography
to purify the H-CD solution for comparison, and the H-CDs obtained from this
approach are named CC-H-CDs. FT-IR and UV−Vis spectra of H-CDs and CC-
H-CD powders in Supplementary Fig. 8 suggest the components are approximately
identical. Therefore, the water-wash method is considered as reliable as column
chromatography.

Synthesis of the P-CDs. 201.6 mg MA was dissolved into 40 mL acetic acid with
ultrasonic treatment, then the solution was transferred into an 80 mL Teflon
reactor and maintained at 180 °C for 5 h in an air oven. The as-prepared solution
was purified by centrifuge and column chromatography and intermediate
powders were collected from freeze-drying. Afterwards, 150 mg intermediate
powder and 544 mg DTSA were dissolved into 40 mL acetic acid, transferred into
an 80 mL Teflon reactor, and maintained at 180 °C for 5 h in an air oven. After
the solvothermal treatment, the as-prepared H-CD solution was added into 1 L
boiled water to form H-CD powders and wash out residual raw
materials. Finally, the purified P-CDs powder was obtained through vacuum
filtration.

Synthesis of the B-CDs. 201.6 mg MA and 434 mg were dissolved into 40 mL
acetic acid with ultrasonic treatment, then transferred into an 80 mL Teflon reactor
and maintained at 180 °C for 10 h in an air oven. After the solvothermal treatment,
the as-prepared B-CDs solution was dialyzed in deionized water for a week to
remove residual raw materials. Finally, the purified solid-state B-CDs were
obtained through freeze-drying.

Preparation of H-CD-powders-based fluorescence organic glass. 150 mg H-CD
powders, 53.7 mg dibenzoyl peroxide, 1 mL dibutyl phthalate and 15 mL methyl
methacrylate were added into a 250 mL flask, the mixture was maintained at 90
−92 °C for 15 min in water bath. Afterwards, the flask was cooled down to 40 °C
rapidly, and the mixture was poured into a template and maintained at 100 °C for
2 h. After reverse molding, fluorescent organic glasses (Supplementary Fig. 4) based
on H-CD powders were obtained.

Computational process of H-CDs’ molecular orbital energy level and fluor-
escence lifetime. The energy level transitions (Fig. 3e) of the H-CDs’ carbonized
cores and symmetrical heterocyclic surfaces were calculated by the formula

E ¼ h
c
λ

ð1Þ
according to their absorptive and emissive properties, which fit the molecular
orbital energy level of the proposed structure simulated by the Gaussian 09 plug-in
in ChemBioOffice 2014®. The fluorescence decay curve and double-exponential
fitting results are shown in Supplementary Fig. 2a. The fitting function is shown in
the formula below

y ¼ y0 þ A1 � expð�ðx � x0Þ=t1Þ þ A2 ´ expð�ðx � x0Þ=t2Þ ð2Þ
and the fluorescence lifetime is calculated as 4.56 ns by the formula below:

t ¼ ðA1t
2
1 þ A2t

2
2Þ=ðA1t1 þ A2t2Þ ¼ 4:56 ns: ð3Þ

Data availability
Data are available from the corresponding author upon reasonable request.
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